Изучение физических свойств бензола



бет1/3
Дата15.07.2016
өлшемі222.5 Kb.
#200316
  1   2   3
Изучение физических свойств бензола

Бензол – бесцветная легкоподвижная жидкость с характерным запахом. Посмотрим, растворяется ли бензол в воде, спирте и эфире. В три пробирки нальем немного бензола и прибавим в первую пробирку воды, во вторую – спирта, в третью – эфира. Бензол хорошо растворяется в спирте и эфире. В воде бензол малорастворим и как более легкая жидкость всплывает наверх. В 100 мл воды растворяется всего 0,08 г бензола. Бензол является хорошим растворителем. Смешаем немного бензола с касторовым маслом. При перемешивании происходит растворение масла в бензоле. Посмотрим, как замерзает бензол. В стакан со смесью льда и воды опускаем две пробирки: одна заполнена дистиллированной водой, другая - бензолом. Через некоторое время начинается кристаллизация бензола. Бензол замерзает и превращается в белую кристаллическую массу. Температура замерзания бензола +5,5 °С. Вода в соседней пробирке остается жидкой. При извлечении пробирки из охлаждающей смеси бензол плавится и снова становится жидким.



Оборудование: пробирки, кристаллизатор, штатив для пробирок.

Техника безопасности. Остерегаться попадания бензола на кожу. Соблюдать правила работы с огнеопасными жидкостями.

Горение бензола

Бензол содержит около 92% углерода, при неполном сгорании бензола образуется много копоти. Поднесем к чашке с бензолом горящую лучину. Бензол быстро вспыхивает и горит ярким сильно коптящим пламенем. При горении бензола образуются углекислый газ и водяные пары.



6Н6 + 15О2 = 12СО2 + 6Н2О

Оборудование: огнезащитная прокладка, лучина, фарфоровая чашка.

Техника безопасности. Остерегаться попадания бензола на кожу. Соблюдать правила работы с огнеопасными жидкостями.

Изучение отношения бензола к бромной воде

и раствору перманганата калия

Прильем немного бромной воды к бензолу. Взболтаем смесь. Из бромной воды бром переходит в верхний слой бензола и окрашивает его. Растворимость брома в бензоле больше, чем растворимость брома в воде. При данных условиях бром не вступает в реакцию с бензолом. Во вторую пробирку с бензолом прильем раствор перманганата калия. Здесь мы также не замечаем протекания химической реакции. Бензол не дает реакций, характерных для непредельных углеводородов. Бензол не присоединяет бром и не окисляется раствором перманганата калия.



Оборудование: пробирки, штатив для пробирок.

Техника безопасности. Остерегаться попадания бензола на кожу. Соблюдать правила работы с огнеопасными жидкостями.

Бромирование бензола

В колбу нальем 4 мл бензола и прибавим немного брома. Закроем колбу пробкой с газоотводной трубкой. Для поглощения паров брома между пробкой и газоотводной трубкой поместим хлоркальциевую трубку с активированным древесным углем. Конец газоотводной трубки опустим в стакан с водой. Бензол растворяет бром, но реакция не идет. Добавим в смесь немного металлического железа. Начинается реакция. Железо и бром образуют бромид железа (III), который и является катализатором реакции. Продукты реакции - бромбензол и бромоводород.



С6Н6 + Br2 = С6Н5Br + НBr

По окончании реакции выльем смесь из колбы в воду. Бромбензол опускается на дно стакана, так как в отличие от бензола бромбензол – тяжелая жидкость. Докажем, что в результате реакции кроме бромбензола образовался и бромоводород. Для этого к водному раствору бромоводорода прибавляем синий лакмус. Он изменяет свой цвет - становится розовым. Значит, в растворе образовалась кислота. Ко второй порции раствора добавим немного раствора нитрата серебра - выпадает желтоватый осадок бромида серебра.



НBr + AgNO3 = AgBr ↓ + HNO3

В присутствии катализатора бромида железа бензол реагирует с бромом с образованием бромбензола и бромоводорода. Тип реакции - реакция замещения.

Карбонат натрия в водном растворе реагирует с бромом, образуя бесцветные продукты реакции: вследствие этого бурая окраска брома исчезает.

2Na2CO3 + H2O + Br2 = 2NaHCO3 + NaBr + NaBrO

Оборудование: круглодонная колба, пробирки, газоотводная трубка, воронка, штатив.

Техника безопасности. Остерегаться попадания бензола на кожу. Соблюдать правила работы с огнеопасными жидкостями. Опыт выполняется под тягой.

Хлорирование бензола (получение гексахлорана)

Под действием света бензол может присоединять хлор. В колбу, наполненную газообразным хлором, прильем немного бензола и быстро закроем пробкой. При обычных условиях реакция между хлором и бензолом не идет. Осветим колбу электрической лампой – появляется белый дым, это мельчайшие кристаллики гексахлорциклогексана. Окраска хлора исчезает, так как бензол присоединяет хлор. Продукт реакции – гексахлорциклогексан или гексахлоран.



С6Н6 + 3CI2 = С6Н6CI6

Гексахлоран – один из сильнейших инсектицидов – химических средств борьбы с вредными насекомыми.



Оборудование: колба объемом 500-1000 мл, пробка, штатив, источник яркого света.

Техника безопасности. Остерегаться попадания бензола на кожу. Соблюдать правила работы с огнеопасными жидкостями. Опыт выполняется под тягой. После проведения опыта промыть колбу спиртом, затем раствором щелочи. Спиртовой раствор обработать хромовой смесью. Все операции проводить только под тягой.

Физические свойства спиртов

Одноатомные спирты, содержащие в своем составе до десяти атомов углерода, в обычных условиях - жидкости. Спирты, в составе которых 11 атомов углерода и более - твердые тела. Этиловый, бутиловый и изоамиловый спирт – жидкости.

Посмотрим, как спирты растворяются в воде. В три пробирки нальем по нескольку миллилитров спиртов и прибавим к ним подкрашенную воду. Спирты имеют плотность меньше единицы, поэтому они образуют верхний слой. При взбалтывании пробирок происходит полное растворение этилового спирта, частично растворяется бутиловый спирт, почти не растворяется изоамиловый спирт. Краситель из водного раствора переходит в спирты. С повышением молекулярной массы и увеличением углеводородного радикала растворимость спиртов в воде уменьшается.

Оборудование: пробирки, штатив для пробирок, стаканы.

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями.

Горение спиртов

Нальем понемногу этилового, бутилового и изоамилового спиртов в фарфоровые чашки. Поднесем к чашкам горящую лучину. Этиловый спирт быстро загорается и горит голубоватым, слабосветящимся пламенем. Бутиловый спирт горит светящимся пламенем. Труднее загорается изоамиловый спирт, он горит коптящим пламенем. С увеличением молекулярной массы одноатомных спиртов повышается температура кипения и возрастает светимость их пламени.



С2Н5ОН + 3О2 = 2СО2 + 3 Н2О
С4Н9ОН + 6О2 = 4СО2 + 5 Н2О
5Н11ОН + 15О2 = 10СО2 + 12 Н2О
Оборудование: огнезащитная прокладка, фарфоровые чашки, лучина.

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями.

Взаимодействие этилового спирта с металлическим натрием

При взаимодействии спиртов с натрием образуются газообразный водород и соответствующие алкоголяты натрия. Приготовим пробирки с метиловым, этиловым и бутиловым спиртами. Опустим в пробирку с метиловым спиртом кусочек металлического натрия. Начинается энергичная реакция. Натрий плавится, выделяется водород.



2СН3ОН + 2 Na = 2 CH3ONa + H2

Опустим натрий в пробирку с этиловым спиртом. Реакция идет немного медленней. Выделяющийся водород можно поджечь. По окончании реакции выделим этилат натрия. Для этого опустим в пробирку стеклянную палочку и подержим ее над пламенем горелки. Избыток спирта испаряется. На палочке остается белый налет этилата натрия.



2Н5ОН + 2 Na = 2 C2H5ONa + H2

В пробирке с бутиловым спиртом реакция с натрием идет еще медленнее.



4Н9ОН + 2 Na = 2 C4H9ONa + H2

Итак, с удлинением и разветвлением углеводородного радикала скорость реакции спиртов с натрием уменьшается.



Оборудование: штатив для пробирок, пробирки, пинцет, скальпель, фильтровальная бумага.

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и щелочными металлами.

Взаимодействие этилового спирта с бромоводородом

Спирты взаимодействуют с галогеноводородами. В прибор для получения галоидоалканов наливаем смесь этилового спирта с концентрированной серной кислотой. Прибавим к смеси вначале несколько капель воды, а затем – бромид натрия. В верхнюю часть прибора, холодильник, нальем воды и добавим кусочки льда. Нагреем колбу. Через некоторое время начинается реакция. Бромид натрия реагирует с серной кислотой с образованием бромоводорода.



NaBr + H2SO4 = NaHSO4 + HBr

Бромоводород реагирует с этиловым спиртом с образованием бромэтана.



HBr +С2Н5ОН = C2H5Br + H2O

Бромэтан - легкокипящая жидкость. Бромэтан испаряется, пары поступают в холодильник, где бромэтан конденсируется. Капли бромэтана падают в приемник. На дне приемника собирается тяжелая маслянистая жидкость – бромэтан.



Оборудование: прибор для получения галоидоалканов, штатив, шпатель, горелка, стакан, мерная пробирка

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и кислотами.
Изучение физических свойств глицерина

Глицерин – прозрачная, бесцветная, вязкая, сладковатая сиропообразная жидкость. Глицерин хорошо растворим в воде, и смешивается с ней в любых отношениях. Растворы глицерина замерзают при очень низких температурах. Приготовим охлаждающую смесь из поваренной соли и кусочков льда. Опустим в нее две пробирки. В одной из пробирок – вода, в другой – раствор глицерина. Через некоторое время вода замерзает. Раствор глицерина остается жидким. Глицерин и этиленгликоль используются в качестве антифризов в радиаторах автомобилей.



Оборудование: пробирки, штатив, кристаллизатор.

Техника безопасности. Опыт безопасен.

Взаимодействие глицерина с металлическим натрием

Как и одноатомные спирты, многоатомные спирты реагируют с металлическим натрием. В пробирку с глицерином бросим кусочек натрия. Пробирку слегка подогреем. Реакция идет вначале медленно, затем более энергично. Выделяющийся водород можно поджечь. Реакция протекает очень энергично, выделяется много теплоты, на завершающей стадии реакции происходит обугливание глицерина.





Оборудование: химический стакан, пробирка, палочка стеклянная, скальпель, пинцет, фильтровальная бумага.

Техника безопасности. Соблюдать правила работы со щелочными металлами.

Взаимодействие многоатомных спиртов с гидроксидом меди (II)

С увеличением числа гидроксильных групп в молекуле вещества возрастает подвижность атомов водорода, т.е. увеличиваются кислотные свойства. Поэтому атомы водорода в многоатомных спиртах могут замещаться не только щелочными металлами, но и менее активными металлами. Получим гидроксид меди (II), путем сливания растворов гидроксида натрия и сульфата меди (II). Прильем полученный осадок к глицерину. Осадок гидроксида меди растворяется и образуется темно-синий раствор глицерата меди (II). Осадок гидроксида меди прильем к раствору этиленгликоля. Также образуется темно-синий раствор. Реакция с гидроксидом меди (II) является качественной реакцией на многоатомные спирты.





Оборудование: пробирки, стеклянная палочка.

Техника безопасности. Соблюдать правила работы со щелочами и их растворами.

Взаимодействие глицерина с кристаллическим перманганатом калия

К растертому в тонкий порошок перманганату калия прильем немного глицерина. Через некоторое время над смесью появляется дымок, а затем происходит загорание глицерина. Под действием сильных окислителей глицерин сгорает с образованием углекислого газа и воды.



2 С3Н8О3 + 7 О2 = 6 СО2 + 8Н2О
Оборудование: огнезащитная прокладка, фильтровальная бумага, шпатель.

Техника безопасности. Соблюдать правила пожарной безопасности. Не допускать попадания перманганата калия на одежду и кожу.

Изучение физических свойств фенола

Чистый фенол – бесцветные кристаллы с характерным запахом. При хранении фенол частично окисляется и приобретает розовую или красную окраску. Проверим растворимость фенола в воде. Для этого к нескольким кристалликам фенола прибавим немного воды. Фенол мало растворим в воде. При взбалтывании образуется суспензия фенола в воде.



Оборудование: пробирки, штатив для пробирок, горелка, шпатель.

Техника безопасности. Соблюдать правила работы с ядовитыми веществами. Фенол вызывает ожог кожи. Не допускать попадания фенола на кожу.

Взаимодействие фенола с металлическим натрием

Также как и спирты, фенол взаимодействует со щелочными металлами. В пробирку поместим немного фенола. Нагреем фенол до плавления. При контакте металлического натрия с расплавленным фенолом происходит энергичное взаимодействие. В результате реакции образуется фенолят натрия, и выделяется водород. Эта реакция доказывает сходство фенола с одноатомными спиртами.



6Н5ОН + 2Na = 2C6H5ONa + H2

Оборудование: пробирка, скальпель, пинцет, фильтровальная бумага, горелка.

Техника безопасности. Соблюдать правила работы с ядовитыми веществами. Фенол вызывает ожог кожи. Не допускать попадания фенола на кожу. Соблюдать правила работы со щелочными металлами.

Взаимодействие фенола с раствором щелочи

Фенол по сравнению с одноатомными спиртами проявляет большие кислотные свойства. Он способен реагировать с растворами щелочей. К водной эмульсии фенола прильем несколько капель раствора гидроксида натрия. Образуется прозрачный раствор фенолята натрия.



С6Н5ОН + NaOH = C6H5ONa + H2О

Оборудование: пробирки, штатив для пробирок, шпатель.

Техника безопасности. Соблюдать правила работы с ядовитыми веществами. Фенол вызывает ожог кожи. Не допускать попадания фенола на кожу. Соблюдать правила работы со щелочами и их растворами.

Взаимодействие фенола с бромной водой

К раствору фенола в воде прильем немного бромной воды. В растворе появляется белая взвесь - выпадает осадок трибромфенола. В результате взаимного влияния атомов в молекуле фенола происходит замещение не одного, а трех атомов водорода бромом. Эта реакция является одной из качественных реакций на фенол.





Оборудование: пробирки, штатив для пробирок, шпатель.

Техника безопасности. Соблюдать правила работы с ядовитыми веществами. Фенол вызывает ожог кожи. Не допускать попадания фенола на кожу.

Качественная реакция на этанол

Чувствительной реакцией на этиловый спирт является так называемая йодоформная проба: образование характерного желтоватого осадка йодоформа при действии на спирт йода и щелочи. Этой реакцией можно установить наличие спирта в воде даже при концентрации 0,05%. Отберем пробу раствора и добавим раствор Люголя. Раствор Люголя содержит иод (1 часть иода, 2 части иодида калия, 17 частей стерильной дистиллированной воды). При охлаждении раствора появляется желтая взвесь йодоформа, при высоких концентрациях спирта выпадает желтый осадок йодоформа.



С2Н5ОН + 6 NaОН + 4 I2 = CHI3 +HCOONa + 5 NaI + H2O

Оборудование: пробирки, зажим пробирочный, горелка.

Техника безопасности. Соблюдать правила работы с нагревательными приборами.

Качественная реакция на фенол

Качественной реакцией на фенол является реакция с хлоридом железа (III). К сильно разбавленному раствору фенола добавляем раствор хлорида железа. Жидкость в пробирке окрашивается в темно-фиолетовый цвет. С помощью этой реакции можно определить фенол даже при очень малых его концентрациях.



Оборудование: пробирки, штатив для пробирок.

Техника безопасности. Соблюдать правила работы с ядовитыми веществами. Не допускать попадания фенола на кожу.

Окисление этилового спирта оксидом меди (II)

В прибор для окисления спиртов нальем немного этилового спирта. Присоединим к газоотводной трубке прибор для подачи воздуха. Раскалим в горелке медную спираль и поместим ее в прибор. Подадим в прибор ток воздуха. Медная спираль в приборе продолжает быть раскаленной, так как начинается окисление спирта. Продукт окисления спирта - уксусный альдегид.



СН3-СН2-ОН + СuO = CH3 -COH + Cu + H2O

Альдегид обнаруживаем, пропуская через фуксинсернистую кислоту выходящие из прибора газы. Под действием альдегида фуксинсернистая кислота приобретает фиолетовую окраску. Покажем, что медная спираль раскалена. Извлечем спираль из прибора и поднесем к ней спичку. Спичка загорается. Мы убедились в том, что при окислении одноатомных спиртов образуются альдегиды.



Оборудование: прибор для окисления спирта, резиновые трубки, горелка, газометр или аспиратор.

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и нагревательными приборами.

Окисление этилового спирта раствором перманганата калия

Спирты легко окисляются раствором перманганата калия. В пробирку с этиловым спиртом прильем немного подкисленного раствора перманганата калия. Осторожно подогреем пробирку. Раствор постепенно обесцвечивается. В данных условиях этиловый спирт окисляется, превращаясь в уксусный альдегид.



СН3-СН2-ОН + [О] = CH3 -COH + H2O

Оборудование: пробирки, штатив для пробирок.

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и нагревательными приборами.

Окисление этилового спирта кристаллическим перманганатом калия

Очень энергично протекает реакция этилового спирта с перманганатом калия в присутствии концентрированной серной кислоты. В стеклянный цилиндр наливаем серную кислоту. Осторожно, по стенке приливаем этиловый спирт. Образуются два слоя жидкости. Сверху - этиловый спирт, снизу - серная кислота. В цилиндр бросаем немного кристаллического перманганата калия. Через некоторое время на границе раздела спирта и кислоты возникают вспышки и слышатся щелчки. При попадании кристаллов перманганата калия в серную кислоту образуется марганцевый ангидрид (оксид марганца (VII)) - очень сильный окислитель. Он взаимодействует с этиловым спиртом. При этом образуется уксусный альдегид.



СН3-СН2-ОН + [О] = CH3 -COH + H2O

Оборудование: цилиндр, шпатель.

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и концентрированными кислотами. После демонстрации осторожно разбавить содержимое водой, нейтрализовать щелочью.

Каталитическое окисление этанола

Окисление этилового спирта кислородом воздуха происходит очень легко в присутствии оксида хрома (III). В фарфоровую чашку поместим кусочек ваты, смоченный спиртом. Подожжем вату. Осторожно насыпаем на горящую вату оксид хрома. Пламя гаснет. Но оксид хрома начинает раскаляться. Реакция окисления спирта протекает с выделением энергии. Продукт реакции окисления спирта - уксусный альдегид.



2СН3-СН2-ОН + О2 = 2CH3 -COH + 2H2O

Оборудование: фарфоровая чашка, шпатель.

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и концентрированными кислотами. После демонстрации осторожно разбавить содержимое чашки водой, нейтрализовать щелочью.

Окисление этанола (тест на алкоголь)

Реакцию окисления спиртов сильными окислителями используют для установления факта алкогольного опъянения.

Приготовим трубку для определения алкоголя. Для этого разотрем в ступке хромовый ангидрид (оксид хрома (VI)) с небольшим количеством серной кислоты. Получается паста красного цвета. Нанесем пастой полосу на стенках трубки. Трубку соединим с прибором, подающим смесь воздуха с парами этилового спирта. Через некоторое время красная полоса в трубке зеленеет. Спирт окисляется в уксусный альдегид, а окислитель оксид хрома превращается в сульфат хрома (III), имеющий зеленую окраску.

K2Cr2O7 + 3 C2H5OH + 4 H2SO4 = 3 CH3COH + Cr2(SO4)3 + K2SO4 + 7H2O
Оборудование: фарфоровая чашка и ступка, трубка стеклянная, резиновые трубки, газометр или аспиратор

Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями.

Качественная реакция на альдегиды с фуксинсернистой кислотой

Одной из качественных реакций, позволяющих определить присутствие альдегидов, является реакция с фуксинсернистой кислотой. В пробирку с раствором формальдегида приливаем бесцветный раствор фуксинсернистой кислоты. Постепенно появляется фиолетовое окрашивание.



Оборудование: пробирки, штатив для пробирок.

Техника безопасности. Соблюдать правила работы с ядовитыми веществами.

Качественная реакция на альдегиды с гидроксидом меди (II)

Одной из качественных реакций на альдегиды является реакция с гидроксидом меди (II). Получим гидроксид меди (II) сливанием растворов гидроксида натрия и сульфата меди (II). Прильем к полученному осадку раствор формальдегида. Нагреем смесь. На стенках пробирки выделяется металлическая медь.



Н-СОН + Cu(OH)2 = HCOOH + Cu + H2O

Однако чаще в результате этой реакции образуется красный осадок оксида меди (I)



Н-СОН + 2 Cu(OH)2 = HCOOH + Cu2O↓+ 2 H2O

Оборудование: пробирки, штатив для пробирок, зажим пробирочный, горелка.

Техника безопасности. Соблюдать правила работы с ядовитыми веществами.

Растворимость в воде различных карбоновых кислот

Уксусная и масляная кислота при нормальной температуре – жидкости, стеариновая кислота - твердое вещество. Посмотрим, как эти карбоновые кислоты растворяются в воде. В три пробирки с водой добавим разные карбоновые кислоты. Уксусная и масляная кислоты хорошо растворяются в воде, а стеариновая кислота в воде не растворяется. Фиолетовый раствор лакмуса изменяет цвет лишь в растворах уксусной и масляной кислот. В пробирке со стеариновой кислотой лакмус остается фиолетовым.




Достарыңызбен бөлісу:
  1   2   3




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет