Лекция №2 биосфера и человек план Жизнь и живое вещество Признаки, свойства и функции живого вещества



бет1/3
Дата27.06.2016
өлшемі211 Kb.
#159973
түріЛекция
  1   2   3
Лекция № 2
БИОСФЕРА И ЧЕЛОВЕК
План

1. Жизнь и живое вещество

2. Признаки, свойства и функции живого вещества

3. Строение и происхождение биосферы. Учение В.И.Вернадского о биосфере

4. Основные свойства биосферы (законы целостности и незаменимости биосферы, закон Эшби)

5. Учение В.И.Вернадского о ноосфере (закон ноосферы)


1. Жизнь и живое вещество
Живое вещество. Этот термин введен в литературу В. И. Вернадским. Под ним он понимал совокупность всех живых организмов, выраженную через массу, энергию и химический состав.

Вещества неживой природы относятся к косным (например, минералы). В природе, кроме этого, довольно широко представлены биокосные вещества, образование и сложение которых обусловливается живыми и косными составляющими (например, почвы, воды).

Живое вещество - основа биосферы, хотя и составляет крайне незначительную ее часть. Если его выделить в чистом виде и распределить равномерно по поверхности Земли, то это будет слой около 2 см или крайне незначительная доля от объема всей биосферы, толща которой измеряется десятками километров. В чем же причина столь высокой химической активности и геологической роли живого вещества?

Прежде всего это связано с тем, что живые организмы, благодаря биологическим катализаторам (ферментам), совершают, по выражению академика Л. С. Берга, с физико-химической точки зрения что-то невероятное. Например, они способны фиксировать в своем теле молекулярный азот атмосферы при обычных для природной среды значениях температуры и давления. В промышленных условиях связывание атмосферного азота до аммиака требует температуры порядка 500°С и давления 300-500 атмосфер.

В живых организмах на порядок или несколько порядков увеличиваются скорости химических реакций в процессе обмена веществ. В. И. Вернадский в связи с этим живое вещество назвал чрезвычайно активизированной материей.
2. Признаки, свойства и функции живого вещества
При всем разнообразии живое вещество физико-химически едино, имеет одни и те же эволюционные корни. В природе нет такого вида, который бы реагировал на некое химическое или физическое воздействие качественно иначе, чем организмы других видов.

В.И. Вернадский сформулировал закон физико-химического единства живого вещества: «Все живое вещество Земли физико-химически едино».

Из него следует:


  • • нет такого физического или химического агента (абиотического фактора), который был бы гибелен для одних организмов и абсолютно безвреден для других. Разница лишь количественная — одни организмы более чувствительны, другие менее, одни в ходе отбора быстрее приспосабливаются, а другие медленнее (приспособление идет в ходе естественного отбора, т. е. за счет тех, что не смогли адаптироваться к новым условиям);

  • • количество живого вещества биосферы в пределах рассматриваемого геологического периода есть константа — таков закон константности количества живого вещества В.И. Вернадского (закон константности количества живого вещества В. И. Вернадского « количество живого вещества биосферы (для данного геологического периода) есть константа.. И действительно, согласно закону биогенной миграции атомов, живое вещество является посредником между Солнцем и Землей. Если бы количество живого вещества колебалось, то энергетическое состояние планеты было бы непостоянно. Такое за время эволюции жизни на Земле случалось, но очень редко;

  • • общее видовое разнообразие в биосфере есть константа — число нарождающихся видов в среднем равно числу вымирающих. Процесс вымирания видов был неизбежен из-за изменения условий жизни на планете. Причем вид никогда не исчезает в одиночку, он «тянет за собой» еще порядка 10 других видов, уходящих вместе с ним. На их место, согласно правилам экологического дублирования, приходят другие виды, особенно в управляющем звене экосистем — среди консументов. Поэтому во все геологические периоды массового вымирания организмов наблюдалось и бурное видообразование.

Спектр уровней организации живой материи:



Свойства живого вещества. К основным уникальным особенностям живого вещества, обусловливающим его крайне высокую средообразующую деятельность, можно отнести следующие:

1. Способность быстро занимать (осваивать) все свободное пространство. В. И. Вернадский назвал это всюдностью жизни. Данное свойство дало основание В. И. Вернадскому сделать вывод, что для определенных геологических периодов количество живого вещества было примерно постоянным (константой). Способность быстрого освоения пространства связана как с интенсив­ным размножением (некоторые простейшие формы организмов могли бы освоить весь земной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные возможности размножения), так и со способностью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ. Например, площадь листьев растений, произрастающих на 1 га, составляет 8-10 га и более. То же относится к корневым системам.

2. Движение не только пассивное (под действием силы тяжести, гравитационных сил и т. п.), но и активное. Например, против течения воды, силы тяжести, движения воздушных потоков и т. п.

3. Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты), сохраняя при этом высокую физико-химическую активность.

4. Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий. Например, некоторые организмы выносят температуры, близкие к значениям абсолютного нуля - 273°С, микроорганизмы встречаются в термальных источниках с температурами до 140°С, в водах атомных реакторов, в бескислородной среде, в ледовых панцирях и т. п.

5. Феноменально высокая скорость протекания реакций. Она на несколько порядков (в сотни, тысячи раз) значительнее, чем в неживом веществе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизнедеятельности. Например, гусеницы некоторых насекомых потреб­ляют за день количество пищи, которое в 100-200 раз больше веса их тела. Особенно активны организмы-грунтоеды. Дождевые черви (масса их тел примерно в 10 раз больше биомассы всего чело­вечества) за 150-200 лет пропускают через свои организмы весь однометровый слой почвы. Такие же явления имеют место в донных отложениях океана. Слой донных отложений здесь может быть представлен продуктами жизнедеятельности кольчатых червей (полихет) и достигать нескольких метров. Колоссальную роль по преобразованию вещества выполняют организмы, для которых характерен фильтрационный тип питания. Они освобождают водные массы от взвесей, склеивая их в небольшие агрегаты и осаждая на дно.

Впечатляют примеры чисто механической деятельности некоторых организмов, например роющих животных (сурков, сусликов и др.), которые в результате переработки больших масс грунта создают своеобразный ландшафт. По представлениям В. И. Вернадского, практически все осадочные породы, а это слой до 3 км, на 95-99% переработаны живыми организмами. Даже такие колоссальные запасы воды, которые имеются в биосфере, разлагаются в процессе фотосинтеза за 5-6 млн. лет, углекислота же проходит через живые организмы в процессе фотосинтеза каждые 6-7 лет.

6. Высокая скорость обновления живого вещества. Подсчитано, что в среднем для биосферы она составляет 8 лет, при этом для суши -14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон), - 33 дня. В результате высокой скорости обновления за всю историю существования жизни общая масса живого вещества, прошедшего через биосферу, примерно в 12 раз превышает массу Земли. Только небольшая часть его (доли процента) законсервирована в виде органических остатков (по выражению В. И. Вернадского, «ушла в геологию»), остальная же включилась в процессы круговорота.

Все перечисленные и другие свойства живого вещества обусловливаются концентрацией в нем больших запасов энергии. Согласно В. И. Вернадскому, по энергетической насыщенности с живым веществом может соперничать только лава, образующаяся при извержении вулканов.

Средообразующие функции живого вещества. Всю деятельность живых организмов в биосфере можно, с определенной долей условности, свести к нескольким основополагающим функциям, которые позволяют значительно дополнить представление об их преобразующей биосферно-геологической роли.

В. И. Вернадский выделял девять функций живого вещества: газовую, кислородную, окислительную, кальциевую, восстановительную, концентрационную и другие. В настоящее время название этих функций несколько изменено, некоторые из них объединены. Мы приводим их в соответствии с классификацией А. В. Лапо (1987).



1. Энергетическая. Связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием.

Энергетическая функция живого вещества нашла отражение в двух биогеохимических принципах, сформулированных В.И.Вернадским. В соответствии с первым из них геохимическая биогенная энергия стремится в биосфере к максимальному проявлению. Второй принцип гласит, что в процессе эволюции выживают те организмы, которые своей жизнью увеличивают геохимическую энергию.



2. Газовая - способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. В частности, включение углерода в процессы фотосинтеза, а затем в цепи питания обусловливало аккумуляцию его в биогенном веществе (органические остатки, известняки и т. п.) В результате этого шло постепенное уменьшение содержания углерода и его соединений, прежде всего двуокиси (СО2) в атмосфере с десятков процентов до современных 0,03%. Это же относится к накоплению в атмосфере кислорода, синтезу озона и другим процессам.

С газовой функцией в настоящее время связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период в содержании кислорода связывают со временем, когда концентрация его достигла примерно 10% от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового экрана в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого функцию защиты организмов от губительных ультрафиолетовых лучей выполняла вода, под слоем которой возможна была жизнь).



3. Окислительно-восстановительная. Связана с интенсификацией под влиянием живого вещества процессов как окисления, благодаря обогащению среды кислородом, так и восстановления прежде всего в тех случаях, когда идет разложение органических веществ при дефиците кислорода. Восстановительные процессы обычно сопровождаются образованием и накоплением сероводорода, а также метана. Это, в частности, делает практически безжизненными глубинные слои болот, а также значительные придонные толщи воды (например, в Черном море). Данный процесс в связи с деятельностью человека прогрессирует.

4. Концентрационная - способность организмов концентрировать в своем теле рассеянные химические элементы, повышая их содержание по сравнению с окружающей организмы средой на несколько порядков (по марганцу, например, в теле отдельных организмов - в миллионы раз). Результат концентрационной деятельности - залежи горючих ископаемых, известняки, рудные месторождения и т. п. Эту функцию живого вещества всесторонне изучает наука биоминералогия. Организмы-концентраторы используются для решения конкретных прикладных вопросов, например для обогащения руд интересующими человека химическими элементами или соединениями.

5. Наряду с концентрационной функцией живого вещества выделяется противоположная ей по результатам - рассеивающая. Она проявляется через трофическую (питательную) и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рассеивается, например, кровососущими насекомыми и т. п.

5. Деструктивная - разрушение организмами и продуктами их жизнедеятельности как самих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом отношении выполняют низшие формы жизни - грибы, бактерии (деструкторы, редуценты).

6. Транспортная - перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например, в местах их скопления (птичьи базары и другие колониаль­ные поселения).

7. Важна также информационная функция живого вещества, выражающаяся в том, что живые организмы и их сообщества накап­ливают определенную информацию, закрепляют ее в наследствен­ных структурах и затем передают последующим поколениям. Это одно из проявлений адаптационных механизмов.

9. Средообразующая. Эта функция является в значительной мере интегративной (результат совместного действия других функций). С ней в конечном счете связано преобразование физико-химических параметров среды. Эту функцию можно рассматривать в широком и более узком планах.

В широком понимании результатом данной функции является вся природная среда. Она создана живыми организмами, они же и поддерживают в относительно стабильном состоянии ее параметры практически во всех геосферах.

В более узком плане средообразующая функция живого вещества проявляется, например, в образовании почв. В. И. Вернадский, как отмечалось выше, почву называл биокосным телом, подчеркивая тем самым большую роль живых организмов в ее создании и существовании. Роль живых организмов в образовании почв убедительно показал Ч. Дарвин в работе «Образование растительного слоя земли деятельностью дождевых червей». Известный ученый В. В. Докучаев назвал почву «зеркалом ландшафта», подчеркивая тем самым, что она продукт основного ландшафтообразующего элемента - биоценозов и, прежде всего, растительного покрова.

Локальная средообразующая деятельность живых организмов и особенно их сообществ проявляется также в трансформации ими метеорологических параметров среды. Это прежде всего относится к сообществам с большой массой органического вещества (биомассой). Например, в лесных сообществах микроклимат существенно отличается от открытых (полевых) пространств. Здесь меньше суточные и годовые колебания температур, выше влажность воздуха, ниже содержание углекислоты в атмосфере на уровне полога, насыщенного листьями (результат фотосинтеза), и повышенное ее количество в припочвенном слое (следствие интенсивно идущих процессов разложения органического вещества на почве и в верхних горизонтах почвы).

В обобщающем виде роль живого вещества сформулирована геохимиком А. Н. Перельманом в виде «Закона биогенной миграции атомов» (В. И. Вернадского): «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества, или же она протекает в среде, геохимические особенности которой обусловлены живым веществом...» В соответствии с этим законом понимание процессов, протекающих в биосфере, невозможно без учета биотических и биогенных факторов. Воздействуя на живое население Земли, люди тем самым изменяют условия миграции атомов, а следовательно, воздействуют на основополагающие геологические процессы.
3.Строение и происхождение биосферы. Учение В.И.Вернадского о биосфере
Содержание понятия биосферы не всегда было однозначным. Первоначально биосферами называли гипотетические глобулы (видимо под влиянием идей французских учёных XVIII века П. Л . Мопертюи и особенно Ж. Л. Бюффона о бессмертных органических молекулах), якобы составляющие живую основу всех организмов. Такое понимание продержалось во Франции до середины века.

Понятие «биосфера». Термин «биосфера» в научную литературу введен в 1875 г. австрийским ученым-геологом Эдуардом Зюссом. К биосфере он отнес все то пространство атмосферы, гидросферы и литосферы (твердой оболочки Земли), где встречаются живые организмы.

Владимир Иванович Вернадский (1863-1945) использовал этот термин и создал науку с аналогичным названием. Если с понятием «биосфера», по Зюссу, связывалось только наличие в трех сферах земной оболочки (твердой, жидкой и газообразной) живых организмов, то, по В. И. Вернадскому, им отводится роль главнейшей геохимической силы. При этом в понятие биосферы включается преобразующая деятельность организмов не только в границах распространения жизни в настоящее время, но и в прошлом. В таком случае под биосферой понимается все пространство (оболочка Земли), где существует или когда-либо существовала жизнь, то есть где встречаются живые организмы или продукты их жизнедеятельности. В. И. Вернадский не только сконкретизировал и очертил границы жизни в биосфере, но, самое главное, всесторонне раскрыл роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной геологической (средообразующей) силы, чем живые организмы и продукты их жизнедеятельности.

Учение В. И. Вернадского о биосфере произвело переворот во взглядах на глобальные природные явления, в том числе геологические процессы, причины явлений, их эволюцию. До трудов В. И. Вернадского эти процессы прежде всего связывались с действием физико-химических сил, объединяемых термином «выветривание». В. И. Вернадский показал первостепенную преобразующую роль живых организмов и обусловливаемых ими механизмов образования и разрушения геологических структур, круговорота веществ, изменения твердой (литосферы), водной (гидросферы) и воздушной (атмосферы) оболочек Земли.

Ту часть биосферы, где живые организмы встречаются в настоящее время, обычно называют современной биосферой, или необиосферой, а древние биосферы относят к палеобиосферам, или белым биосферам. В качестве примеров последних можно назвать безжизненные скопления органических веществ (залежи каменных углей, нефти, горючих сланцев и т. п.) или запасы других соединений, образовавшихся при участии живых организмов (известь, мел, соединения кремния, рудные образования и т. п.).



Границы биосферы. По современным представлениям необиосфера в атмосфере простирается примерно до озонового экрана (у полюсов 8-10 км, у экватора - 17-18 км и над остальной поверхностью Земли - 20-25 км). За пределами озонового слоя жизнь невозможна вследствие наличия губительных космических ультрафиолетовых лучей. Гидросфера практически вся, в том числе и самая глубокая впадина (Марианская) Мирового океана (11022 м), занята жизнью. К необиосфере следует относить также и донные отложения, где возможно существование живых организмов. В литосферу жизнь проникает на несколько метров, ограничиваясь в основном почвенным слоем, но по отдельным трещинам и пещерам она распространяется на сотни метров.

Границы палеобиосферы в атмосфере примерно совпадают с необиосферой, под водами к палеобиосфере следует отнести и осадочные породы, которые, по В. И. Вернадскому, практически все претерпели переработку живыми организмами. Это толща от сотен метров до десятков километров. Сказанное относительно осадочных пород применимо и к литосфере, пережившей водную стадию функционирования.

Таким образом, границы биосферы определяются наличием живых организмов или «следами» их жизнедеятельности. В пределах современной, как и былых биосфер, насыщенность жизнью между тем далеко не равномерна. На границах биосферы встречаются лишь случайно занесенные организмы («поле устойчивости жизни», по В. И. Вернадскому). В пределах основной части биосферы организмы присутствуют постоянно («поле существования жизни»), но распределены далеко не равномерно. Очаги повышенной и максимальной концентрации жизни В. И. Вернадский называл пленками и сгущениями жизни. Эти наиболее продуктивные экосистемы являются своего рода каркасом биосферы и требуют повышенного внимания человека.

Вернадский предложил все, что входит в состав биосферы, объединить в группы в зависимости от характера происхождения вещества. Он выделял семь групп вещества:

1) живое вещество - это совокупность всех продуцентов, консументов и редуцентов, населяющих биосферу;

2) косное вещество - это совокупность веществ, в образовании которых живые организмы не участвовали, это вещество образовалось до появления жизни на Земле (горные, скалистые породы, вулканические извержения);

3) биогенное вещество - это совокупность веществ, которые образованы самими организмами или являются продуктами их жизнедеятельности (каменный уголь, нефть, известняк, торф и другие полезные ископаемые);

4) биокосное вещество - это вещество, которое представляет собой систему динамического равновесия между живым и косным веществом (почва, кора выветривания);

5) радиоактивное вещество - это совокупность всех изотопных элементов, находящихся в состоянии радиоактивного распада;

6) вещество рассеянных атомов - это совокупность всех элементов, находящихся в атомарном состоянии и не входящих в состав никакого другого вещества;

7) космическое вещество -это совокупность веществ, попадающих в биосферу из космоса и имеющих космическое происхождение (метеориты, космическая пыль).

Вернадский считал, что главную преобразующую роль в биосфере играет живое вещество. Оно выполняет 9 основных биосферных функций

Биосферу как место современного обитания организмов вместе с самими организмами можно разделить на три подсферы (рис. 2.): аэробиосферу, населенную аэробионтами, субстратом жизни которых служит влага воздуха; гидробиосферу глобальный мир воды (водная оболочка Земли без подземных вод), населенный гидробионтами; геобиосферу верхнюю часть земной коры (литосфера), населенную геобионтами.



Гидробиосфера распадается на мир континентальных, главным образом пресных, вод — аквабиосферу (с аквабионтами) и область морей и океанов — маринобиосферу (с маринобионтами).

Рис. 2. Иерархия экосистем биосферы (по Н. Ф. Реймерсу, 1994)


Геобиосфера состоит: из области жизни на поверхности суши — террабиосферы (с террабионтами), которая подразделяется на фитосферу (от поверхности земли до верхушек деревьев) и педосферу (почвы и лежащие под ними подпочвы, нередко сюда включают всю кору выветривания) с педобионтами; узлитобиосферы — жизни в глубинах Земли (с литобионтами, живущими в порах горных пород).

Литобиосфера распадается на два слоя: гипотеррабиосферу — слой, где возможна жизнь аэробов (или подтеррабиосфера) и теллуробиосферу — слой, где возможно обитание анаэробов (или глубинобиосфера). Жизнь в толще литосферы существует в основном в подземных водах.

Подобные слои существуют и в гидробиосфере, но они связаны главным образом с интенсивностью света. Выделяют три слоя: фотосферу—относительно ярко освещенный, дисфотосферу— всегда очень сумеречный (до 1% солнечной инсоляции), афотосферу — абсолютной темноты, где невозможен фотосинтез.

Лимитирующим фактором развития жизни в аэробиосфере служит наличие капель воды и положительных температур, а также твердых аэрозолей, поднимающихся с поверхности Земли. От вершин деревьев до высоты наиболее частого расположения кучевых облаков простирается тропобиосфера (с тропобионтами). Пространство — это более тонкий слой, чем атмосферная тропосфера. Выше тропобиосферы лежит слой крайне разряженной микробиоты — альтобиосфера (с альтобионтами). Над ней простирается пространство, куда жизнь проникает лишь случайно и не часто, где организмы не размножаются, — парабиосфера.

На больших высотах в горах, там, где уже невозможна жизнь высших растений и вообще организмов-продуцентов, но куда ветры приносят с более низких вертикальных поясов органическое вещество и где при отрицательных температурах воздуха еще достаточно тепла от прямой солнечной инсоляции для существования жизни, расположена высотная часть террабиосферыэоловая зона. Это царство членистоногих и некоторых микроорганизмов — эолобионтов. Жизнь в океанах достигает их дна. Под ним, в базальтах, она едва ли возможна. В глубинах литосферы есть два теоретических уровня распространения жизни — изотерма 100°С, ниже которой при нормальном атмосферном давлении вода кипит, а белки свертываются, и изотерма 460°С, где при любом давлении вода превращается в пар, т. е. в жидком состоянии быть не может. Жизнь в глубинах Земли фактически не идет дальше 3—4 км, максимум 6—7 км и лишь случайно в неактивных формах может проникнуть глубже — в гипобиосферу («под-биосфера» — аналог парабиосферы в атмосфере). Следует отметить, что здесь, где залегают биогенные породы, образно выражаясь, следы былых сфер, расположена метабиосфера. Метабиосфера, начинаясь с поверхности Земли, простирается далеко в глубь литосферы, теряясь там, где процессы метаморфоза горных пород стирают признаки жизни.

Между верхней границей гипобиосферы и нижней парабиосферы лежит собственно биосфера — эубиосфера. Ее наиболее насыщенный жизнью слой называют биофильмом, или, по В. И. Вернадскому (1926), «пленкой жизни».

Выше парабиосферы расположена апобиосфера, или «надбиосфера», где сравнительно обильны биогенные вещества (ее верхняя граница трудноуловима). Под метабиосферой расположена абиосфера («небиосфера»).

Весь слой нынешнего или прошлого воздействия жизни на природу Земли называют мегабиосферой, а вместе с артебиосферой (пространством человеческой экспансии в околоземной космос) — панбиосферой.

Таким образом, «поле существования жизни», особенно активной, по новейшим данным, ограничено в вертикальном пределе высотой около 6 км над уровнем моря, до которой сохраняются положительные температуры в атмосфере и могут жить хлорофилло-носные растения (6,2 км в Гималаях). Выше, в эоловой зоне, обитают лишь жуки, ногохвостки и некоторые клещи, питающиеся зернами растительной пыльцы, спорами растений, микроорганизмами и другими органическими частицами, заносимыми ветром и т. д. Еще выше живые организмы попадают лишь случайно (микроорганизмы могут сохранять жизнь в виде спор). Нижний предел существования активной жизни традиционно ограничивают дном океана и изотермой 100°С в литосфере, расположенными соответственно на отметках около 11 км и, по данным сверхглубокого бурения на Кольском полуострове, около б км. Фактически жизнь в литосфере распространена до глубины 3—4 км. Таким образом, вертикальная мощность биосферы в океанической области Земли достигает более 17 км, в сухопутной — 12 км.



Парабиосфера еще более асимметрична, поскольку верхнюю ее границу определяет озоновый экран. Более значительны колебания толщи мегабиосферы, охватывающей осадочные породы, но она не опускается на материках глубже отметок самых больших глубин океана, т. е. 11 км (здесь температура достигает 200°С), и не поднимается выше наибольших плотностей озонного экрана (22—24 км), следовательно, ее максимальная толщина 33—35км.

Теоретически пределы биосферы шире, поскольку в гидротермах дна океана (их назвали «черными курильщиками» из-за темного цвета извергающихся вод) на глубинах около 3 км обнаружены организмы при температуре до 250°С.




Достарыңызбен бөлісу:
  1   2   3




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет