Математическая логика



бет1/18
Дата19.04.2023
өлшемі0.93 Mb.
#472456
түріЗадача
  1   2   3   4   5   6   7   8   9   ...   18
МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА

Введение


Математическая логика, как и классическая логика, исследует процессы умозаключений и позволяет из истинности одних суждений делать выводы об истинности или ложности других, независимо от их конкретного содержания. Использование в логике математических методов (алгебраизация логики и построение логических исчислений) дало начало развитию новой области математики, называемой «Математической логикой». Основная задача математической логики – формализация знаний и рассуждений. Математика является наукой, в которой все утверждения доказываются с помощью умозаключений, поэтому математическая логика, по существу, – наука о математике.
Математическая логика дала средства для построения логических теорий и вычислительный аппарат для решения задач. Математическая логика и теория алгоритмов нашли широкое применение в различных областях научных исследований и техники (например, в теории автоматов, в лингвистике, в теории релейно-контактных схем, в экономических исследованиях, в вычислительной технике, в информационных системах и др.). Основные понятия математической логики лежат в основе таких ее приложений, как базы данных, экспертные системы, системы логического программирования. Эти же понятия становятся методологической основой описания анализа и моделирования автоматизированных интегрированных производств.
Вопросы, исследуемые математической логикой, могут рассматриваться как средствами семантической (смысловой) теории, в основе которой лежит понятие алгебры, так и формально-аксиоматической (синтаксической) теории, базирующейся на понятии логического исчисления. В данном курсе рассматриваются оба этих подхода, начав с алгебры высказываний, которая затем обобщается алгеброй предикатов, и обе они служат пониманию построения логических исчислений и их частных случаев: исчисления высказываний и исчисления предикатов.


Раздел I. АЛГЕБРА ВЫСКАЗЫВАНИЙ
Алгебру высказываний можно рассматривать как переложение на другой (алгебраический) язык результатов, изученных в разделе «Булевы функции», использующем функциональный язык. При функциональном подходе каждой из логических операций и формул сопоставляется определённая двузначная функция. При алгебраическом подходе логические операции интерпретируют как алгебраические, действующие на множестве двух элементов.


Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8   9   ...   18




©dereksiz.org 2025
әкімшілігінің қараңыз

    Басты бет