Вопрос 1 Основные типовые задачи практики регрессионного анализа данных
Регрессионный анализ – это метод изучения статистической взаимосвязи между одной зависимой количественной зависимой переменной от одной или нескольких независимых количественных переменных. Зависимая переменная в регрессионном анализе называется результирующей, а переменные факторы – предикторами или объясняющими переменными.
Регрессионный анализ очень тесно связан с корреляционным анализом. В корреляционном анализе исследуется направление и теснота связи между количественными переменными. В регрессионном анализе исследуется форма зависимости между количественными переменными. Т.е. фактически оба метода изучают одну и ту же взаимосвязь, но с разных сторон, и дополняют друг друга. На практике корреляционный анализ выполняется перед регрессионным анализом. После доказательства наличия взаимосвязи методом корреляционного анализа можно выразить форму этой связи с помощью регрессионного анализа.
Цель регрессионного анализа – с помощью уравнения регрессии предсказать ожидаемое среднее значение результирующей переменной.
Основные задачи регрессионного анализа следующие:
Как и корреляционный анализ, регрессионный анализ отражает только количественные зависимости между переменными. Причинно-следственные зависимости регрессионный анализ не отражает. Гипотезы о причинно-следственной связи переменных должны формулироваться и обосновываться исходя из теоретического анализа содержания изучаемого явления.
Достарыңызбен бөлісу: |