Входные величины
|
|
Результат измерения
|
значение xi
|
|
значение y
|
стандартная неопределенность u(xi)
|
|
(суммарная) стандартная неопределенность u(y)
|
коэффициент чувствительности
ci = (∂y/∂xi)
|
|
коэффициент охвата k
|
вклад в неопределенность
ui(y) = ci × u(xi)
|
|
расширенная неопределенность
U(y) = k × u(y)
|
Бюджет неопределенности относится к определенному результату измерения. Однако, разработанный алгоритм бюджета неопределенности, обычно изложенный в методике расчета неопределенности, можно применить ко всем измерениям, проведенным с использованием того же метода. Для любого нового измерения (суммарная) стандартная неопределенность u(y) получается через введение в алгоритм входных данных xi и u(xi) для этого измерения, на основании которых затем будут получены y и u(y).
Так как бюджет неопределенности содержит информацию об относительных величинах вкладов различных входных величин в неопределенность, то эта информация может быть использована для улучшения методики измерения и повышения ее точности.
Процесс оценивания неопределенности по методу моделирования состоит из следующих этапов.
1. Описание измерения, составление его модели и выявление источников неопределенности.
Любой процесс измерения можно представить в виде последовательности выполняемых операций. Поэтому для описания измеряемой величины и выявления источников неопределенности целесообразно представить цепь преобразования измеряемой величины в виде схемы, отображающей последовательность процесса измерений.
В большинстве случаев измеряемая величина Y не является прямо измеряемой, а зависит от N других измеряемых величин Х1, Х2 … ХN и выражается через функциональную зависимость
, (3.92)
где – – входные величины; – выходная величина.
Входные величины , от которых зависит выходная величина , являются непосредственно измеряемыми величинами и сами могут зависеть от других величин, включая поправки и поправочные коэффициенты на систематические эффекты
, и т. д.
Описание измеряемой величины в виде функциональной зависимости (математической модели), связывающей измеряемую величину с параметрами, от которых она зависит, называется моделированием.
Стадия моделирования является чрезвычайно важной, так как от правильности и тщательности составления модели измерения, которая определяется необходимой точностью, зависит количество источников неопределенности.
С целью обобщения источников неопределенности измеряемую (выходную) величину и выявленные источники неопределенности: входные величины и величины, на них влияющие целесообразно представить на диаграмме «причина – следствие» (рис. 3.10):
Рис. 3.10. Диаграмма «причина-следствие»
Источниками неопределенности могут быть пробоотбор, условия хранения, аппаратурные эффекты, чистота реактивов, условия измерений, влияние пробы, вычислительные и случайные эффекты, влияние оператора.
2.Оценивание значений и стандартных неопределенностей входных величин. Следующим этапом после выявления источников неопределенности является количественное описание неопределенностей, возникающих от этих источников. Это может быть сделано двумя путями:
– оцениванием неопределенности, возникающей от каждого отдельного источника с последующим суммированием составляющих;
– непосредственным определением суммарного вклада в неопределенность от некоторых или всех источников с использованием данных об эффективности метода в целом.
Показатели эффективности метода устанавливают в процессе его разработки и межлабораторных или внутрилабораторных исследований. К показателям эффективности относятся правильность, характеризуемая смещением, и прецизионность, характеризуемая повторяемостью, воспроизводимостью и промежуточной прецизионностью (раздел 3.3).
Оценки эффективности могут включать не все факторы, поэтому влияние любых оставшихся следует оценить отдельно и затем просуммировать.
Для каждой входной величины необходимо определить оценку и стандартную неопределенность. При этом все входные величины вследствие того, что их значения не могут быть точно известны, являются случайными непрерывными. Тогда оценками входных величин ( ), обозначаемыми малыми буквами, являются их математические ожидания, а стандартными неопределенностями входных величин – стандартные отклонения. Оценку входных величин и связанную с ней стандартную неопределенность получают из закона распределения вероятностей входной величины.
Оценивание неопределенности от каждого источника возможно двумя способами: по типу А (путем статистического анализа ряда наблюдений) и по типу В (иным способом, чем статистический анализ ряда наблюдений).
Исходными данными для оценивания стандартной неопределенности по типу А являются результаты многократных измерений ; На основании полученных результатов рассчитывается среднее арифметическое по формуле (3.91), которое является оценкой входной величины ,
. (3.93)
Стандартная неопределенность, связанная с оценкой является экспериментальным стандартным отклонением среднего значения и равна положительному квадратному корню из экспериментальной дисперсии среднего значения.
Стандартная неопределенность вычисляется по формуле
. (3.94)
для результата измерения , вычисленного как среднее арифметическое.
Исходными данными для оценивания стандартной неопределенности по типу В является следующая априорная информация:
– данные предшествовавших измерений величин, входящих в уравнение измерения;
– сведения о виде распределения вероятностей;
– данные, основанные на опыте исследователя или общих знаниях о поведении и свойствах соответствующих приборов и материалов;
– неопределенности констант и справочных данных;
– данные поверки, калибровки, сведения изготовителя о приборе и др.
Если оценка берется из спецификации изготовителя, свидетельства о поверке, справочника или другого источника, то неопределенность обычно дается как интервал отклонения входной величины от ее оценки. Имеющуюся информацию о величинах необходимо правильно описать с помощью функции распределения вероятностей. Для определения стандартной неопределенности входных величин необходимо воспользоваться законом распределения вероятностей . При этом чаще всего используют следующие основные законы распределения:
– прямоугольное (равномерное);
– треугольное;
– нормальное (Гаусса).
Формулы и способы применения представлены в табл. 3.10.
Достарыңызбен бөлісу: |