ДНК и мутации
Всякая живая клетка является крошечной химической фабрикой. Свойства определенной клетки, ее форма, ее структура и ее способности зависят от определенной природы происходящих в ней химических изменений, от скорости, с которой каждое из них происходит, и способа, которым они между собой связаны. Подобные химические реакции происходят очень медленно, если вещества, составляющие клетки и участвующие в реакциях, просто смешаны вместе. Чтобы реакции шли быстро и равномерно (как, по наблюдениям, это и происходит, и как необходимо для того, чтобы клетка могла жить), эти реакции должны направляться определенного рода комплексами молекул, называемыми «ферментами».
Ферменты принадлежат к классу веществ, называемых «протеинами»-. Протеины состоят из гигантских молекул, каждая из которых построена из цепей более мелких строительных блоков, называемых «аминокислотами». Эти аминокислоты выступают примерно в двадцати разновидностях и способны соединяться друг с другом в любом порядке.
Предположим, мы начнем с одной из этих двадцати аминокислот и каждую из них поставим с остальными во всех возможных сочетаниях. Общее количество сочетаний — около 50000000000000000000 (пятьдесят миллиардов миллиардов), и каждое отличается от другого расположением аминокислот, каждое представляет собой разные молекулы. Фактически молекулы ферментов состоят из сотни или более аминокислот, и число возможного комбинирования этих аминокислот неисчислимо велико. Однако определенная клетка будет содержать только определенное, ограниченное количество ферментов, и каждая молекула определенного фермента будет иметь конструкцию аминокислотной цепочки, составленную из аминокислот в одном особом порядке.
Определенный фермент построен так, что определенные молекулы будут присоединяться к поверхности фермента таким образом, что взаимодействие между ними — включая перенос атомов — сможет происходить очень быстро. После взаимодействия измененные молекулы не будут больше держаться на поверхности. Они уходят, а другие молекулы присоединяются и вступают в реакцию. Именно в результате наличия нескольких молекул определенного фермента большие количества молекул реагируют друг с другом. В отсутствие фермента они бы не реагировали вообще8.
Что же из этого следует? А то, что форма, структура и свойства определенной клетки зависят от различной природы ферментов в этой клетке, от числа этих ферментов и способа, которым они производят свою работу. Свойства многоклеточного организма зависят от свойств клеток, которые его составляют, и от способа, которым взаимосвязаны отдельные клетки. В общем (конечно, это не так просто), все организмы, включая и человеческий, являются продуктом ферментов.
Но это представляется случайной зависимостью. Если конструкция фермента не имеет точного порядка аминокислот, он может оказаться неспособным исполнить свою работу. Поменяйте одну аминокислоту на Другую и фермент не послужит подходящим катализатором для реакции, которой он управляет.
Что же тогда образует ферменты так точно? Что следит за тем, чтобы устанавливался определенный порядок аминокислот для определенного фермента, и никакой другой? Существует ли в клетке какое-нибудь ключевое вещество, которое, содержит, так сказать, «программу» всех ферментов в клетке, направляя таким образом их изготовление?
Если такое ключевое вещество существует, оно должно быть в хромосомах. Это маленькие объекты внутри центрального ядра клетки, и ведут они себя так, словно несут в себе программу.
В различных видах организмов хромосомы присутствуют в разных количествах. У человека, например, каждая клетка содержит двадцать три пары хромосом.
Каждый раз, когда делится клетка, каждая хромосома делится на две хромосомы, каждая — точная копия другой. В процессе деления клетки одна из точных копий каждой хромосомы идет в одну клетку, другая точная копия — в другую клетку. Таким образом, каждая дочерняя клетка получает по двадцать три пары хромосом, причем оба набора пар являются идентичными. Это и указывает на то, что хромосомы несут в себе программу структуры ферментов.
Все организмы, кроме наиболее примитивных, вырабатывают половые клетки, задача которых состоит в том, чтобы образовывать новые организмы более сложным способом, чем простое деление клетки. Таким образом мужчины (и самцы большинства животных) вырабатывают клетки спермы, а женщины производят яйцеклетки. Когда клетка спермы соединяется с яйцеклеткой, «оплодотворяет» ее, результирующая комбинация может претерпеть повторные деления, пока не образуется новый, отдельно живущий организм.
Как яйцеклетки, так и клетки спермы имеют только половину обычного количества хромосом. Все яйцеклетки и все клетки спермы получают только по одной хромосоме от каждой из двадцати трех пар. Когда они сочетаются, оплодотворенная яйцеклетка имеет опять двадцать три пары хромосом, но одну в каждой паре от матери, одну — от отца. Таким образом потомство наследует свойства равным образом от обоих своих родителей, и хромосомы ведут себя так, словно несут в себе программу для приготовления фермента.
Но какова химическая природа этой предполагаемой программы?
Со времени открытия хромосом в 1879 году немецким анатомом Вальтером Флеммингом (1843–1905) имело место общее допущение, что программа, если она существует, это — протеин. Протеины, как известно, наиболее сложные вещества, существующие в тканях, а ферменты, как стало известно в 1926 году из работ американского биохимика Джеймса Батчелора Самнера (1887–1925), собственно и есть протеины. Безусловно, именно протеин должен служить программой для конструирования других протеинов.
Однако в 1944 году канадский физик Освальд Теодор Авери (1877–1955) доказал, что молекулой программы является совсем не протеин, а молекула другого типа, называемая «дезоксирибонуклеиновая кислота», или сокращенно ДНК.
Это было большим сюрпризом, потому что полагали, что ДНК является простой молекулой, такой, которая совсем не подходит для того, чтобы служить программой для сложных ферментов. Более пристальное изучение ДНК, однако, показало, что это на самом деле сложная молекула, более сложная, чем протеины.
Как и молекула протеина, молекула ДНК состоит из длинных цепей простых строительных блоков. Строительный блок здесь называется «нуклеотидом», и одна молекула ДНК может быть построена цепями из многих тысяч нуклеотидов. Нуклеотиды представлены четырьмя разновидностями (не двадцатью, как протеины), и эти четыре разновидности могут быть сцеплены вместе в каком угодно порядке.
Возьмем три нуклеотида. Тогда будет 64 различных «тринуклеотида». Если пронумеровать нуклеотиды: 1, 2, 3 и 4, — получим тринуклеотиды: 1-1-1, 1-2-3, 3-4-2, 4-1-4 и так далее, всего 64 различных комбинаций. Один или более из этих тринуклеотидов могут соответствовать определенной аминокислоте; некоторые могут обозначить «пунктуацию» — начало цепи аминокислот или ее окончание. Перевод тринуклеотидов молекулы ДНК в аминокислоты ферментной цепи называется «генетическим кодом».
Но это, просто заменяет одну проблему другой. Что позволяет клетке из неисчислимого количества молекул ДНК, которые могут существовать в принципе, строить определенную молекулу ДНК, которая приведет к построению молекулы определенного фермента?
В 1953 году американскому биохимику Джеймсу Дьюи Уотсону (р. 1928) и английскому биохимику Фрэнсису Г. К. Крику (р. 1916) удалось установить структуру молекулы ДНК. Она состояла из двух прядей, свитых в двойную спираль. (То есть каждая прядь имела форму винтовой лестницы, и обе пряди переплетались.) Каждая прядь в определенном смысле была противоположностью другой, так что они совершенно подходили друг к другу. В процессе деления клетки каждая молекула ДНК разматывалась на две отдельные пряди. Каждая прядь затем сама собой осуществляла построение второй пряди, которая совершенно ей подходила. Каждая прядь служила программой для своего нового партнера, и результат был таков, что там, где вначале существовала одна двойная спираль, образовывались две двойные спирали, каждая — точная копия другой. Процесс был назван «репликацией». Таким образом, раз существовала определенная молекула ДНК, она размножалась сама, точно сохраняя свою форму от клетки к дочерней клетке и от родителя к потомству.
Отсюда следует, что каждая клетка и, конечно, каждый организм, в том числе человеческий, имеет свою форму, свое строение, свою химию (до определенной степени даже свое поведение), в точности определяемые его ДНК. Оплодотворенная яйцеклетка одного вида организма не очень отличается от яйцеклетки организма другого вида, но молекулы ДНК в каждой существенно отличаются одна от другой. По этой причине человеческая оплодотворенная яйцеклетка будет развиваться в человеческое существо, а оплодотворенная яйцеклетка жирафа будет развиваться в жирафа, и никакая путаница тут невозможна.
Но так уж происходит, что передача молекул ДНК от клетки к дочерней клетке и от родителя к потомку не столь же совершенна, как все остальное. Опыт пастухов и фермеров говорит, что то и дело появляются животные или растения, которые далеко не во всем похожи на родительские организмы, В целом эти отличия невелики и иногда даже не особенно заметны. Иногда же отклонение настолько велико, что создает так называемую «разновидность» или «монстра». Научный термин для всех таких потомков с измененными характеристиками, экстремальными или незаметными — мутант, от латинского слова «мутация» — изменение.
Обычно ярко выраженные мутации вызывали тревогу и мутанты уничтожались. Однако в 1791 году массачусетский фермер по имени Сэт Райт взглянул на мутацию более практично. У него в отаре овец родился ягненок с ненормально короткими ногами, и практичному янки пришло в голову, что коротконогая овца не сможет убежать через низкую каменную ограду вокруг фермы. И с этого не совсем счастливого случая он принялся разводить коротконогих овец и помог людям вообще обратить внимание на мутацию. Однако только с 1900 года, с опубликования работ голландского ботаника Гуго Марие де Врие (1848–1935) мутации стала изучать наука.
Собственно, когда мутации не были особенно сильно выражены, не пугали и не вызывали отвращения, пастухи и фермеры давно заведенным порядком использовали их преимущества. Путем отбора из каждого поколения животных, которые казались наиболее подходящими для использования человеком — коров, дающих много молока кур, несущих много яиц, овец, дающих много шерсти, и так далее, — развивались породы, качества которых сильно отличались от тех диких особей, которые были приручены первоначально.
Это результат отбора маленьких и не очень значительных мутаций, которые, однако, как коротконогие овцы Райта, передаются по наследству. Отбирая мутацию за мутацией и все в одном направлении, человек, со своей точки зрения, «улучшает» породу. Если вспомнить о множестве разновидностей собак и голубей, мы можем представить, насколько искусно умеем изменять и создавать породы, тщательно подбирая пары, сохраняя одних отпрысков и выбраковывая других.
То же самое и гораздо легче может быть проделано с растениями. Американский садовод Лютер Бербанк (1849–1926) сделал успешную карьеру на выведении сотен новых разновидностей растений, усовершенствованных в том или ином отношении по сравнению со старыми, не только путем мутаций, но и направленным скрещиванием и прививками (В России огромная подобная работа проделана садоводом И. В. Мичуриным (1855–1935)).
То, что люди делают целенаправленно, слепые силы естественного отбора делают очень медленно, в течение веков. В каждом поколении отпрыски определенных особей из-за незначительных мутаций частично изменяются, изменения передаются от особи к особи. Те, чьи мутации позволяют участвовать в игре жизни более эффективно, имеют больше шансов выжить и передать эти мутации более многочисленным потомкам. Одна особь заменяет другую, и понемногу за миллионы лет из видов особей создаются новые.
Это — основная мысль теории эволюции путем естественного отбора, выдвинутая в 1858 году английским натуралистом Чарлзом Дарвином и Альфредом Расселом Уоллесом.
На молекулярном уровне мутации являются результатом несовершенного копирования ДНК. Оно может иметь место от клетки к клетке в процессе деления клеток. В этом случае в пределах организма может быть произведена клетка, которая непохожа на другие клетки. Это — «соматические мутации».
Обычно мутация неблагоприятна. В конце концов, если мы обратимся к сложной молекуле ДНК, которая повторяет себя и ставит в соответствующее место неправильный строительный блок, то нам станет ясно, что вряд ли из-за ошибки результат будет лучше. В итоге клетка кожи или, скажем, печени, подвергнувшаяся мутации, может работать настолько плохо, что по существу не будет производить нужного действия, и очень вероятно, что будет не способна делиться. Другие, нормальные клетки будут, когда необходимо, продолжать деление и будут вытеснять ее из жизни. Таким образом ткань в целом остается нормальной, несмотря на случайные мутации.
Главное исключение — мутация, направленная на процесс роста. Нормальные клетки в ткани растут и делятся, только когда это необходимо, чтобы заменить пропавшие или поврежденные клетки, но у мутировавшей клетки может не хватать механизма, предназначенного для прекращения роста в соответствующее время. Она может только расти и беспомощно множиться, хотя в этом нет необходимости для существования. Подобный анархический рост — это рак, он является наиболее серьезным результатом соматической мутации.
Иногда молекула ДНК мутирует таким образом, что при определенных условиях может работать лучше. Это происходит не часто, но клетки, содержащие ее, будут выживать и процветать, так что естественный отбор Действует не только в отношении целых организмов, но и в отношении программы ДНК. Так, должно быть, и образовались первые молекулы ДНК из простых строительных блоков, благодаря случайным факторам, пока не сформировалась одна, способная к копированию, а эволюция довершила остальное.
Время от времени клетки спермы или яйцеклетки образуются с несовершенно повторенной ДНК. Это приводит к мутации в потомстве. Опять же большинство мутаций неблагоприятны, так что претерпевший мутацию приплод либо не способен развиваться, либо умирает молодым, либо, если даже остается жить и имеет потомство, то оно постепенно вытесняется более эффективными особями. Благоприятная мутация происходит исключительно случайно, такая мутация утверждает себя и передается потомству.
Хотя благоприятные мутации происходят значительно реже, чем неблагоприятные, именно первые имеют тенденцию выживать и вытеснять последние. По этой причине любой, кто наблюдает за ходом эволюции, может увидеть, что за этим как бы стоит цель: организм как бы сознательно пытается усовершенствовать себя.
Трудно поверить, что случайные процессы, успехи и неудачи могут дать такие результаты, которые мы сегодня видим вокруг себя. Но при наличии достаточного количества времени и при наличии системы естественного отбора, которая допускает гибель миллионов особей, так, что могут утвердиться немногие улучшения, случайные процессы делают свою работу.
Достарыңызбен бөлісу: |