Артур уиггинс, чарльз уинн пять нерешенных проблем науки рисунки Сидни Харриса



бет13/18
Дата29.04.2016
өлшемі2.98 Mb.
#94427
түріКнига
1   ...   10   11   12   13   14   15   16   17   18

Проблемы биологии

Как развивается целый организм из одной оплодотворенной яйцеклетки?

На данный вопрос, похоже, удастся ответить, как только будет решена главная задача из гл. 4: каково устроение и предназначение протеома? Конечно, каждому организму свойственны свои особенности в устроении белков и их предназначении, но наверняка удастся отыскать и много общего.



Что вызывает массовые вымирания?

За последние 500 млн лет пять раз происходило полное исчезновение видов. Наука продолжает доискиваться причин этого. Последнее вымирание, случившееся 65 млн лет назад, на рубеже мелового и третичного периодов, связано с исчезновением динозавров. Как ставит вопрос Дэвид Роп в книге Вымирание: подкачали гены или удача? (см.: Источники для углубленного изучения), вызвано ли вымирание большинства живших в ту пору организмов генетическими факторами или же неким катаклизмом? Согласно выдвинутой отцом и сыном, Луисом и Вальтером, Альваресами гипотезе, 65 млн лет назад на Землю упал огромный метеорит (примерно 10 км в поперечнике). Произведенный им удар поднял огромные облака пыли, которые стали помехой фотосинтезу, что привело к гибели многих растений, а значит, и составляющих одну пищевую цепочку животных, вплоть до громадных, но уязвимых динозавров. Подтверждение этой гипотезы — большой метеоритный кратер, обнаруженный в южной части Мексиканского залива в 1993 году. Возможно ли, что и предыдущие вымирания были следствием подобных столкновений? Исследования и споры продолжаются.



Динозавры были теплокровными или холоднокровными животными?

Британский профессор анатомии Ричард Оуэн ввел понятие «динозавр» (что значит «ужасные ящеры») в 1841 году, когда было найдено всего три неполных скелета. Воссозданием облика вымерших животных занялся британский художник-анималист и ваятель Бенджамин Уотерхаус Гаукинс. Поскольку первые найденные особи имели зубы, как у игуаны, его чучела напоминали огромных игуан, вызвав настоящий переполох среди посетителей.

А ведь ящерицы холоднокровные пресмыкающиеся, и поэтому сначала решили, что таковыми были и динозавры. Затем несколько ученых предположили, что по меньшей мере некоторые динозавры относились к теплокровным животным. Доказательств не было вплоть до 2000 года, когда в Южной Дакоте обнаружили окаменевшее сердце динозавра. Имевшее четырехкамерное устройство, это сердце подтверждает предположение о теплокровных динозаврах, поскольку в сердце ящериц всего три камеры. Однако, чтобы убедить остальной мир в верности такого предположения, необходимы дополнительные свидетельства.

Что лежит в основе человеческого сознания?

Будучи предметом изучения гуманитарных наук, данный вопрос выходит далеко за рамки настоящей книги, однако многие наши научные коллеги берутся за его изучение.

Как и следовало ожидать, существует несколько подходов к трактовке человеческого сознания. Сторонники редукционизма утверждают, что мозг представляет собой огромное множество взаимодействующих молекул и что в итоге мы разгадаем правила их работы (см. статью Крика и Коха «Проблема сознания» [В мире науки. 1992. № 11-12]).

Другой подход восходит к квантовой механике. Согласно ему, мы не в состоянии постичь нелинейность и непредсказуемость работы мозга, пока не уясним связи между атомным и макроскопическим уровнями поведения материи (см. книгу Роджера Пенроуза Новый ум короля: О компьютерах, мышлении и законах физики [М., 2003]; а также Тени разума: В поисках науки о сознании. [М., 2003]).

В соответствии с давним подходом человеческому уму присуща мистическая составляющая, недоступная научному объяснению, так что наука вообще не способна постичь человеческое сознание.

В связи с недавней работой Стивена Вулфрема по созданию упорядоченных образов постоянным применением одних и тех же простых правил (см. гл. 5) не стоит удивляться, что данный подход используют по отношению к человеческому сознанию; так появится еще одна точка зрения.



Проблемы геологии

Что вызывает большие перемены в климате Земли наподобие повсеместного потепления и ледниковых периодов?

Ледниковые периоды, свойственные Земле последние 35 млн лет, наступали примерно каждые 100 тыс. лет. Ледники надвигаются и отступают по всему северному умеренному поясу, оставляя памятные знаки в виде рек, озер и морей. 30 млн лет назад, когда по Земле бродили динозавры, климат был значительно теплее нынешнего, так что деревья росли даже вблизи Северного полюса. Как уже говорилось в гл. 5, температура земной поверхности зависит от равновесного состояния приходящей и уходящей энергий. Многие факторы влияют на это равновесие, включая излучаемую Солнцем энергию, обломки в космосе, между которыми пробирается Земля, падающее излучение, изменения земной орбиты, атмосферные изменения и колебания в количестве излучаемой Землей энергии (альбедо).

Вот в каком направлении ведутся исследования, особенно с учетом разгоревшихся в последнее время споров по поводу парникового эффекта. Теорий много, а истинного понимания происходящего нет до сих пор.

Можно ли предсказывать извержения вулканов или землетрясения?

Некоторые вулканические извержения поддаются прогнозу, например недавнее (1991) извержение вулкана Пинатубо на Филиппинах, но другие недоступны для современных средств, по-прежнему заставая вулканологов врасплох (например, извержение вулкана Сент-Хеленс, штат Вашингтон, 18 мая 1980 года). Многие факторы вызывают извержения вулканов. Нет единого теоретического подхода, который был бы верен для всех вулканов.

Землетрясения предсказать еще труднее, нежели извержения вулканов. Некоторые известные геологи даже сомневаются в возможности составить надежный прогноз (см.: Список идей, 13. Предсказание землетрясений).

Что происходит в земном ядре?

Две нижние оболочки Земли, внешнее и внутреннее ядро, недоступны для нас ввиду глубокого залегания и высокого давления, что исключает прямые измерения. Все сведения о земных ядрах геологи получают на основе наблюдений за поверхностью и общей плотностью, составом и магнитными свойствами, а также исследований с помощью сейсмических волн. К тому же помогает изучение железных метеоритов ввиду сходства процесса их формирования с земным. Недавние результаты, полученные с помощью сейсмических волн, выявили различную скорость волн в северо-южном и восточно-западном направлениях, что указывает на слоистое твердое внутреннее ядро.



Проблемы астрономии

Одиноки ли мы во Вселенной?

Несмотря на отсутствие каких-либо экспериментальных свидетельств существования внеземной жизни, теорий на этот счет хватает с избытком, как и попыток обнаружить весточки от далеких цивилизаций.



Как эволюционируют галактики?

Как уже упоминалось в гл. 6, Эдвин Хаббл классифицировал все известные галактики согласно их внешнему облику. Несмотря на тщательность описания их нынешнего состояния, данный подход не позволяет понять эволюцию галактик. Выдвинуто несколько теорий, призванных объяснить формирование спиральных, эллиптических и неправильных галактик. Эти теории зиждутся на физике газовых облаков, предшествовавших галактикам. Моделирование на суперЭВМ позволило кое-что уяснить, но пока не привело к единой теории образования галактик. Создание такой теории требует дополнительных исследований.



Распространены ли сходные с Землей планеты?

Математические модели предсказывают существование сходных с Землей планет от единиц до миллионов в пределах Млечного Пути. Мощные телескопы обнаружили более 70 планет за пределами Солнечной системы, но большинство из них величиной с Юпитер или крупнее. По мере совершенствования телескопов удастся отыскать и другие планеты, что поможет определить, какая из математических моделей больше соответствует действительности.



Каков источник всплесков γ-излучения?

Примерно один раз в сутки наблюдается сильнейшее у-излучение, которое зачастую оказывается мощнее всех прочих, взятых вместе (γ-лучи схожи с видимым светом, но у них значительно выше частота и энергия). Данное явление впервые зафиксировано в конце 1960-х, но о нем не сообщали до 1970-х годов, поскольку все датчики использовались для контроля за соблюдением запрета на проведение ядерных испытаний.

Поначалу астрономы считали, что источники этих выбросов находятся в пределах Млечного Пути. Высокая интенсивность излучения вызвала предположение о близости ее источников. Но по мере накопления данных становилось очевидным, что эти выбросы шли отовсюду, а не были сосредоточены в плоскости Млечного Пути.

Зафиксированная в 1997 году благодаря космическому телескопу Хаббла вспышка указывала на то, что она исходила из периферии слабо светящейся галактики, удаленной на несколько миллиардов световых лет. Поскольку источник находился вдали от центра галактики, он вряд ли был черной дырой. Как считают, эти всплески у-излучения исходят от обычных звезд, содержащихся в диске галактики, возможно, вследствие столкновения нейтронных звезд или иных, еще нам неизвестных небесных тел.



Почему Плутон столь разительно непохож на все прочие планеты?

Четыре внутренние планеты — Меркурий, Венера, Земля и Марс — относительно невелики, каменисты и близки к Солнцу. Четыре внешние планеты — Юпитер, Сатурн, Уран и Нептун — велики, газообразны и удалены от Солнца. Теперь о Плутоне. Плутон мал (подобно внутренним планетам) и удален от Солнца (подобно внешним планетам). В этом смысле Плутон выпадает из общего ряда. Он обращается вокруг Солнца поблизости от области, именуемой поясом Койпера30, содержащим много тел, сходных с Плутоном (некоторые астрономы называют их Плутино).

Недавно несколько музеев решили лишить Плутона статуса планеты. Пока не удастся нанести на карту больше других тел из пояса Койпера, споры вокруг статуса Плутона не утихнут.

Каков возраст Вселенной?

Возраст Вселенной можно оценить несколькими способами. Одним способом возраст химических элементов в составе Млечного Пути оценивается по результатам радиоактивного распада элементов с известным периодом полураспада на основе предположения, что элементы синтезируются (внутри сверхновых больших звезд) с постоянной скоростью. По данному способу возраст Вселенной определен 14,5±3 млрд. лет.

Другой способ включает оценку возраста звездных скоплений на основе некоторых допущений относительно поведения и удаления скоплений. Возраст самых древних скоплений исчисляется 11,5±1,3 млрд. лет, а для Вселенной — 11-14 млрд.

Возраст Вселенной, определяемый по скорости ее расширения и расстоянию до самых удаленных объектов, составляет 13—14 млрд. лет. Недавнее открытие ускоренного расширения Вселенной (см. гл. 6) делает эту величину более неопределенной.

Недавно разработан еще один метод. Космический телескоп Хаббла, работая на пределе своих возможностей, измерил температуру старейших белых карликов в шаровом скоплении М4. (Этот способ схож с оценкой времени, прошедшего после прогорания костра, по температуре золы.) Выходило, что возраст древнейших белых карликов составляет 12—13 млрд. лет. Если предположить, что первые звезды образовались не ранее, чем через 1 млрд. лет после «большого взрыва», возраст Вселенной составляет 13—14 млрд. лет, а оценка служит проверкой показателей, полученных другими методами.

В феврале 2003 года получены данные с уилкинсоновского зонда микроволновой анизотропии (WMAP) 31, позволившие наиболее точно вычислить возраст Вселенной: 13,7±0,2 млрд. лет.



Существуют ли множественные вселенные?

В соответствии с одним возможным решением рассмотренной в гл. 6 проблемы ускоренного расширения Вселенной получается множество вселенных, населяющих обособленные «браны» (многомерные мембраны). При всей своей умозрительности данная идея дает широкий простор для всевозможных домыслов. Более подробно о множественных вселенных можно узнать из книги Мартина Риса Наша космическая обитель.



Когда Земле предстоит очередная встреча с астероидом?

О Землю постоянно ударяются космические осколки. И поэтому так важно знать, какой величины небесные тела падают на нас и сколь часто. Тела с поперечником 1 м входят в атмосферу Земли несколько раз в месяц. Они часто взрываются на большой высоте, выделяя энергию, равную взрыву небольшой атомной бомбы. Примерно один раз в столетие к нам прилетает тело 100 м в поперечнике, оставляя после себя большую память (ощутимый удар). После взрыва подобного небесного тела в 1908 году над сибирской тайгой, в бассейне реки Подкаменная Тунгуска [Красноярский край], были повалены деревья на площади около 2 тыс. км232.

Удар небесного тела с поперечником 1 км, случающийся раз в миллион лет, может привести к огромным разрушениям и даже вызвать климатические изменения. Столкновение с небесным телом размером 10 км в поперечнике, вероятно, и привело к исчезновению динозавров на рубеже меловой и третичной эпох 65 млн лет назад. Хотя тело такого размера может появиться лишь раз в 100 млн лет, на Земле уже предпринимают шаги, чтобы не быть застигнутыми врасплох. Разрабатываются проекты «Околоземные объекты» (NEOs) и «Наблюдение за околоземными астероидами» (NEAT), в соответствии с которыми к 2010 году удастся отслеживать 90% астероидов с поперечником более 1 км, общее число которых, по различным оценкам, находится в пределах 500—1000. Другая программа, «Spacewatch», осуществляемая Аризонским университетом, состоит в наблюдении за небом в поисках возможных «кандидатов» на столкновение с Землей.

За более подробными сведениями обращайтесь на узлы Всемирной Паутины:



http://neat.jpl.nasa.gov

http://neo.jpl.nasa.gov

http://apacewatch.lpl.arizona.edu/

Что было до «большого взрыва»?

Поскольку время и пространство ведут свой отчет с «большого взрыва», понятие «до» не имеет никакого смысла. Это равносильно вопросу, что находится северней Северного полюса. Или, как бы выразилась американская писательница Гертруда Стайн33, нет никакого «затем» затем34. Но подобные трудности не останавливают теоретиков. Возможно, до «большого взрыва» время было мнимым; вероятно, не было вообще ничего, и Вселенная возникла из флуктуации вакуума; или же произошло столкновение с другой «браной» (см. затронутый ранее вопрос о множественных вселенных). Таким теориям трудно найти экспериментальное подтверждение, поскольку огромная температура первоначального огненного шара не допускала создания каких-либо атомных или субатомных образований, которые могли бы существовать до начала расширения Вселенной.



Список идей

Многие идеи, о которых повествует наша книга, рассматриваются лишь в той мере, в какой они связаны с крупнейшими, не решенными наукой задачами. Однако читателям, возможно, хочется получить более подробные сведения. Данный раздел позволит углубить представления о затронутых вскользь темах. Темы расположены в порядке их появления на страницах книги, и при этом даются ссылки на источники, если вы пожелаете расширить свой кругозор. Дополнительные сведения содержатся в разделе «Источники для углубленного изучения».

Надеемся, что эти идеи смогут удовлетворить ваше любопытство или даже разжечь его. В будущем удастся решить некоторые из этих проблем, но им на смену придут другие.

1. Антивещество

Почти каждой элементарной частице соответствует античастица. Как правило, античастицы обладают той же массой, что и их обычный собрат с зарядом одинаковой величины, только противоположного знака. Как видно на рис. 1.1, каждому кварку соответствует свой антикварк (антиверхний, антиочарованный...), каждому лептону — свой антилептон антиэлектронное нейтрино, антимюонное нейтрино...), а W+- и W--бозону — свои античастицы. Лишь у фотона, Z-бозона, глюона (всего восемь разновидностей) и гипотетического гравитона нет античастиц. Иначе говоря, они сами служат для себя античастицами.





Рис. 1.1. Основные частицы

Как упоминалось в гл. 2, антивещество было предсказано теорией, когда в 1928 году британский физик П. А. М. Дирак объединил квантовую механику со специальной теорией относительности. Сходным, но более простым примером здесь могут послужить решения уравнения х1 = 9, равные +3 и —3. Зачастую при наличии у уравнения двух решений одно обычно отбрасывают, считая не имеющим физического смысла. Ученые пытались исключить решение уравнения Дирака, допускавшее существование подобной электрону частицы, но несущей положительный, а не отрицательный заряд. Но спустя четыре года [1932] американский физик Карл Андерсон представил опытные свидетельства существования позитрона при исследовании космических лучей, так что предсказание подтвердилось. В 1955 году в Калифорнийском университете Эмилио Сегре и Оуэн Чемберлен наблюдали антипротон, а антинейтрон обнаружился годом позже.

Событие, сотворившее электрон и позитрон в диффузионной камере у Андерсона в 1932 году, именуют рождением пар. Световой фотон в космических лучах отдает всю свою энергию, которая превращается в массу в соответствии с уравнением Эйнштейна Е = тс2. При столкновении электрона с позитроном их масса полностью переходит в энергию, так что в итоге два световых фотона разлетаются в противоположные стороны. Данный процесс называют аннигиляцией, и он состоит в превращении массы в энергию, величина которой вновь определяется уравнением Эйнштейна.

Теоретически ничто не может помешать антипротонам соединиться с антинейтронами для образования антиядер, а антиэлектронам примкнуть к этим антиядрам с образованием антиатомов. И действительно, в 1995 году в Европейской лаборатории физики элементарных частиц возглавляемому немецким физиком Вальтером Олертом коллективу ученых удалось получить девять атомов антиводорода. Только не подумайте, что эти антиатомы устроили переполох в лаборатории. Ввиду подавляющего перевеса обычного вещества девять атомов антиводорода не продержались и сорок миллиардных секунды.

Научная фантастика привлекает огромное количество антивещества, особенно в качестве топлива для космических кораблей. Наибольшая трудность в создании движителя на основе антивещества сопряжена с его хранением и радиоактивным загрязнением. Как бы ни бились инженеры над созданием космических кораблей, работающих на основе антивещества, встает вопрос о безопасности, поскольку один грамм аннигилирующего вещества (антивещества) выделяет энергию, сравнимую с энергией сброшенной в 1945 году на Японию атомной бомбы.

Не существуют ли где-то в далекой галактике или даже в Млечном Пути залежи антивещества? В конце концов, если бы единственной связью с этими галактиками для нас служили излучаемые ими световые фотоны, мы оставались бы в неведении. Фотон — сам себе античастица, так что мы не могли бы отличить обыкновенные галактики от галактик из антивещества, поскольку от тех и других исходили бы фотоны. Все это верно, однако постоянно обрушивающиеся на нас космические лучи содержат не одни фотоны, только никакого неведомого антивещества там нет. Кроме того, в случае протон-антипротонной аннигиляции на краю антигалактики излучался бы свет определенной частоты. Такого света пока не наблюдалось. Похоже, что Вселенная почти целиком состоит из обычного вещества.

Однако отсутствие антивещества порождает другую трудность. Если населяемая нами Вселенная симметрична, то при «большом взрыве» должно было появиться одинаковое количество вещества и антивещества, и они бы полностью взаимно уничтожились. Некому тогда было бы обсуждать этот вопрос. Куда же делось антивещество? Согласно одной теории, возникла антивселенная, которая где-то затерялась, возможно на одной из «бран» из М-теории (см. гл. 2).

Недавние опыты указывают на асимметрию в скорости распада некоторых видов вещества и антивещества. Мезоны, двухкварковые частицы, нестабильны, и поэтому их нет в обычном веществе. Лишь разновидность мезонов — К-мезон был тщательно изучен. Различную скорость распада у К-мезона и анти К-мезона обнаружила в 1957 году физик из Колумбийского университета By Цзяньсюн. В 2001 году опыты на ускорителях в Стэнфордском университете и в японском академгородке Цукуба [расположенном в 35 км к северо-востоку от Токио] выявили асимметрию в распаде В-мезонов и анти В-мезонов, где анти В-мезоны распадались чуть быстрее. Величина асимметрии будет уточняться по мере получения данных в ходе этих долгосрочных исследований.

Если антивещество распадается быстрее обычного вещества, такое положение можно уподобить сражению миллионного войска с миллионным анти войском. Если каждый воин будет убивать одного неприятеля, то к концу сражения останется один воин. Вещество и антивещество взаимно уничтожатся, но благодаря крохотному превышению обычное вещество возобладает. Если такой подход верен, можно представить, сколько вещества было до великой аннигиляции.

Предсказанные стандартной моделью величины нарушения симметрии в скорости распада слишком малы, чтобы получилось наблюдаемое ныне во Вселенной количество вещества, но тут готова предложить свои услуги более юная М-теория.

Для более подробного ознакомления с проблемой см. статью: Sarah Graham «Explore: In Search of Antimatter» {Scientific American. 2001. August 20), размещенную во Всемирной Паутине по адресу: http://physicsweb.Org/article/news/5/3/l/l

2. Ускорители

Как видно из названия, ускоритель разгоняет медленно движущиеся частицы. Частицы с более высокими скоростями обладают более высокой энергией, так что физика высоких энергии развивалась совместно с ускорителями частиц. Польза от частиц высоких энергий стала очевидной, когда американский физик Карл Андерсон обнаружил античастицу электрона — позитрон — среди следов, оставляемых в диффузионной камере после бомбардировки космическими лучами. Поскольку космические лучи приходят к нам, обладая различной энергией, отовсюду и когда им заблагорассудится, для проведения систематических опытов над элементарными частицами требовался более надежный источник частиц высокой энергии.

Линейные ускорители разгоняют заряженные частицы в электромагнитном поле по прямой, подобно тому как разгоняют электроны в электронно-лучевых трубках телевизионных приемников. Мишень устанавливают в конце пути частицы, а датчики, чувствительные к оставленным продуктами столкновения частиц следам, регистрируют последствия столкновения. Для получения все более высоких энергий требуется постоянно увеличивать длину ускорителей. Стэнфордский центр линейного ускорителя с туннелем длиной 3,2 км (2 мили) разгоняет электроны (или позитроны) посредством обычной электромагнитной волны, подобно микроволновой печи. Для более подробного ознакомления см. узел Всемирной Паутины www.slac.stanford.edu/

Другая разновидность ускорителя — круговой. Первый круговой ускоритель был изобретен американским физиком Эрнестом Лоуренсом и получил название «циклотрон». В 1928 году Калифорнийский университет в Беркли переманил к себе из Йельского университета 27-летнего Лоуренса, намериваясь создать у себя наряду с химическим столь же крепкое физическое отделение. На следующий год Лоуренсу, внуку норвежских переселенцев, довелось просматривать один немецкий электротехнический журнал. Он увидел наброски устройства, предлагаемого норвежским инженером Ролфом Видероэ для разгона зарядов двойным пропусканием их через ускоряющее поле, изменяя направление поля таким образом, что заряды получали двойную энергию. Поначалу огромные технические трудности отпугивали Лоуренса. Однако, не желая отставать в гонке за высокими энергиями, в начале 1930 года он поручает создание такого устройства аспиранту Стэнли Ливингстону. К январю 1931 года Лоуренс и Ливингстон располагали работающим макетом циклотрона (рис. 1.2) с поперечником 4,5 дюйма [1 дюйм = 2,54 см], разгонявшим ионы водорода до энергии 80 тыс. электрон-вольт (эВ). В 1939 году Лоуренс получил Нобелевскую премию за изобретение циклотрона. В 1940 году в США насчитывалось 22 готовых или строящихся циклотрона, и более 11 — за границей.

Вторая мировая война замедлила поступь циклотронов. Но стоило ей отгреметь, как новшества позволили существенно нарастить мощь установок. Появился синхротрон, где изменением магнитного поля частицы разгонялись по орбитам с неизменным радиусом. Это позволяло уменьшить пространство, где поддерживался вакуум, и тем самым упрощалось управление пучком.



Рис. 1.2. Эрнест Лоуренс с макетом циклотрона

Затем стали удерживать частицы на круговой орбите, компенсируя потери на излучение. Это обеспечивало так называемое накопительное кольцо. Наконец поставили два таких кольца, так что пучки частиц направляли друг на друга. Такое перекрестное расположение накопительных колец позволило получить много важнейших сведений об элементарных частицах. В Соединенных Штатах крупнейший ускоритель принадлежит Национальной лаборатории высокоэнергетических исследований имени Энрико Ферми (FNAL) в Батавии (штат Иллинойс), близ Чикаго. Созданная в 1968 году лаборатория располагает самым мощным в мире ускорителем частиц «Tevatron», способным обеспечивать встречные пучки энергией порядка 0,980 трлн. эВ (ТэВ): разгоняющихся по часовой стрелке протонов и против часовой стрелки — антипротонов. Протон-антипротонное столкновение в точках взаимодействия частиц создает энергию 1,96 ТэВ.

Для более подробного ознакомления с проблемой см. узел Всемирной Паутины www.fnal.gov

Фундаментальными изысканиями занят CERN (Европейская организация по ядерным исследованиям), расположенный на границе Франции и Швейцарии. CERN располагает десятью ускорителями. Там ведут исследования ученые 80 национальностей из 500 университетов. Более подробные сведения о CERN'e см. на узле Всемирной Паутины



http://public.web.cern.ch/Publiс

Крупнейший ускоритель в CERN'e, электрон-позитронный коллайдер (LEP) имел самую длинную в мире траекторию разгона пучка 27 км. LEP теперь в прошлом; его тоннель переоборудуется для использования уже в качестве большого адронного коллайдера (LHC), где протоны будут сталкиваться с протонами при энергии 7 ТэВ. Со вступлением в строй в 2005 году он станет крупнейшим в мире.

Для более подробного ознакомления с LHC см. узел Всемирной Паутины http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/

Некоторые теоретики считают, что новый LHC сможет создавать крохотные черные дыры со скоростью одной такой дыры в секунду, называя его производителем черных дыр. Эти черные дыры будут исчезать в течение долей секунды, но при этом возможно возникновение всеми разыскиваемой частицы — бозона Хиггса, о которой шла речь в гл. 2. По словам сотрудника Мэрилендского университета Грегори Ландсберга, все это вполне может случиться «за один час работы» в «черных дырах на большом адронном коллайдере» (S. Dimopoulos, G. Landsberg, Physical Review Letters 87 (2001): 161602).

Узлы Всемирной Паутины:

www.aip.org/history/lawrence/first.htm ;

www.lbl.gov/Science-Articles/Archive/early-years.html

3. Фермионы и бозоны

Все частицы, составляющие Вселенную, распадаются на две группы: фермионы и бозоны. Подобное различение ввели аспиранты Лейденского университета (Голландия) Сэмюэль Гаудсмит и Джордж Уленбек. Гаудсмит, больше занятый исследованиями, заметил дополнительное расщепление спектра излучения атомов гелия. Уленбек, лучше знавший классическую физику, усмотрел причину такого расщепления в некоем внутреннем свойстве электрона. Вместе они пришли к заключению, что электрон изначально обладает определенным угловым моментом — спином [статья 1925 года в Die Naturwissenschaften. № 13. S. 953-954].

Основы квантовой механики тогда только закладывались, так что данное представление привело к добавлению четвертого квантового числа (помимо главного, орбитального и магнитного), названного спиновым квантовым. Электрон изображают в виде крошечного, стремительно вращающегося волчка, однако подобное описание не надо воспринимать буквально. Внутренний угловой момент электрона, спин, равен ±1/2(h/2р)где h — постоянная Планка. Понятие «спин» связано с привычным взглядом на электрон, поскольку спиновое квантовое число имеет два значения +1/2(h/2р)и —1/2(h/2р)соответствуя как бы вращению [ускоряющемуся] «вверх» и вращению [падающему] «вниз». В 1928 году разработка британским физиком П. Дираком релятивистской квантовой механики подвела теоретическую базу под спин электрона; догадка Гаудсмита и Уленбека оказалась весьма удачной.

В 1925 году австрийский физик Вольфганг Паули заключил, что два электрона не могут находиться в одном квантовом состоянии на одном и том же месте. Этот принцип запрета Паули лежит в основе Периодической таблицы химических элементов.

При изучении статистического поведения электронов итальянско-американский физик Энрико Ферми и Дирак разработали теорию статистики Ферми—Дирака. Ее положения в дальнейшем были распространены и на другие частицы с полуцелым спином h/2р. Эти частицы, названные фермионами, охватывают собой все лептоны и кварки. Таким образом, массу Вселенной составляют фермионы.

Изучением частиц с нулевым или целым спином h/2р в 1924 году занимался индийский физик Шатьендранат Бозе. Работая в университете г. Дакка (Бангладеш), Бозе послал результаты своих изысканий для отзыва Эйнштейну. Тот перевел его труд на немецкий язык и настоятельно посоветовал издать [Bose S. N. Plancks Gesetz und Lichtquanten Hypo-these // Zeitschrift fur Physik. 1924. № 26; на рус. яз.: Бозе Ш. Закон Планка и гипотеза световых квантов // Эйнштейн А. Собр. научных трудов. М., 1966]. На следующий год Эйнштейн расширил результаты Бозе с учетом всех частиц, не являющихся фермионами [Einstein A. Quantentheorie des einatomigen idealen Gases // Sitzungsberichte der PreuBischen Akademie der Wissenschaften, Phys-math. Kl. 1924; 1925; на рус. яз.: Эйнштейн А. Квантовая теория одноатомного идеального газа // Собр. научных трудов. Т. 3]. Статистическое поведение таких частиц стали именовать статистикой Бозе— Эйнштейна. Подчиняющиеся этой статистике частицы Дирак назвал бозонами. Переносчики всех взаимодействий — фотон у электромагнитного, глюоны у сильного, и W- и Z-частицы у слабого — относятся к бозонам.

Если два фермиона не могут находиться в одном и том же квантовом состоянии, то для бозонов такого ограничения не существует. И действительно, чем больше бозонов находится в определенном энергетическом состоянии, тем больше вероятность уподобления им всех прочих бозонов. Данное явление лежит в основе вынужденного излучения в лазерах, когда фотоны приводятся в одно и то же энергетическое состояние. Такого рода «стадность» помогает объяснить сверхтекучесть гелия и даже сверхпроводимость, когда электроны сбиваются в пары и действуют уже как бозоны. В 1995 году удалось так снизить температуру газообразного рубидия, что все атомы обрели одно и то же квантовое состояние. Подобное скопление называют конденсатом Бозе—Эйнштейна.

Склонность к «одиночеству» у фермионов и «общительность» бозонов делают их столь непохожими. Но это различие оказывается определяющим для природы Вселенной. Например, если бы фермионы объединялись подобно бозонам, все электроны в атоме собирались бы на самом нижнем энергетическом уровне, и тогда не могло бы быть и речи о химических реакциях, а стало быть, и о жизни.



Достарыңызбен бөлісу:
1   ...   10   11   12   13   14   15   16   17   18




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет