Мы рассматриваем массив собранных данных как учебный материал. Чем он больше, тем лучше - конечно, если есть инструментарий, позволяющий эти данные анализировать, синтезировать результаты анализа и повышать творческий потенциал.
Бритт Маю, директор службы ИТ, компания Pennwil
Внедрение более совершенных компьютерных систем непременно ведет к более рациональному использованию рабочего времени сотрудников. Благодаря интеллектуальному ПО, постоянно просматривающему статистику продаж, отслеживающему тенденции и выявляющему, какие товары и услуги пользуются спросом, а какие нет, компания Marks & Spenser намного повысила эффективность работы 5-6 сотен своих менеджеров, отвечающих за ассортимент магазинов компании. Теперь они добиваются гораздо лучших результатов, анализируя информацию в реальном масштабе времени вместо того, чтобы перелопачивать пухлые бумажные отчеты за предыдущий день, пытаясь определить, хорошо ли шла торговля. Если все идет по плану, то и никакого вмешательства в процесс не требуется. Новая система отслеживает статистику продаж и помечает позиции, которые продаются быстрее или медленнее, чем было предусмотрено. Отчеты о таких наблюдениях составляются автоматически, и менеджерам приходится иметь дело только с информацией о событиях, выбивающихся из обычного русла.
"С помощью интеллектуальных систем мы смогли избавить людей от бездумной рутинной работы и высвободить им время для более продуктивной деятельности, - рассказывает Кейт Богг, директор подразделения Marks & Spenser, отвечающий за информационное обеспечение и материальное снабжение. - Они используют свои интеллектуальные ресурсы только для поиска выхода из исключительных ситуаций, а все стандартные решения принимает компьютер. Освободившихся же от ежедневных бдений над документацией людей мы можем направлять на отбор новых продуктов, анализ рынка и другие важные виды деятельности. Таким образом, закупщики расходуют свое время намного эффективнее и создают гораздо большую прибавочную стоимость, чем прежде".
Программный инструментарий на базе настольных компьютеров способен значительно упростить проведение сложного анализа. Инвестиционные компании применяют программы для работы с электронными таблицами в таких областях, как управление рисками и анализ портфеля инвестиций (например, для определения влияния текущих изменений в курсе акций на стоимость конкретного опциона или для анализа распределения портфеля по различным секторам рынка).
Фирма Morgan Stanley Dean Witter в своем подразделении операций с ценными бумагами использует электронные таблицы для исследования сложных структур данных и генерации разнообразных представлений информации для трейдеров и клиентов. Например, в Токио одни клиенты этой компании желают получать подробную информацию об определенных сделках и реализации опционов за определенные дни, тогда как другие интересуются лишь средней ценой по сделкам определенного круга игроков. Этот набор функциональных возможностей дополняется фирменной моделью оценки рисков, которая часто дает более детальное представление о текущей величине рисков и об эффективности работы клиентов.
Механизм сводных электронных таблиц, позволяющий легко переходить от одного представления данных к другому, помог этой компании быстро приспособиться к введению в ряде европейских стран новой общей валюты - евро. Обычная схема международного портфеля акций, разбитая на несколько разделов по валютам, утратила свою актуальность. Сводные таблицы позволили сформировать отображение одной и той же информации на разные секторы
рынка, так что каждый клиент получает данные в наиболее удобном для него виде.
Передача рутинной работы компьютерным программам позволяет направить усилия людей туда, где они действительно необходимы. Для клиента есть существенная разница между получением письма, написанного человеком, и письма, составленного компьютером по шаблону; между уведомлением о новом продукте или специальном мероприятии по телефону и получением соответствующей информации на компьютер. И уж поистине трудно переоценить важность участия живого человека в работе с клиентом, у которого возникли серьезные проблемы или имеются какие-то особые потребности. В гостинице, например, применение интеллектуального ПО позволяет резко сократить время оформления при заселении и освобождении номера. При этом ответы на стандартные вопросы компьютер получает в автоматическом режиме, высвобождая персонал для других дел. Подумайте, насколько приятнее жить в отеле с полудюжиной дополнительных консьержей вместо полудюжины клерков!
Впрочем, как и все новое, электронная коммерция приносит с собой не только преимущества, но и неизвестные прежде проблемы. В обычном магазине продавцу помогают ориентироваться вопросы, задаваемые клиентом, его одежда, жесты и мимика. А в электронном - продавец покупателя не видит и вынужден помогать ему "вслепую". Таким образом, менеджерам электронных магазинов приходится осваивать специальные методы работы и проводить почти детективные расследования, чтобы смоделировать клиента на основании особенностей его поведения при просмотре и истории его предыдущих покупок. Все это требует сложного анализа информации.
РАСШИРЕНИЕ АНАЛИТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ЧЕЛОВЕКА
Программное обеспечение электронного анализа, избавляющее людей от рутинной работы и позволяющее им сконцентрироваться лишь на исключительных ситуациях (наподобие того, что применяет компания Marks & Spenser), меняет саму природу их деятельности. Это настолько мощный инструментарий, что некоторые из сотрудников Marks & Spenser поначалу даже опасались, не вытеснит ли компьютер их совсем. В них говорило естественное нежелание человека отказываться от какой-либо доли участия в принятии решений и тем более передавать эту функцию машине. Однако когда массив данных достигает определенных размеров и уровня сложности, выполнение начального поиска и сортировки компьютером оказывается гораздо эффективнее. Люди просто не способны замечать закономерности в больших объемах данных. А объемы эти - не только в базах данных, но и в файловых системах, в системах передачи сообщений и на веб-сайтах - растут сегодня экспоненциально. Единственная возможность реализовать их потенциал в полной мере - это использовать для выделения полезной информации компьютерные средства.
Применение программных алгоритмов для поиска полезных закономерностей в больших объемах данных называется интеллектуальным анализом данных. Первым серьезным шагом в этом направлении стало создание систем оперативной аналитической обработки (OLAP), которые существенно повышают эффективность обслуживания многих видов запросов. Благодаря им данные, собиравшиеся ранее только в целях бухгалтерского и финансового учета, стало возможным использовать в моделировании, прогнозировании и принятии решений. Для удовлетворения этих новых потребностей компании начали создавать корпоративные хранилища данных. Подмножество такого хранилища, отражающее какой-либо один аспект функционирования предприятия или охватывающее деятельность одного из его подразделений, часто называют киоском данных.
Издательская компания HarperCollins использует OLAP-систе-му на базе ПК для контроля за ходом книжной торговли в реальном масштабе времени. Это позволяет ей печатать ровно столько экземпляров, сколько требуется дистрибьюторам. Таким образом удается избежать образования в канале сбыта больших товарных остатков, которые пришлось бы потом принимать обратно. После всего лишь года эксплуатации новой системы возврат непроданных экземпляров наиболее популярных изданий HarperCollins сократился с более чем 30% приблизительно до 10%, а за каждым из этих процентов стоят миллионы долларов экономии.
Кроме того, OLAP-система HarperCollins позволяет специалистам компании получать ответы на вопросы типа: какова была прибыльность сбыта такого-то издания за такую-то неделю через такого-то дистрибьютора? Обратите внимание, что даже в этом случае невозможно обойтись без человека, который бы задавал вопросы; а кроме того, ни традиционная база данных, ни OLAP-система не способны находить ответы на такие более расплывчатые, но от этого не менее важные для бизнеса вопросы, как: "Какой из клиен
тов, вероятно, предпочтет продукт А продукту Б? Что отличает клиентов, которых наши продукты и услуги удовлетворяют, от клиентов, которых они не удовлетворяют? Какие из клиентов в моей базе данных "сходны" друг с другом?" При попытке обработать подобный неконкретный запрос на пользователя OLAP-системы обрушилась бы лавина данных, которые ему бы вряд ли для чего-нибудь пригодились. Для сложных видов интеллектуального анализа данных требуется особое ПО, предназначенное для ориентирования в богатых информацией средах. И оно должно быть способно помочь своим пользователям в поиске ответов на вопросы, не требуя от них глубоких познаний в таких специальных областях, как статистика, анализ или работа с базами данных.
В числе сложных задач, справляться с которыми помогает интеллектуальный анализ данных, - прогнозирование вероятности покупки клиентом определенного товара на основании его возраста, пола, демографических характеристик и других признаков; выделение групп клиентов, характеризующихся сходным поведением при просмотре информации в сети; выявление предпочтений конкретного клиента с целью предоставления ему индивидуализированного обслуживания; определение времени суток и дней недели, когда наиболее часто посещаются те или иные страницы или наиболее часто поступают обращения по телефону; идентификация товаров, которые часто приобретаются вместе. Последнее очень ценно для выявления закономерностей покупательского поведения, однако известен случай, когда найденная корреляция между двумя кодами счетов за одну и ту же лечебную процедуру позволила австралийской компании, специализирующейся на медицинских услугах, вскрыть мошенничество с двойным выставлением счетов на общую сумму более 10 млн долларов.
Средства интеллектуального анализа данных могут также быть очень полезны в плане прогнозирования сбыта и ознакомления партнеров и клиентов с полученными результатами. Эта технология применяется в производственных отраслях, в банковском деле, телекоммуникациях, планетарной геологии (для обработки данных дистанционного зондирования поверхности планет) и для управления интерактивными электронными магазинами. Например, ПО Microsoft Site Server Commerce 3.0 способно распознавать закономерности в покупательском поведении посетителей веб-сайта, прогнозировать их интерес к различным продуктам и услугам и индивидуализировать общение с ними. В частности, электронный магазин может предлагать каждому конкретному покупателю рассчитанные именно на него рекламные объявления, специальные предложения и комплекты продуктов. Методика интеллектуального анализа данных гарантирует, что в массовую рассылку рекламы по электронной почте не будут включены те клиенты, которых предлагаемый товар вряд ли заинтересует. Это позволит избежать издержек, на которые часто не обращают внимания, а именно: раздражения клиентов навязыванием ненужной информации.
Что же в нем такого особенного, в этом электронном инструментарии?
В большинстве коммерческих организаций сотрудникам необходимо
рассматривать данные во множестве различных аспектов. Высшему руководству требуются консолидированные показатели продаж, а также те же самые сведения с разбивкой по регионам и странам. А менеджеру по продажам необходима разбивка по рабочим группам, по индивидуальным торговым представителям и по клиентам. Наконец, менеджерам по продуктам интересны сведения, сгруппированные по различным каналам продажи, и, возможно, детальная информация по каждому наименованию, чтобы узнать, какие из них продаются хорошо, а какие - не слишком. Всем им бывает необходимо сравнивать данные продаж с соответствующими цифрами за тот же день предыдущего месяца или за тот же период предыдущего года; фактические и плановые показатели; цифры в долларах и в других валютных единицах. Обычно, чтобы удовлетворить все эти потребности, финансовому отделу приходится составлять огромное количество разнообразных отчетов.
Но зачастую все эти различные формы отчетов могут быть сгенерированы автоматически по одной-единственной электронной таблице. Механизм "развертывания" и "свертывания" элементов представлений позволяет начать с самого обобщенного уровня и по мере необходимости переходить ко все более детализированным.
Еще один полезный механизм, известный под именем сводных таблиц, позволяет по-разному просматривать одни и те же данные. Чтобы перейти от группирования сведений о продажах по продавцам к группированию по клиентам, достаточно отбуксировать заголовок "клиент" в соответствующую позицию. В сочетании с применением шаблонов для придания данным стандартного формата эти возможности позволяют получить очень мощные, гибкие электронные отчеты, которые каждый пользователь может настраивать в соответствии со своими особыми потребностями. Кроме того, такие отчеты можно рассылать по электронной
почте для сведения или для дальнейшего анализа и.обсуждения всем заинтересованным лицам.
Применение механизма сводных таблиц позволяет достичь особенно впечатляющих результатов в сочетании с корпоративными хранилищами данных. СУБД, лежащая в основе такого хранилища, обычно обладает ограниченными возможностями по генерации отчетов, так что к выполнению этой работы приходится привлекать более квалифицированный персонал. Как правило, работник не имеет четкого представления о том, когда и какие дополнительные детали ему потребуются, и предпочитает составлять запросы "с запасом" - такие, что их обработка занимает по 20-30 минут. Сводная таблица, связанная с СУБД, делает хранилище данных доступным любому работнику. А интерфейс программы для работы с электронными таблицами позволяет генерировать запросы к данным высокого уровня агрегации, а затем переходить к более подробной информации по мере необходимости. Поскольку каждый такой отдельный запрос охватывает лишь небольшой объем данных, время отклика получается очень коротким. Этот интерфейс можно распространить и на динамические источники данных, такие, как поступающие в реальном масштабе времени биржевые котировки.
Специалисту, занимающемуся бизнесом, применение электронных средств позволяет осуществлять анализ быстрее и более углубленно. Бухгалтеру они позволят сэкономить на составлении отчетов время, которое можно будет использовать для помощи другим специалистам в их анализе проблем основной деятельности и для оценки необычных событий. Для тех, кто занимается управлением бизнес-информацией, электронные средства означают повышение скорости работы и качества данных. Им применение этого инструментария позволит подводить итоги месяца всего за пару дней вместо теперешних недель. Финансовые отделы смогут, не наращивая численности персонала, взять на себя дополнительные функции, такие, как долгосрочное планирование и анализ эффективности отдельных штатных единиц или реальных активов компании.
Главное преимущество электронных отчетов перед их бумажными аналогами - то, что они не только отвечают на изначально поставленный вопрос, но и дают возможность задать следующий. Поскольку никто не знает заранее, каким будет этот следующий вопрос, инструментарий, который позволял бы найти ответ на него без посторонней помощи, насущно необходим.
В числе менее типичных, но от этого не менее интересных приложений интеллектуального анализа данных - изучение положения приемных детей для повышения эффективности социальной помощи и исследование особенностей стиля отдельных игроков Национальной баскетбольной ассоциации США (НБА). В частности, известно, что тренер команды "Utah Jazz" использовал этот инструментарий для составления "полного портрета" Майкла Джордана из "Chicago Bulls", включая его склонность, играя в одиночку, проводить двойной или тройной дриблинг перед броском. Однако анализ бесполезен, если вы не можете воспользоваться его результатами. Даже зная привычки Джордана, игроки "Utah" не смогли предотвратить его решающий бросок в игре, которая принесла "Chicago" победу в чемпионате НБА 1998 года.
В бизнесе интеллектуальный анализ данных наиболее широко применяется в маркетинге, когда компании анализируют свои базы данных для выявления предпочтений клиентов, а затем делают им специальные адресные предложения. Например, авиакомпания American Airlines использует сведения о 26 миллионах участников своей программы для постоянных клиентов - такие, как предпочитаемые ими гостиницы, рестораны и агентства по прокату автомобилей -для разработки адресных маркетинговых кампаний, которые уже позволили ей сэкономить на издержках более 100 миллионов долларов.
Экономия получается благодаря созданию более точной модели клиента и уменьшению объемов рассылки. Вот характерный пример. Кампания по продвижению нового вида кредитных карточек методом прямого маркетинга дает обычно эффект примерно в 2% случаев. В 1997 году банк Mellon Bank USA поставил перед собой цель привлечь дополнительно 200 тыс. клиентов. При использовании обычных методов для этого потребовалось бы охватить рассылкой 10 млн кандидатов. Вместо этого с помощью технологии интеллектуального анализа данных было получено около трех тысяч моделей наиболее вероятных клиентов. Путем дальнейшего уточнения выделили группу моделей, которая, по результатам тестирования, позволяла получить положительный отклик в 12% случаев. Таким образом, для привлечения 200 тысяч новых клиентов оказалось достаточно обратиться с предложениями лишь к двум миллионам человек вместо десяти. Более того, сокращением рекламных издержек выгоды предприятия не ограничились: прибыльность для банка клиентов, привлеченных в результате этой акции, оказалась в среднем втрое выше обычной, поскольку технология интеллектуального анализа позволила найти именно тех людей, чьим нуждам услуги, предлагаемые Mellon Bank, соответствуют наиболее полно.
Приведенный пример иллюстрирует два важных аспекта применения данной технологии. Первый - сам масштаб такой работы:
объем анализируемых данных и число исследуемых моделей значительно превышают соответствующие показатели, характерные для традиционного статистического анализа. Второй - то, что даже высококвалифицированные специалисты могут извлечь из применения интеллектуального анализа данных дополнительные преимущества. В случае с Mellon Bank приглашенная команда специалистов сумела добиться шестикратного улучшения результатов, затратив лишь четверть того времени, что потребовалось бы на проведение аналогичной акции "обычными" методами, используемыми собственным подразделением банка, специализирующимся на статистическом анализе. Одна из важнейших задач - сделать этот инструментарий настолько простым, чтобы конечный пользователь - специалист в своей сфере бизнеса без сколько-нибудь выдающегося знания компьютера - смог работать с ним самостоятельно.
Применение интеллектуального анализа данных становится обязательным требованием при организации взаимодействия человека
с машиной. Председатель правления и главный исполнительный директор корпорации NCR Ларе Найберг таким образом описал мне стандартное меню банкомата своего банка. Первый шаг - выбор языка: английский или испанский; второй - ввод номера счета; третий - выбор типа транзакции (по ее завершении выдается предложение провести еще одну). И, наконец, в заключение на экране появляется номер телефона, по которому можно позвонить, чтобы попросить банк о ссуде под залог недвижимости. Большинству пользователей банкоматов приходится иметь дело с меню наподобие этого.
Ларе всегда снимает одну и ту же сумму с одного и того же счета; он уже получил ссуду от своего банка и платит ему каждый месяц порядочные проценты. Так почему же, когда он вставляет в щель банкомата свою кредитную карточку, тот не спросит его простым человеческим языком: "Ларе, ты, как всегда, хочешь снять обычную сумму со своего основного счета?" И почему не предложит ему какую-нибудь банковскую услугу, которой он еще не успел воспользоваться, но которая соответствует его клиентскому профилю? Такое специализированное обслуживание было бы намного удобнее для клиента и намного выигрышнее для самого банка. И ведь информация, необходимая для генерации подобных более уместных, чем задаваемые теперь, вопросов, имеется где-то в компьютерах банка. К слову сказать, банкоматы, о которых говорил Ларе, производит как раз возглавляемая им NCR, которая в последнее время уделяет большое внимание технологии интеллектуального анализа данных. Ларе же, со своей стороны, очень заинтересован в решении подобных задач для своих клиентов.
Интеллектуальный анализ данных входит составной частью в концепцию управления отношениями с клиентами (customer relationships management, CRM), суть которой состоит в использовании информационных технологий для выстраивания отношений с клиентами на индивидуальной основе вместо применения модели массового маркетинга. Интеллектуальный анализ данных открывает возможность дойти до каждого клиента, если только существует канал, позволяющий осуществлять индивидуализированную доставку, - будь то банкомат, веб-сайт или система прямого маркетинга на основе электронных почтовых рассылок и специальных предложений. Используя выявленные с помощью интеллектуального анализа данных закономерности, вы можете подать свой продукт клиенту таким образом, чтобы с максимальной вероятностью повысить свою ценность как поставщика для него и одновременно его ценность как покупателя для себя.
Такая персонализация обслуживания имеет далеко идущие последствия для организации рекламы во всех средствах массовой информации, включая телевидение и прессу. С вытеснением аналогового телевидения цифровым и превращением "электронных книг" в предпочитаемый носитель журнальных и газетных материалов практически вся реклама неизбежно будет переведена с массовых на индивидуализированные рельсы. Выводимые на экран рекламные объявления будут отбираться в соответствии с демографическим профилем их получателя.
Вместо того чтобы использовать средства массовой информации для рекламирования нового автомобиля или другого товара в каждом доме, компания сможет приобрести менее дорогостоящую услугу, рассчитанную на определенный демографический слой и , позволяющую с максимальной эффективностью привлечь внима-' ние наиболее вероятных покупателей. Если, например, у кого-то есть автомобиль определенного типа и вы полагаете, что по времени владелец уже должен присматривать ему замену, то имеет смысл сосредоточить на этом клиенте максимальную активность. Крупный производитель автомобилей может вкладывать определенные деньги и в охват других демографических секторов - чтобы поддержать известность торговой марки, - но основной поток средств будет направляться именно на рекламу, адресованную наиболее вероятным покупателям.
Мы уже наблюдаем первые попытки персонализации рекламы в Сети. Так, если пользователь, работая с поисковым сервером, ука-| жет в качестве интересующей его местности город Сан-Франциско или даст понять, что хочет купить книгу о путешествиях - или литературу по какой-то другой тематике, - ему наряду с прочей информацией будет выдано рекламное объявление, связанное с этой местностью или с этой тематикой. Контекстно-чувствительная реклама, связанная с предпочтениями пользователя или с его действиями в данный момент, намного эффективнее обычного, публикуемого наугад объявления.
Способность персонализировать рекламные объявления означает, что жители разных микрорайонов, или даже отдельных домов в пределах одного и того же микрорайона, будут получать свои особые объявления. Крупные компании смогут повысить эффективность рекламных акций, а более мелкие - впервые получат доступ на телевидение и к журналам (сегодня многие носители рекламы слишком дороги для продвижения каких-либо товаров, кроме
пользующихся действительно массовым спросом). Даже бакалейная лавка на углу сможет рекламировать свой товар по телевидению среди жителей близлежащих домов.
Переход к адресной рекламе должен обрадовать и потребителей. Они получат больше шансов увидеть те объявления, которые представляют для них интерес. Правда, кое-кого может обеспокоить перспектива чрезмерной осведомленности о нем рекламодателей; однако, как я уже упоминал в главе 5, надлежащее программное обеспечение позволит частным лицам раскрывать только те сведения о себе, которые они готовы раскрыть. В качестве примера можно назвать предоставление рекламодателям доступа к такой информации о клиенте, как манера ведения просмотра. Большинство подписчиков специальных изданий - например, по спортивной или научной тематике, садоводству, домашнему хозяйству или автомобилям - изучают содержащуюся в них рекламу не менее пристально, чем статьи. А если вы и к просмотру телепрограмм подходите таким же образом - выбираете лишь те, что посвящены одной или двум интересующим вас темам, - то, по всей вероятности, не будете возражать против рекламных объявлений соответствующей тематики.
"Мыльные оперы" - основной продукт дневного вещания американского телевидения - получили свое название благодаря тому, что рекламодателями в них традиционно выступали крупные производители мыла, заинтересованные, в первую очередь, в женской аудитории- Так что идея адресной телевизионной рекламы не нова. Что появилось в последнее время радикально нового - так это применение интеллектуального анализа данных для извлечения нужной информации из массы статистики, а также цифровое телевидение и электронные книги, позволяющие подойти к аудитории более персонализированно. Сочетание этих факторов должно произвести настоящую революцию в нынешних представлениях о рекламе и маркетинге. Персонализация значительно увеличивает ценность знаний о тех, кому вы предлагаете свои товары и услуги.
ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ ДЛЯ ВСЕХ
Сегодня большинство средств интеллектуального анализа данных довольно дороги - от 25-150 тысяч долларов за систему для предприятия небольших или средних масштабов и до многих миллионов для гиганта вроде Wal-Mart. Пять лет назад одна страховая компания истратила на систему интеллектуального анализа данных более 10 миллионов долларов. По словам ее главного исполнительного директора, он понимает, что сегодня смог бы приобрести аналогичную систему за гораздо меньшие деньги, но полученная с тех пор отдача с лихвой окупила потраченные миллионы. Этот пример дает некоторое представление о ценности интеллектуального анализа данных для бизнеса. Однако высокие цены на инструментарий свидетельствуют о том, что используемое сегодня ПО по своему уровню сложности все еще принадлежит к старому миру, в котором лишь самые крупные организации, располагавшие большим штатом сотрудников или пользовавшиеся услугами узко специализированных производителей, могут позволить себе глубокую переработку данных.
С ростом конкуренции в нашей основанной на информации экономике сведения о клиентах становятся все более важным производственным ресурсом. Каждая компания и каждый работник интеллектуального труда просто обязаны извлекать максимум возможного из имеющихся данных. Многие новые пользователи не могут позволить себе крупных расходов на инструментарий для работы с базами данных или на высококвалифицированных узких специалистов. К счастью, по мере освоения средствами интеллектуального анализа данных такой массовой платформы, как персональный компьютер, неизбежно должно произойти стремительное снижение цен с взрывоподобным ростом популярности этого инструментария в компаниях всех масштабов и в их подразделениях. Вскоре каждый пользователь из деловой сферы сможет проводить сложную обработку информации, прежде доступную лишь организациям, способным выложить за нее большие деньги. Интеллектуальный анализ данных проникнет повсюду, войдет в стандартный набор функциональных возможностей информационной инфраструктуры любой компании.
Главная ценность интеллектуального анализа данных для бизнеса будет заключаться в том, что он поможет ответить на вопросы, какие продукты имеет смысл создавать и к каким уровням цен следует стремиться. Компании смогут оценивать множество различных вариантов цен и размеров партий, выбирая наиболее выгодные для себя и наиболее привлекательные для клиентов. Особенно большой интерес такие возможности представляют для компаний, предлагающих информационные продукты. В отличие от производства автомобилей или, скажем, стульев, в сфере страховых или финансовых услуг, а также в книгоиздательской деятельности на этап
разработки приходится значительно больше затрат, чем на этап производства. Стоимость же этих продуктов определяется не столько величиной произведенных вложений, сколько их ценностью для покупателя. Секрет успеха информационного продукта - в понимании продавцом интересов наиболее вероятного клиента и особенностей его покупательского поведения.
Страховые компании, например, предлагают такие продукты, которые могут оказаться для них очень прибыльными при приобретении одними клиентами, малоприбыльными - при приобретении другими и вовсе неприбыльными - при приобретении третьими. Эта разница коррелирует со статистикой страховых случаев. Интеллектуальный анализ данных позволяет выделить категории клиентов и географические области, для которых характерен высокий или низкий уровень выплат по страховке. Исходя из этого, можно принять решение об усилении маркетинговой активности в отношении потенциальных клиентов, возрастная группа или география проживания которых позволяют рассчитывать на низкий уровень страховых выплат, а также о предложении им привлекательных цен. С другой стороны, возможны и решения о повышении цен или сокращении маркетинговых усилий применительно к группам клиентов с "неблагоприятной" статистикой. Когда в условиях ведения бизнеса есть такие различия, применение интеллектуального анализа данных при разработке стратегии способно дать очень много. Аналогичные возможности применения этой технологии существуют и при поиске новых клиентов банками. Люди меняют сегодня банки гораздо чаще, чем раньше, и появляется все больше новых компаний, предлагающих финансовые услуги. Для привлечения клиентов приходится предпринимать все более серьезные маркетинговые усилия, которые окупаются только в тех случаях, когда эти клиенты оказываются достаточно выгодными.
И, наконец, всегда следует задаваться вопросом: сможете ли вы использовать результаты анализа на практике? Если контингент ваших клиентов в значительной мере однороден или общее их число невелико, пользы от самого что ни на есть интеллектуального анализа будет далеко не так много, как в рассмотренных примерах. Бакалейщик, предлагающий деликатесы узкому кругу клиентов, проживающих по соседству с его лавкой, вероятно, не нуждается в этой технологии. А вот общенациональная сеть бакалейных магазинов - совсем другое дело.
Мощные возможности интеллектуального анализа данных будут полезны компаниям, ищущим способы привлечения новых клиентов; вырабатывающим ориентиры для своих маркетинговых усилий; пытающимся определить, в какую сторону дальше развивать продукты и к какому уровню цен стремиться, чем заинтересовать конкретных клиентов. Человеческая изобретательность и высокая квалификация необходимы, чтобы использовать эту информацию для выработки новых подходов к самым различным сторонам коммерческой деятельности - от упаковки до ценообразования, чтобы разглядеть контуры новых продуктов в выданных компьютером отчетах и придумать привлекательные для клиентов новые предложения. Чем лучше инструментарий, используемый специалистами для этой работы, тем эффективнее они могут применять свои творческие способности. Руководству компании не следует жалеть денег на расширение возможностей сотрудников. Будет разумно выделять 3-4% от фонда заработной платы работников интеллектуального труда на приобретение для них самого лучшего инструментария. Если его применение избавит людей от рутины, они смогут всю свою умственную энергию направить на творческое использование закономерностей и тенденций, выявленных компьютером в автоматическом режиме. Использование информации для создания новаторских продуктов и услуг, а также для укрепления сотрудничества с партнерами и клиентами, всегда останется исключительной прерогативой человека. Чем больше ценной руды станет извлекать ПО из залежей данных, тем больше будет у людей работы по превращению этой руды в золото.
Выводы
Применение аналитического ПО позволяет высвободить человеческие ресурсы, занятые рутинной работой по сбору данных, и переключить их на обслуживание и поддержку клиентов - направления, где присутствие человеческого начала много предпочтительнее компьютерного.
Применяйте ПО интеллектуального анализа данных в первую очередь к тем областям, в которых вы сможете наиболее эффективно использовать полученные результаты.
Изучите возможные пути перехода от массовой рекламной стратегии к адресной, а также предполагаемые последствия выбора того или иного из них для организации вашей маркетинговой деятельности.
"Электронная нервная система": контрольные вопросы
Есть ли у вас возможность осуществлять сложный анализ закономерностей покупательского поведения и использовать его результаты для выявления тенденций или для пер-сонализации обслуживания?
Можете ли вы выделить группы клиентов - различаемые по уровню доходов, возрасту, географии и другим демографическим параметрам, - приносящие вашему предприятию наибольшую и наименьшую прибыль?
Способна ли ваша "электронная нервная система" освобождать людей от рутинной работы, чтобы они могли направить все силы на решение возникающих проблем?
Есть ли у ваших сотрудников доступ к электронным данным? Легко ли этим доступом пользоваться? Предусмотрены ли механизмы быстрого перехода от обобщенной информации к детализированной? Можно ли упорядочивать данные по различным параметрам и развертывать различные данные вдоль одних и тех же параметров?
Достарыңызбен бөлісу: |