Е. А. Федосов полвека в авиации записки академика d p о ф а



бет7/24
Дата25.07.2016
өлшемі2.16 Mb.
#220575
1   2   3   4   5   6   7   8   9   10   ...   24

Глава II


ШЕСТИДЕСЯТЫЕ
Научные направления института в 60-е годы
К 1960 году НИИ-2 уже имел богатую историю. За 13 лет — со времени организации в 1946 году — в нем сложился ряд научных школ и направлений. Я, к тому времени, как стал заместителем начальника, успел прикоснуться лишь краешком жизни к этой истории — работал только над ракетами класса «воздух — воздух» и противоракетами. В самой же авиационной тематике я разбирался слабо и, став в положение научного руководителя целых направлений, почувствовал всю сложность положения, в которое попал. Тем более, что я не очень хорошо представлял себе, что это вообще значит — быть руководителем подобного ранга. Весь мой опыт начальника ограничивался областью определенных авиационных ракет и управлением коллективом, который я сам создавал из студентов, знакомых аспирантов и однокашников. Это были люди, которых знал я лично, а они знали меня, и поэтому мои отношения с ними строились на совершенно неформальных методах управления. Скорее я работал с группой единомышленников, где мое руководство в административном плане было чисто номинальным. Я был некий лидер в чисто технических областях, да и не такой уж это большой администратор — начальник отдела, поскольку от него не зависит ни уровень заработной платы, ни карьера, ни решение социальных проблем...

А тут я попал в положение, когда должен руководить серьезным научным направлением. Их в институте к этому времени сложилось три.

Первое, которое НИИ-2 получил в готовом виде к моменту своего рождения, — совместимость оружия и самолета. Самолеты, закончившие Вторую мировую и первое поколение реактивных машин, были оснащены стрелково-пушечным, бомбардировочным вооружением и неуправляемыми ракетами. Авиационные пушки традиционно строились в Туле, где сложилась одна из лучших в ми-

78

ре школ их конструкторов, которая и по сей день держит пальму первенства. Трудно представить, что кто-то в мире может сделать авиационную пушку лучше, чем старик Василий Грязев из Конструкторского бюро приборостроения, которым руководит А. Г. Шипунов. В этом же ряду стоят такие конструкторы, как А. Э. Нудельман, А. А. Рихтер из школы Б. Г. Шпитального и другие.



Что же в этой области делал наш институт? Пушка стояла на самолете и надо было изучать, как стрельба из нее отражается на конструкции, поскольку при этом возникает сила отдачи, которую самолет должен выдержать без заметных потерь в точности стрельбы, как полет влияет на рассеивание снарядов. То есть институт занимался стрелково-пушечными установками, или, если употребить артиллерийский термин, — лафетами самолетов. Кроме нас, этими исследованиями не занимался никто, поэтому мы на своем полигоне под Москвой «отстреливали» практически все пушечные установки, выдавали рекомендации по их прочности в условиях многоимпульсных динамических нагрузок. В этом заключалась специфика работы нашего института по сравнению с ЦАГИ, который занимался статическими нагрузками.

Далее — бомбардировочное вооружение, сход бомб. Их также выбрасывали из бомбоотсеков. Бомба сразу попадала в воздушный поток, в то время — дозвуковой. Мы изучали поведение бомб на траекториях падения и, как следствие, техническое их рассеивание.

Изучали мы и стрельбу из НРС-блоков, то есть неуправляемыми реактивными снарядами. Здесь отдачи никакой нет, поскольку это безоткатное орудие, зато есть влияние факела двигателя ракеты на двигатель самолета (как и при стрельбе из пушки, когда звуковая волна попадает на вход воздухозаборника). Факел создавал неустойчивый воздушный поток на входе реактивного двигателя, так что он мог и «заглохнуть». Это очень опасно и приводило к катастрофам. И мы должны были вырабатывать рекомендации по борьбе с этими явлениями. Самый простой выход — проектировать самолет так, чтобы факел не попадал в поток, идущий на двигатель, но крыло ведь ограничено по размерам и ракету далеко не утащишь. И потом, число точек подвески оружия все время увеличивается, поэтому ближайшие из них все равно подбирались к самому соплу. А пушка и вовсе традиционно встраивается рядом с ним в фюзеляж. Мы по сей день занимаемся этими проблемами, поскольку они характерны и для управляемых ракет, хотя имеют свои особенности. Но физика этих явлений очень сходна.

В комплексе же все это и представляло собой такое направление работы нашего института, как совместимость оружия и самолета.

79

Изучали мы также техническое рассеивание — и снарядов, и неуправляемых ракет, и авиабомб, то есть баллистику боеприпасов. Это тоже требовало отработки специфических подходов.



Если же просуммировать все сказанное выше, то направление, с которого начинал свою жизнь институт, базировалось на летном эксперименте с исследованием физических процессов — нестационарной аэродинамики, газодинамики, нестационарной динамической прочности и других, подобных им по характеру явлений.

Это направление существовало до момента появления управляемого оружия.

Второе направление, которое вел институт, это — теория эффективности. Эффективность — вероятностная характеристика, описывающая возможность выполнения боевой задачи в целом. Она определяется как некий интегральный результат влияния многих факторов: точности прицеливания, технического рассеивания, возможности самолета выполнить возложенные на него функции... Задача определения эффективности системы, состоящей из многих компонентов, очень сложна, так как требует многочисленных оценок вероятности различных событий и процессов. Но решение этой задачи необходимо, поскольку при итоговой оценке боевых систем, их сравнении друг с другом военные в основном руководствуются именно этим критерием. Не так уж важна точность стрельбы или бомбометания, важна эффективность. Потому что точность можно компенсировать весом боевой части и т. д. А эффективность говорит о том, что задача будет выполнена с достаточно высокой вероятностью. В дальнейшем к критерию эффективности добавился критерий стоимости, потому что создавать военную систему, не оглядываясь на стоимость, тоже нельзя. Поэтому родился такой комбинированный критерий, как «эффективность — стоимость».

Коллектив НИИ-2 уже в начальной фазе жизни занимался проблемами эффективности и в какой-то мере начал изучать целые «операции», — перехвата, воздушного боя, ударно-бомбардировочную, то есть прорыв бомбардировщиков через зону ПВО противника... Эта тематика — исследование боевых операций и эффективности — тоже выросла в отдельное направление работы.

И третье направление, в котором довелось участвовать и мне, это — управляемое оружие. А уже параллельно с его развитием родилась система автоматизации режимов управления самолетом. То есть автоматика и управление стали широко внедряться и в оружие, и в самолет. Вначале это были работы по автоматизации режимов прицеливания, а в последующем и весь самолет стал фактически полностью автоматическим. Удельный вес действий летчика значительно снизился по сравнению с зарей авиации, когда человек в воздухе де-

80

лал все сам, если выполнял какую-то задачу. Сейчас появилась понятие человеко-машинной системы с очень большой долей автоматизированных режимов.



Вот это третье направление и было поручено вести мне, как заместителю начальника института, поскольку я был к нему наиболее подготовлен.

Первое направление вел заместитель начальника института Владимир Иванович Ермилов, второе — сам начальник, Виктор Арчилович Джапаридзе. Это направление, кстати, вначале курировал мой предшественник — Всеволод Евгеньевич Руднев. Он один из тех, кто отдал много сил и энергии созданию теории эффективности авиационных систем. Эта работа шла в тесном взаимодействии с академией им. Н. Е. Жуковского.

Особняком стояла очень интересная проблема — боевой живучести и поражения цели. Как выбрать боевую часть ракеты? Как организовать разброс осколков, чтобы наиболее эффективно поразить воздушную цель? Ведь на ракетах класса «воздух — воздух» боевая часть не может быть большой, и надо было обеспечить разлет осколков в определенной плоскости, своего рода «диском», который как бы перерезал цель. А в дальнейшем появились стержневые боевые части, имеющие вид свернутой «гармошки», которая при взрыве распрямлялась и получившееся кольцо перерубало цель.

Естественно, возникает и обратная задача: как защищать конструкцию самолета от воздействия оружия противника? Сейчас, благодаря нашим работам, Россия занимает уникальное положение в мире боевой авиации — нигде нет более живучих самолетов, чем российские. Они возвращаются домой с пробитыми крыльями, поврежденным до последних пределов оперением... Яркий пример — применявшийся в Афганистане Су-25, который был скомпонован полностью по рекомендации нашего НИИ. Мы отрабатывали его конструкции на поражение и в результате наши ВВС почти не несли потерь летчиков, даже если в Су-25 попадала ракета «воздух — воздух» или «Стингер».

В этом направлении мы работали и по линии самолетов Су-7 — Су-17. О случае с Ту-22 я уже рассказывал, когда он вернулся на базу после попадания в открытый бомболюк ракеты «Хок». Иракские летчики после этого беспредельно поверили в наши машины и говорили, что русские делают чудеса. Но эта культура закладывалась еще при создании штурмовика Ил-2 — самого массового самолета Второй мировой войны, когда С. В. Ильюшин защитил броней двигатель, кабину летчика, другие жизненно важные элементы машины. Душой и энтузиастом этого направления в нашем институте был доктор технических наук Сергей Иванович Базазянц.

81

Как уже было сказано, я возглавил направление, связанное с управляемым вооружением, с автоматизацией боевых режимов самолетов, но для меня по-прежнему оставалось тайной, что же собой представляют истребитель и бомбардировщик с точки зрения такой автоматизации. Личного опыта в этой области я не имел никакого, хотя был одним из немногих в НИИ, кто достаточно хорошо владел теорией управления и технологиями управляющих систем. Но мне ведь надо было работать с научными коллективами, которые уже имели достаточно большой практический опыт по решению проблем, за которые я только принимался. Это коллектив лаборатории № 2, которым руководил Евгений Иванович Чистовский. Его правая рука — Иосиф Аркадьевич Богуславский, который, кстати, в это время не без моей помощи переключился на работу по космическим программам. Лабораторию № 3 вел Константин Александрович Сарычев; здесь занимались ударной, фронтовой и дальней бомбардировочной авиацией, в то время изучая в основном бомбардировочные режимы.



Это были уже сложившиеся коллективы, где хорошо понимали, что такое задачи бомбометания и прицеливания, владели их теорией. И когда я посмотрел на нее с позиций собственного опыта, я вдруг уловил в ней некие общности с теорией самонаведения. Но это самонаведение — в конечную точку, а не в цель, то есть вывод самолета на определенный режим, когда надо сбросить бомбу. В какой-то мере, если сравнивать кинематические зависимости бомбометания, они напоминают самонаведение ракеты.

В то же время и истребитель, который наводился на воздушную цель (только в нем сидел пилот) обладал закономерностями, очень похожими на самонаведение ракеты. Но истребитель специфичен. Ракета обладает аэродинамической симметрией, а именно так строились ракеты класса «воздух — воздух» — крестокрылое оперение, цилиндрический фюзеляж, что заметно упрощает задачи управления.

А самолет — это ярко выраженное крыло, состыкованное с фюзеляжем. Чтобы им управлять, надо создавать крен — координированный разворот, когда подъемная сила используется для того, чтобы создавать боковое и вертикальное движение самолета. То есть налицо специфическая динамика управления несимметричным объектом. Кроме того, самолет пилотирует летчик. Человек есть человек, и полностью исключать его из процесса наведения нельзя, он замыкает контур управления. Если смотреть на человека, как на звено в этом контуре, то можно и его динамику представить с помощью дифференциальных уравнений, описывающих его действия как оператора. Поэтому было введено понятие «передаточная функция человека». И оказалось, что наряду с традиционными динамическими

82

звеньями в передаточной функции человека присутствует запаздывание — время, за которое человек воспринимает информацию и начинает реализовать. Вот это временное запаздывание, которое связано с мышлением, принятием решения, с точки зрения теории управления является очень неприятным звеном, которое может привести к потере устойчивости и т. д. Более того, когда стали углубленно изучать человека, оказалось, что он — система со случайными параметрами, поскольку в разных условиях от него в принципе можно ожидать каких угодно неадекватных действий. Если же подойти к нему примитивно и усредненно, его можно описать достаточно точно, и тогда самонаведение истребителя (с учетом специфики несимметричной аэродинамики), очень напоминает решение для любой самонаводящейся системы перехвата — будь она зенитной, класса «воздух — воздух» или истребителем.



В конце концов зенитную ракету можно рассматривать, как беспилотный истребитель. Кстати, в это время в КБ С. А. Лавочкина строилась зенитная ракета «Даль» именно как беспилотный самолет-истребитель. Она тоже была аэродинамически несимметрична и по способу наведения очень похожа на самолет. Прогресс в авиации привел к тому, что истребитель уже имел два ярко выраженных режима полета при перехвате цели. Сначала он выводился к ней с земли — системой командного наведения, когда летчику на директорные приборы по линиям связи передавался нужный курс, высота и скорость. Он пилотировал по ним самолет, пока его бортовой локатор, который находился в режиме поиска, не захватывал цель. Тогда летчик переходил на режим бортового наведения, что фактически и было самонаведением. Он получал на прицельном индикаторе метку цели и далее пилотировал самолет с учетом совмещения этой метки с текущей маркой положения самолета. Так что в динамическом плане самонаведение ракеты и перехват цели самолетом-истребителем очень похожи.

Но в каждом техническом направлении есть своя специфика, какие-то традиции, складываются свои школы, рождается терминология. Мы, к примеру, работая в одном и том же институте над ракетами класса «воздух — воздух» и над истребителем, иногда друг друга плохо понимали, хотя говорили об одном и том же. Ведь терминология во многом определяется личностью людей, их подходом к решению проблем и т. д. Поэтому моя задача заключалась в том, чтобы сначала хотя бы научиться понимать, что делается в коллективах, которыми мне предстоит руководить: я-то в них не работал. Мне необходимо профессионально стать на их уровень. При этом, конечно, я не обязан погружаться в тонкости каждого направления — это и не по силам одному человеку. Потому и существует иерархия управле-

83

ния, где у человека на каждом уровне имеется свой круг вопросов. Но профессиональное понимание деятельности коллективов необходимо.



Поэтому мне пришлось оставить ракетную технику, тем более, что считалось: там работают уже вполне квалифицированные люди и погрузиться в проблематику авиационных систем. Для этого пришлось прочитать гору литературы, множество работ ЦАГИ, ЛИИ, всех классиков — И. В. Остославского, Г. С. Бюшгенса, В. С. Ведрова, М. Р. Тайца, Г. С. Калачева... Мне надо было разобраться в вопросах динамики управления самолетом, потому что аэродинамику я немного знал, и даже, как уже писал выше, набрался смелости прочитать курс лекций по этому предмету в МВТУ.

Естественно, я окунулся и в реальные программы, которые вел наш институт, в первую очередь в работу над системой «Ураган-5», предшествовавшей МиГ-25. В этой системе создавались экспериментальные самолеты фирмы Микояна, где как раз и отрабатывались режимы командного и бортового наведения. При этом мы столкнулись с различными проблемами эргономики кабины, со сложностью восприятия летчиком показаний индикаторов... Все это требовало глубокого изучения и выдачи необходимых рекомендаций.

Почему так остро встал вопрос о перехватчике? Дело в том, что понимание воздушного боя как дуэли истребителей базировалось на опыте Второй мировой войны, и вопрос автоматизации этой дуэли еще не стоял столь остро, а задача перехвата бомбардировщиков в это время вышла на первый план. Мы противостояли прежде всего Америке, ее стратегическая авиация стала считаться нашим основным противником и в случае возникновения конфликтных ситуаций надо было остановить ее налет, а не вступать во встречные воздушные бои с истребителями. Проблемы с ними возникли немного позже, когда СССР стал принимать участие в арабо-израильских и других локальных конфликтах. В период же конца пятидесятых — начала шестидесятых годов мы вплотную занимались решением задачи перехвата бомбардировщиков. А поскольку она очень сильно напоминала задачу самонаведения ракеты, мне была достаточно хорошо знакома динамика и логика таких процессов. Поэтому очень многое из того, что было достигнуто при работе над ракетами класса «воздух— воздух», мы стали внедрять в методику моделирования полета истребителей-перехватчиков.

Но одновременно мне пришлось вплотную заняться и проблемами бомбометания, поражения наземных целей, которые для меня были в полном смысле «терра инкогнита». Институт занимался уже и управляемыми ракетами, работающими по наземным целям, но

84

бомбометание — специфическая задача, когда нужно вывести самолет с определенной скоростью в некую точку, из которой баллистическая траектория бомбы накроет цель.



Для этого нами широко применялись методы лабораторного имитационного моделирования, которое мы назвали полунатурным, поскольку аппаратура была реальной, а сам полет моделировался в вычислительной машине. То есть, выражаясь современным языком, полет был виртуальным, а аппаратура — реальной. Но чтобы она работала в реальном режиме, на ее вход надо было подать из виртуального пространства вычислительной машины столь же реальную физически воспринимаемую информацию, преобразованную из цифровой или аналоговой модели — будь то движение линии визирования, угловое движение самолета или ракеты, скоростной напор на входе системы воздушных сигналов, сигнал на входе радиовысотомера...

Наш институт был одним из ведущих НИИ в разработке методов цифрового моделирования. И поскольку в то время БЭСМ делали только первые шаги, мы, как я уже писал, стали разрабатывать свою машину, способную моделировать процессы в реальном масштабе времени, то есть обладающую таким быстродействием, чтобы вычислительные процессы не опаздывали по отношению к реальным, и на вход приборов поступала реальная информация. Для этого нам пришлось делать скоростную машину, каковых в СССР еще не было. Однако к тому моменту, когда мы сделали ВДМ-101 и начали моделировать полеты, появились «бурцевские» машины и на каком-то этапе институт просто закупил две или три машины заводского исполнения — М-50 и 5Э51, а впоследствии и «Эльбрус».

С их помощью перехват цели самолетом-истребителем мы уже моделировали на более высоком уровне — чисто «цифровом», целиком внутри машины. Никто ничего подобного до этого в Советском Союзе не моделировал в реальном времени на цифровых машинах. Они ведь создавались как управляющие для систем ПРО, а при решении авиационных задач они как моделирующие не применялись.

В общем, я стал одним из тех, кто начал внедрять в институте моделирование процесса самонаведения истребителей с использованием ЦВМ, поскольку еще у себя в отделе очень много занимался цифровым моделированием ракет.

Надо сказать, что применение цифровой техники в моделировании, как и в управлении, рождало дополнительные проблемы. Действительно: процессы в машине живут своей жизнью в особом «виртуальном» мире. Здесь, кстати, рождаются очень интересные философские вопросы о существовании материального и идеального миров в машине. Так вот, идеальный мир должен в динамическом

85

плане соответствовать реальному пространству и времени, и нам надо было понять, насколько этот виртуальный мир искажает процессы реального мира, совместимы ли они. Оказалось, что на этапе преобразования цифровой информации в аналоговую и ее «входа» в реальный мир появляются ступенчатые нелинейности, связанные с разрядностью преобразований сигнала «туда и обратно», а также определенное запаздывание в процессе обмена информацией между машиной и реальной средой.



Все это надо было увидеть и понять самим, поскольку тогда использование цифровой техники в управлении только начиналось и было засекречено, так что ничего на эту тему в литературе не публиковалось. Полунатурное моделирование — это тоже в какой-то мере управление, поскольку представляет собой некий замкнутый процесс, в который включена цифровая машина. Когда ЦВМ появилась на борту ракеты и самолета, мы столкнулись с проявлением тех же физических закономерностей, что и при полунатурном моделировании — физические параметры полета преобразуются в цифровую информацию, машина ее «осмысливает», вырабатывает управляющие сигналы, которые снова преобразуются и выходят в реальный мир.

Одновременно с изучением процессов перехвата мне пришлось вплотную заняться и проблемами бомбометания. Здесь необходимо вывести самолет уже не на цель, а в некую точку, с которой начинается траектория падения бомбы. Эта задача и рассматривается в теории бомбометания, причем она распадается на две фазы: сначала надо точно выйти в точку сброса бомбы, а затем довернуть самолет по курсу полета так, чтобы траектория падения бомбы пересекала цель. Эта вторая фаза получила название «боковой наводки». В ней участвует динамика самого самолета — его надо накренить, ввести в вираж и выйти на нужный курс, но одновременно надо не упускать из виду и визировать цель. Вот здесь и возникает связка, похожая на самонаведение, поскольку необходимо вести визирование цели, а еще — учитывать баллистику падения бомбы. Этой теорией бомбометания занимались многие наши корифеи, начиная с Н. Е. Жуковского, но наиболее впечатляющие результаты были достигнуты академиком Н. Г. Бруевичем, заведующим кафедрой бомбометания академии им. Жуковского и сотрудниками нашего института, которые этой проблемой занимались со дня его основания. В их числе Г. Г. Абдрашитов, который первым стал изучать вопросы боковой наводки.

Американцы на В-29, а соответственно и мы на Ту-4, задачу бомбометания решали с помощью прицела ОПБ-5. Сигнал с него шел на авиапилот, который автоматически выводил самолет на цель и так же автоматически обеспечивался сброс бомбы. Я с этой проблемой

86

столкнулся, когда началось освоение бомбометания с самолета, летящего со сверхзвуковой скоростью. До этого все бомбы сбрасывались на «дозвуке», в том числе с Ту-16 и других машин. Надо сказать, что бомбардировочная авиация в эти годы мало развивалась, потому что Хрущев считал, что вообще ею нет смысла заниматься, поскольку есть МБР.


Отработка бомбометания с самолета Як-28И
Последним фронтовым бомбардировщиком, который поступил на вооружение наших ВВС к моменту моего назначения заместителем начальника института, был Ил-28, но он тоже бомбил на дозвуковых скоростях. Позже был создан Як-28, который уже бомбил на сверхзвуковых скоростях. Этот самолет запустили в серию на Иркутском заводе, не проводя отработку режима бомбометания. Более того, Як-28 стали поставлять в некоторые страны Варшавского договора: в Венгрию, Чехословакию, Польшу. И там при проведении учебного бомбометания возникла проблема попадания бомбы даже не в цель, а хотя бы в полигон. Территории этих стран весьма невелики, и под полигоны там отводились площади намного меньшие, чем у нас. Поэтому при бомбометании с высоты 9—10 тысяч метров, да еще на сверхзвуке, бомбы просто улетали за пределы полигона — настолько несовершенна была система бомбометания самолета. Начался крупный скандал международного масштаба. Министр авиационной промышленности Петр Васильевич Дементьев вызвал меня к себе «на ковер» как заместителя начальника института, отвечающего за это направление, и сказал:

— Пока не добьешься, чтобы летчики выполняли нормативы по точности бомбометания, в Москве не появляйся...

Главным конструктором прицела ОПБ-16, стоявшего на Як-28, был В. А. Хрусталев из ЦКБ «Геофизика». В этом ЦКБ создавалось прицельное оборудование, тепловые головки самонаведения ракет «воздух — воздух», Хрусталев же занимался бомбардировочными прицелами. Одновременно, в разгар космического «бума», он, если не ошибаюсь, делал и первые оптические системы ориентации для космических аппаратов. И, поскольку это направление было очень престижным, быстро достиг больших высот — стал Героем Социалистического Труда, лауреатом Ленинской премии, был награжден орденами и медалями, ходил, что называется, «грудь колесом», а тут вдруг неурядицы с каким-то бомбардировочным прицелом. Хотя он был намного более сложной технической системой, чем первичные системы оптической ориентации космических аппаратов.

87

В общем, прицел оказался главным виновником рассеивания бомб. А поскольку не было проведено полунатурное моделирование, необходимое математическое исследование, не было «наземной» отработки, то мы не сразу смогли определить, в чем же заключаются недоработки прицела. В ЦКБ просто изготовили прибор, как его замыслил конструктор, поставили на самолет и «погнали». Да еще приняли на вооружение, запустили в серию и стали бомбы кидать.



Поэтому я сразу попал в весьма сложную ситуацию и мне приходилось каждый понедельник садиться утром в самолет Ли-2 яковлевского КБ и лететь во Владимировку, а в пятницу возвращаться в Москву. Рейс в одну сторону длился больше пяти часов, а летали мы с экипажем заслуженного, опытного пилота Назарова, чей китель сплошь был увешан знаками о миллионах километров пройденных трасс. Самолет имел всего два кресла для пассажиров, остальное пространство фюзеляжа, как правило, забивалось какими-то ящиками и тюками, которые экипаж должен доставить к месту назначения.

Первый полет меня, откровенно говоря, слегка ошарашил. Как только мы взлетели и легли на курс, летчики вышли из пилотской кабины, быстро накрыли стол, нарезали помидоров, огурцов, достали бутылку водки и предложили выпить. Ну, я подумал, что грех отказываться, когда летишь первый раз в новом коллективе, — а мне, как позже оказалось, пришлось летать с ними почти год, — и подсел к экипажу. Выпив две или три стопки, я решил посмотреть, что делается в кабине пилотов. Смотрю — она пустая, штурвалы ходят сами по себе и мы летим. Я почувствовал себя сразу как-то неуютно, озноб пробежал по спине... И вот в таком режиме, на автопилоте, мы летели почти до Волгограда. Дальше — смена ортодромий, летчик сменил автопилоту курс, ну, а посадку, естественно, экипаж произвел уже сам.

Ли-2 был одним из самых надежных самолетов, прошел Великую Отечественную, работал в Арктике, Антарктиде и позволял проявлять к себе несколько панибратское отношение.

Во Владимировке все испытания Як-28 были поручены Второму управлению ГНИКИ ВВС, которое возглавлял Герой Советского Союза Сергей Григорьевич Дедух, заслуженный летчик-испытатель СССР. В то время в этом институте (или в/ч 15650, как его называли) работали очень квалифицированные специалисты, прошедшие школу двух поколений реактивной авиации. А поскольку объемы испытаний новой авиационной техники были значительными, то они стали поистине асами в своем деле, прекрасно понимающими все тонкости ремесла.

И вот я прилетел к ним сделать работу, в результате которой, по заданию министра, должен получить положительное заключение на

88

режим бомбометания с Як-28. Любой ценой... С. Г. Дедух собрал своих штурманов-бомбардиров. Те выслушали меня и говорят:



— Если хочешь, мы завтра же отбомбимся «по унту» и получим норматив, но заключения не будет.

Это означало, что если нужно, они могут прицелиться через остекление кабины по кончику мехового унта, в которых обычно летали экипажи. Большого преувеличения в таком заявлении не было — они отлично знали свой полигон, бомбоцель, определенные метки и могли в заданном режиме высоты и скорости полета отбомбиться с очень высокой точностью. А тогда существовал такой норматив: 0,8h + 0,08 v, где hвысота [км], v — скорость [км/час]. Умножаешь эти величины, складываешь и получаешь допустимое вероятное отклонение бомбы от цели или от центра рассеивания в метрах. Если ее удалось уложить в радиусе трех таких вероятных отклонений от центра, то считалось, что получен неплохой результат. Вообще-то, норматив устанавливался не для испытания приборов, а для проверки квалификации штурмана-бомбардира, который должен был уметь бомбить именно с такой точностью и не ниже. Кстати, эта формула вырабатывалась для дозвуковых режимов полета, а Як-28 ведь был сверхзвуковой. Поэтому асы из Владимировки впервые столкнулись с бомбометанием со сверхзвука. И, естественно, возникали факторы, которые формула не учитывала, например, такие, как возмущение бомбы при выходе из отсека. При этом возникает ряд очень сложных явлений, иногда бомба даже как бы прилипала к самолету, потому что, когда открывались створки люка, то возникал вихрь, который забрасывал бомбу, сошедшую с бомбодержателя, назад, в отсек — скорость-то какая. Ну, а когда она все же уходила под действием силы тяжести, то была сильно возмущена. На дозвуке бомбы тоже выходят из бомбоотсека с возмущением, но вызванное им рассеивание значительно меньше, чем «прицельное», зависящее от ошибки наложения перекрестия прицела на цель, от силы и направления ветра (который может на разных высотах иметь разную эпюру скоростей, поэтому этот фактор усредняется). Да и сама бомба представляет собой довольно грубое литое изделие, к которому привариваются стабилизатор, крепежные ушки, то есть она аэродинамически несовершенна. На все это накладывается и ошибка выхода в плоскость сброса — так называемая ошибка боковой наводки, когда штурман выводит самолет на боевой курс. И в сумме все эти ошибки не должны уводить бомбу от цели на расстояние, превышающее норматив.

Естественно, когда мы начали работу с Як-28, штурманы заняли сугубо формальную позицию: дескать, у нас в техническом задании

89

записан норматив, мы обязаны его выполнить. Без этого никакого положительного заключения и быть не может.



Бомбили мы со средних высот в 5—8 км и на скоростях до 2М на разных режимах. Как оказалось, даже в круг с радиусом более километра бомбы не хотели ложиться, хотя, если следовать приведенной выше формуле, они должны были попадать в круг с радиусом 300 м. Иногда же улетали и за десять километров... И прежде всего надо было понять физику этих процессов, определить главную причину столь непредсказуемого поведения бомб.

Вопросы с влиянием вихря, возникающего при раскрытии створок бомболюка, мы сняли быстро, поскольку институт начал заниматься ими раньше, проведя ряд летных экспериментов в ЛИИ, где измерялись все составляющие, действующие на бомбу. Были найдены и внедрены определенные технические решения, которые срывали вихрь и не давали развиваться сложным интерференционным явлениям.

А вот ошибка прицеливания, как выяснилось, и была главной причиной ухода бомб далеко за пределы нормы. Порождали ее две причины. Первая заключалась в том, что следящие системы решающего устройства ОПБ-16 имели плохую динамику— как бы замедленную реакцию, в результате чего возникали различные запаздывания. И при решении уравнений бомбометания и инструментовки таблиц, определяющих баллистику полета бомбы, возникали всякие временные и фазовые сдвиги, которые и приводили к ошибкам бомбометания. Избавиться от этих неприятностей можно было только «вылечив» следящие системы, улучшив их динамику и т. д. Это чисто приборная задача, решать которую должен был, конечно, главный конструктор В. А. Хрусталев. Поскольку приемку Як-28 на Иркутском авиазаводе закрыли, годовой план оказался под угрозой срыва, что могло привести к очень серьезным оргвыводам в отношении главного конструктора прицела, его тоже «выгнал» к нам министр — только оборонной промышленности, которому подчинялось ЦКБ «Геофизика», — С. А. Зверев. В. А. Хрусталев приехал весь в наградах — с Золотой Звездой Героя Соцтруда, золотой медалью лауреата Ленинской премии, с прочими орденами и медалями... Но, как оказалось, большого психологического эффекта это ни на кого не произвело: во Владимировке видали многих корифеев, и ему быстро пришлось смирить гордыню и заняться доводкой своего изделия, в основном счетно-вычислительной части прицела. Хотя вначале он наотрез отказался верить в несовершенство своей конструкции.

Надо заметить, что ее плохая динамика сказывалась на таком тонком моменте, как учет скорости ветра. Ведь фактически в решении вопросов бомбометания участвует не воздушная, а путевая ско-

90

рость. В полете измеряется только первая, а чтобы определить вторую, нужно еще учесть вектор ветра. Он определяется методом так называемой синхронизации, автором которого был Абрам Соломонович Деренковский, который работал в нашем институте. Во время Великой Отечественной войны он сделал прицел ОПБ-1Д (Д — означало Деренковский), в котором и реализовал свой метод. Это решение стало классическим и перешло во все векторные прицелы, которые строились по принципу, предложенному Деренковским.



Поэтому, чтобы как-то поставить на место Хрусталева, который вначале отрицал влияние своих вычислителей на сверхнормативное рассеивание бомб и упорно утверждал, что причина в чем-то другом и мы должны ее еще найти (это обычная позиция любого разработчика: сначала искать виновников на стороне, а не признавать свои ошибки), мне пришлось привезти во Владимировку А. С. Деренковского. Он очень не хотел лететь, так как панически боялся летать на самолетах и в конце концов приехал поездом.

Но когда он появился в испытательной бригаде, это произвело неожиданно сильный эффект среди штурманов. Оказалось, что во всех училищах, где их готовят, в учебных аудиториях висят на стенах портреты знаменитых вооруженцев, поскольку штурманы одновременно являются и бомбардирами. И портрет Деренковского тоже висел во всех училищах, поскольку его прицел сыграл очень большую роль в успешных действиях нашей бомбардировочной авиации в годы войны, в том числе на Ту-2. Особенно ярким эпизодом в истории ОПБ-1Д стали налеты на Варшаву, когда перед взятием ее нашими войсками произошло народное восстание. Обстановка сложилась так, что часть домов занимали немцы, а часть — восставшие патриоты. Нашей авиации пришлось бомбить дома, занятые врагом, в густонаселенном городе, причем точность прицеливания была настолько высокой, что бомбы с Ту-2 ложились прямо на конкретный дом. Эта операция принесла славу А. С. Деренковскому, и штурманы, впервые увидев живого классика — создателя ОПБ-1Д, очень почтительно отнеслись к нему. Меня это поразило, потому что для нас, в институте, Абрам Соломонович был обычным научным сотрудником. Он даже не занимал никакой высокой административной должности, а тут, при его появлении, все встали, хотя встречающие были в звании подполковника и выше.

Когда появился Хрусталев и увидел Деренковского, он сразу как-то сник, хотя Абрам Соломонович не произнес еще ни слова — просто сидел и слушал. Мы же, участники летных экспериментов, по очереди докладывали о результатах, полученных в процессе бомбометания с Як-28 на различных режимах. Тут Хрусталев решил взять инициативу в свои руки и обращается к Деренковскому:

91

— Абрам Соломонович, вы же нас сами учили, что ветер надо мерять под собой...



Тот взглянул на него и говорит:

— Да, конечно, под себя надо ходить, не под чужих.

Больше он не сказал ни слова, но этого было достаточно, чтобы уже на следующий день главный конструктор приехал безо всякого «золота» на груди и занялся делом.

Но время было упущено, в срок мы не уложились. Тем не менее вычислительную часть прицела доработали, бомбы стали попадать в круг радиусом в несколько сотен метров, хотя этот показатель до норматива и не дотягивал. Работа по доводке прицела шла так медленно, потому что поиск причин рассеивания велся экспериментальным путем. То есть мы не применяли методы моделирования, наземной отработки прицела, а пользовались технологиями сороковых годов, хотя шли уже шестидесятые. Конечно, столь примитивный подход был не к лицу авиационной промышленности такой державы, как СССР, — дедовскими методами, путем летных экспериментов определять приборные нелепости, которые были допущены разработчиками прицела. Но такое положение дел складывалось в результате политики Хрущева, когда к авиации повернулись спиной и Як-28 оставался фактически каким-то уцелевшим «осколком» от тех разработок, что велись до провозглашения ракетно-космической доктрины. Самолет успел попасть на вооружение стран Варшавского договора и его волей-неволей пришлось доводить.

Вторым фактором, снижавшим точность прицеливания ОПБ-16 (его выявили уже позже) оказалось влияние маятниковой коррекции. Дело в том, что прицел должен «держать» вертикаль. В качестве ее аналога использовался отвес в виде маятника, который был смонтирован в самом прицеле. А самолет постоянно находился в «фугоидном» движении, то есть шел по траектории длинной пологой волны. Он не выдерживал постоянную высоту и скорость, а летел по вытянутой синусоиде, что приводило к возникновению ускорений, которые, естественно, отклоняли этот маятник, сбивали вертикаль и влияли на величину рассеивания. Летчик этого не чувствовал, а фугоида появлялась, потому что тяга двигателей не регулировалась и необходимо было вводить в контур управления автомат тяги. Его еще не было в природе и лишь позже его поставили на самолет. А пока мне пришлось писать инструкцию летчику, который должен был по обычным пилотажным приборам выдерживать заданные параметры полета, чтобы не возникали ускорения фугоиды. Когда он это делал, еще одна из составляющих, которые влияли на рассеивание бомб, минимизировалась, и, в конце концов, после полутора лет работы, мы стали укладываться в норматив. Столь большой срок, как я гово-

92

рил выше, был обусловлен тем, что мы отрабатывали прицел путем проведения летных испытаний. Это очень трудоемкий процесс: то хорошей погоды нет, то у летчиков политучеба, то самолеты на техобслуживание уходят... А в осенне-зимнем периоде дни, которые можно использовать для проведения продуктивных летных испытаний вообще можно пересчитать на пальцах. Поэтому результативность такого метода отработки вооружений очень низка. Тем не менее ОПБ-16 был окончательно принят в эксплуатацию, хотя положительное заключение по нему получить оказалось не так-то просто.



В это время заместителем главнокомандующего ВВС по вооружению был Александр Николаевич Пономарев, очень колоритный человек, генерал, прекрасно образованный, один из выпускников французской Академии Сен-Сира, обладающий не только инженерными знаниями, полученными дома, но и культурой французской школы. Его брат — Борис Николаевич — был секретарем ЦК КПСС, что тоже в какой-то мере позволяло Александру Николаевичу оставаться независимой фигурой, и навязать ему свое мнение было не так-то просто. А ко всему он весьма недолюбливал генерального конструктора Александра Сергеевича Яковлева. Уж, не знаю, какая кошка между ними пробежала...

У Пономарева сложилась определенная тактика по отношению к нашей работе. Когда мы «пришивали последнюю пуговицу» и готовы были к заседанию государственной комиссии, он прилетал накануне, собирал своих полковников, выслушивал их и давал определенные установки-указания. Потом, на другой день, когда прилетает заместитель министра авиационной промышленности Александр Александрович Кобзарев, главные конструкторы и специалисты и начинается заседание, полковники, ведущие испытание прицела, докладывают свои выводы и, в зависимости от установок, каждый раз находят недостатки, после чего Пономарев картинно разводит руками:

— Ну, вот, видите, Александр Александрович! Разве можно принимать такую систему?!

И улетает. Эта картина повторялась многократно, но он заставил нас довести прицел до суперизделия, хотя нервы потрепал всем изрядно, так как завод простаивал, премии «летели» одна за другой мимо карманов многих людей, а виноватыми были естественно мы, те, кто занимался его доводкой. Кончилось дело тем, что уже и Москва оказалась «за нами» — министр Петр Васильевич Дементьев лично прилетел во Владимировку на заседание госкомиссии. Пономарев себе ни в чем не изменил, так же картинно развел руками, дескать, что же делать, а министр, не поднимая головы, тут же ответил:

— Как что делать? Подписывайте заключение...

93

Пономарев удивленно посмотрел на него, подумал чуть-чуть, взял ручку и... подписал акт.



Ряд сотрудников нашего института были представлены к государственным наградам — дело-то мы действительно сделали большое, и самолет Як-28 сыграл свою роль в укреплении сил стран Варшавского договора.

Для меня же эта работа стала процессом познания самолета — я ведь был ракетчиком. Столкнуться пришлось не с самым сложным режимом бомбометания, который можно было считать традиционным и классическим, поскольку изучался он со времен начала авиации. Но я начал работать по этой теме, когда бомбометание стало применяться на сверхзвуковых скоростях третьим поколением реактивных самолетов. Собственно, первенцем его стал МиГ-23, а Як-28И относился скорее к поколению «два с плюсом», но тем не менее благодаря ему я изучил тонкости бомбометания, и это позволило мне разговаривать с сотрудниками института на их языке, более квалифицированно.

Это было время, когда боевые задачи выполнялись обычными бомбами, стрельбой из пушек и пусками неуправляемых ракет по наземным целям. Управляемое оружие для фронтовой авиации, к которой принадлежал и Як-28, еще только должно было родиться. Использовались лишь ракеты класса «воздух — поверхность» при атаке морских судов, как оружие дальней авиации... В основном же совершенствовались пушка и бомбометание со сверхзвука, но качественного скачка, который вызвало появление управляемого оружия, еще не произошло, он поджидал нас впереди.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   ...   24




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет