Элхонон Голдберг Управляющий мозг: Лобные доли, лидерство и цивилизация



бет9/40
Дата29.05.2016
өлшемі2.24 Mb.
#101839
түріРеферат
1   ...   5   6   7   8   9   10   11   12   ...   40

Проблема Ноя и ландшафты мозга


На протяжении нескольких последних десятилетий полушарная специализация превратилась в модную тему популярной литературы. Широкое распространение получили такие понятия как «правомозговая» и «левомозговая» терапия, «правомозговые» и «левомозговые» черты, «правомозговые» и «левомозговые» личности. Но важно понять, что два полушария имеют намного больше общего, чем различного. Исполнители, сидящие в сходных позициях по обеим сторонам прохода, играют на сходных инструментах. Полушарная специализация является не чем иным, как двумя параллельными вариациями на одну и ту же фундаментальную тему.

В соответствии с этой темой, затылочные доли вовлечены в зрение, височные — в звуковое восприятие, теменные — в тактильное и соматосенсорное восприятие. Но человеческий мозг — это больше, чем собрание узко специализированных сенсорных устройств. Мы способны распознавать сложные формы, понимать язык и анализировать математические соотношения. Что является нейронным базисом этих и других сложных психических функций? Как мы увидим, оркестр состоит из многих исполнителей, чей вклад в общий ансамбль не поддается простым определениям и чье месторасположение в оркестре является одновременно и сложным, и переменчивым.

Традиционно специалисты по нейронауке использовали эффекты повреждения мозга для того, чтобы понять, как работает нормальный мозг. В самой упрощенной форме логика такого исследования продвигается следующим образом. Предположим, что повреждение области мозга A причиняет ущерб когнитивной функции A', но не когнитивным функциям B', C' или D',. В отличие от этого, повреждение области BВ причиняет ущерб когнитивной функции B', но не когнитивным функциям A', C' или D'; и так далее. Тогда мы можем заключить, что область мозга A ответственна за когнитивную функцию А', область мозга B — за когнитивную функцию В', и так далее.

Этот метод называется принципом двойной диссоциации. Этот проверенный временем метод лежит в основе классической нейропсихологии. К настоящему времени он внес больший вклад в наше понимание сложных отношений между мозгом и когнитивной деятельностью, чем любой другой метод. Однако он уязвим во многих аспектах. В сильно взаимосвязанном мозге повреждение одной области может затронуть работу других областей. Раненый мозг претерпевает различные формы естественной реорганизации («пластичность»), которая делает его весьма иллюзорной моделью нормальной функции. Несмотря на эти недостатки, метод повреждений позволил получить очень много полезной информации относительно мозга, и все наши сегодняшние теории о функции мозга до некоторой степени базируются на этой информации.

Эффекты влияния повреждений мозга на познавательную деятельность помогают ответить не только на вопросы «где», но и на вопросы «что». Наблюдая различные формы дезинтеграции познавательной деятельности, мы начинаем понимать, как природа «расщепляет» психические функции на специфические когнитивные операции, и как эти операции распределяются в мозге.

В течение нескольких последних лет появление мощных методов функциональной нейровизуализации изменило направление нейронауки. Как указывалось ранее, эти методы включают позитронно-эмиссионную томографию, компьютерную единичнофотонную эмиссионную томографию и особенно функциональное магнитно-резонансное сканирование. Основываясь на различных физических принципах, от радиоактивного излучения вещества до изменений локальных магнитных полей, эти методы объединяет одна общая черта. Они позволяют нам прямо наблюдать различные формы физиологической активности в различных частях мозга во время решения человеком различных когнитивных задач. Выдающийся американский психолог Майкл Познер сравнил влияние функциональной нейровизуализации на когнитивную нейронауку с влиянием телескопа на астрономию. Так же, как изобретение телескопа в начале семнадцатого века сделало возможным прямое наблюдение макрокосма, внедрение функциональной нейровизуализации в конце двадцатого века впервые в истории позволило нам прямо наблюдать мыслительные процессы.

Функциональная нейровизуализация имеет свои ограничения. Большинство ее методов не измеряет нейронную активность прямо. Вместо этого они используют непрямые (косвенные) измерения, или «маркеры»: кровообращение, глюкозный метаболизм и так далее. Однако имеются веские свидетельства в пользу того, что эти маркеры точно отражают уровни нейронной активности. Другое ограничение относится к нашей способности отождествлять источники активации, соотнося различные аспекты этой активации со специфическими психическими операциями. Специалисты по нейронауке разрабатывают все более мощные статистические методы для решения этой проблемы.

Еще одна проблема касается отношения между сложностью задачи и усилиями, требующимися для ее разрешения, и силой сигнала, регистрируемой томографом (fMRI, PET, SPECT). По мере ознакомления с задачей и ее освоением, сила сигнала обычно снижается34. В принципе, это может означать, что высокоавтоматизируемая, не требующая усилий, «легкая» задача не сможет генерировать заметный сигнал. Но легкие и не требующие усилий познавательные задачи не являются, так сказать, внечерепными. Они также происходят в нашей голове и повреждения мозга продолжают влиять на них. Фактически, большая часть наших психических процессов не требует усилий и протекает автоматически, как если бы они управлялись автопилотом. В противоположность этому, требующие усилий и контролируемые сознанием познавательные задачи представляют только малую часть нашей психической жизни.

Весьма возможно, что достигнутая на сегодня разрешающая способность устройств функциональной нейровизуализации ограничена теми познавательными задачами, которые «требуют усилия», в то время как «не требующие усилий» автоматические задачи не производят различимого сигнала. Большая часть относительно сложных когнитивных активационных задач, используемых в экспериментах, вероятно состоит из как требующих, так и не требующих усилий когнитивных компонентов. Поэтому их активационные «ландшафты» могут быть обманчивыми, так как они отражают изолированные вершины с невидимыми долинами между ними. То, что вы видите, может быть намного меньше того, что происходит на самом деле. Попытки определять паттерны мозговой активации в условиях познавательной задачи, базируясь на данных функциональной нейровизуализации, можно уподобить попыткам Ноя представить себе ландшафт Месопотамии, глядя на вершину горы Арарат, выступавшую из воды после Всемирного потопа. Понимание отношений между силой сигнала и уровнем сложности в строго количественных задачах поможет интерпретировать данные об активации когнитивных функций, получаемые с помощью fMRI и PET. Доступные нам технологии нейровизуализации являются неоценимым инструментом когнитивной нейронауки в той мере, в какой мы осознаем эти ограничения и не принимаем данные слишком некритично и буквально.

Внедрение новых научных методов всегда увлекательно. Но в то же самое время оно угрожает стабильности установленных знаний. Большая часть научных открытий скорее расширяет и разрабатывает ранее накопленные знания, нежели опровергает их. Точки разрыва в потоке научного прогресса относительно редки. Когда они случаются и старые утверждения отвергаются в пользу радикально отличающихся от них, мы говорим, что наступил «сдвиг парадигмы». Историки науки горячо обсуждали отношения между прогрессом в научных методах и концептуальными прорывами. Что движет чем? Не каждый новый научный метод, будь он даже революционным, ведет к немедленному концептуальному сдвигу парадигмы. Хорошая новость состоит в том, что современные открытия функциональной нейровизуализации в целом подтвердили более ранние представления, основанные на изучении повреждений мозга. Плохая новость заключается в том, что до настоящих концептуальных прорывов нам еще далеко.




Достарыңызбен бөлісу:
1   ...   5   6   7   8   9   10   11   12   ...   40




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет