Структура диссертации: Диссертация состоит из введения, двух глав и заключения, списка использованной литературы и приложения.
Во введении сформулирован научный аппарат исследования.
В первом разделе «Межпредметная связь и его роль в развитии творческих способностей учащихся» раскрыто содержание понятий «творчество», «творческая деятельность», «межпредметная связь»; всесторонне проанализированы их значение и их философские, психологические, педагогические аспекты; определено дидактическое значение исследуемых понятий. Такой подход позволил раскрыть основные условия творческого развития учащихся в процессе изучения математики; доказаны необходимость и актуальность межпредметных связей, в том числе – связей между математикой и физикой. В диссертации показано, что творческие возможности учащихся, их мыслительная активность, глубокое усвоение математического материала обусловлены системным применением заданий физического содержания.
Во втором разделе «Методика применения творческих заданий физического содержания на уроках математики» раскрываются методические пути использования различных форм физических заданий на уроках алгебры и геометрии. Для каждого класса при изучении основных разделов алгебры и геометрии определены пути развития творческого мышления учащихся на материале таких разделов физики, как: механика, молекулярная физика, электродинамика, оптика. Представлены также математико-статистические разработки, резюмированы итоги педагогической экспериментальной работы, проведенной в общеобразовательных школах.
В заключении сформулированы научно-педагогические рекомендации для учителей-предметников по итогам экспериментального обучения, подтвердившего возможность развития творчества учащихся путем использования заданий с физическим содержанием.
В приложении собран комплекс творческих заданий с физическим содержанием для использования на уроках математики.
RESUME
Utebayeva Sholpan
The development of pupils’ creative abilities in mathematics
training process using tasks with the physical content.
13.00.02- theory and a technique of training and education (mathematics in initial system, average and higher education)
Actuality of the research: One of the main aims of modern society is formation of competent person, corresponding to state standards by knowledge, also working creatively and unordinary thinking.
The basic purpose of learning mathematics at schools is to develop the connection between the subjects through the training games in mathematics modeling process. Nowadays the level and extent of Exact- mathematical subject contents became more difficult, and the time for working reduced, that’s why there is a problem with creative approach to the learning. The most important purpose of scientific- methodical work is to develop the creative activity on the basis of connection between mathematics and physics.
The purpose of research: Creative basis and the methodical ways of discovering the, using the tasks with physical contents as the recourse to develop pupils’ creation during learning mathematics.
The object of research: To develop pupils’ creation in mathematics learning.
The subject of research: To develop the creation of pupil through the systematical tasks with physical contents.
The scientific innovation of research:
- The ways of creation development and its scientific- theoretical basis were opened.
- The opportunity of creative abilities development of pupils through the systemized connection between the physics and mathematics was proclaimed.
- The theoretical tasks with physical content, which were used at mathematics lessons were formed.
- The methodical basis on using the creative tasks were exploited.
The theoretical and practical importance of research:
- Using the different methods of systematical tasks with physical content to develop pupils’ creativity on basis of connections between the subjects;
- Given method develops the pupils’ creativity and gives the opportunity for high-quality knowledge, abilities and habits in mathematics and physics;
- The results of research, formed the methodical indications, which were used in practice by teachers were concluded.
For protection take out:
- The scientific-theoretical basis in developing pupils’ creativity using mathematical tasks with physical contents;
- The methods of adaptation in mathematics lessons, tasks with physical contents;
- The exhibitions of effectiveness of this method results in deceiving pedagogical experiments.
The structure of the dissertation:
The dissertation consists of several parts: introduction, two chapters, conclusion, references and appendix.
The Introduction includes the information about scientific device research. On the first chapter under the name “Scientifically–theoretical bases in learning connections between subjects at comprehensive schools” concepts as “creativity”, “creative activity”, “ between subjects connections”, comprehensively analyzes their value, structure through philosophical, psychological, pedagogical, didactic aspects and value of a researched problem is found out.
Hence the basic conditions put in pupils’ creative development of connection between subjects, including systematical connection between mathematics and physics was and proved. That was proved that creative opportunities of pupils: cogitative activity, deep mastering of a material were connected to performance system of tasks with physical contents.
The second chapter “The application technique of creative tasks with the physical contents at mathematics lessons” includes the information about the methodical ways of using conditions, selections of contents. Were opened the kinds of physical tasks at the algebra and geometry lessons discovered. Also pupils’ creation development ways, which connect the physical, mechanical sections, algebra and geometry, molecular physics, electrodynamics, optics. Was given the statistical development in mathematics and at results of the pedagogical experiences at schools.
In the Conclusion there are the results of scientific – pedagogical experiments at schools, which were offered to teachers to develop the opportunities in using tasks with physical contents.
The Appendix devoted to tasks with physical contents, which can be used at mathematics lessons.
Достарыңызбен бөлісу: |