Одно и то же явление может протекать по-разному, если наблюдать его из различных физических систем отсчета, — так утверждает теория относительности. Время, как вы знаете, сокращается, если двигаться со скоростью, близкой к скорости света. Но если и вы, и космонавт в ракете движетесь равномерно и прямолинейно, то как узнать, кто из вас имеет субсветовую скорость, а кто черепашью? С вашей точки зрения, быстрее летит он, а с его точки зрения — вы. С вашей точки зрения, быстрее состариться должны вы, а с его точки зрения — он. Как это проверить?
Вам нужно опять встретиться и сравнить показания часов. Но встретиться-то вы не можете — ведь и вы, и он летите равномерно и прямолинейно в разных направлениях. Чтобы иметь возможность встретиться, кто-то из вас должен развернуться и полететь в обратном направлении. Но тот, кто начнет разворачивать свой корабль, сразу испытает действие ускорения. Тот же, кто летит по-прежнему, никаких ускорений не испытает. А ускорение, согласно принципу эквивалентности, — то же самое, что и поле тяжести. Значит, можно считать, что тот, второй, космонавт вовсе не разворачивал звездолет, включая двигатели, а просто оказался на время и поле тяжести какого-то тела. В поле тяжести — мы уже говорили об этом — часы идут медленнее, даже световые колебания совершаются с меньшей частотой. И чем больше ускорение при развороте (т. е. чем больше поле тяжести), тем больше замедление времени. Когда вы снова встретитесь с космонавтом, который улетел и вернулся, окажется, что именно он остался молодым — ведь именно его, а не ваши часы шли медленнее…
Вернемся к черной дыре. Представьте, что звезда начала неудержимо сжиматься. Произошел, как говорят астрофизики, катастрофический коллапс, и вы начали падать к центру звезды вместе с ее веществом. Все кругом падает вместе с вами. Вам просто не за что зацепиться взглядом, падает ведь все вещество звезды! И получается, что вы совершенно неподвижны относительно тех частиц вещества, которые летят поблизости от вас и с которыми вы можете сравнивать показания своих часов и длину своих линеек. Вы неподвижны друг относительно друга даже в момент пересечения сферы Шварцшильда. Для вас при пересечении этой страшной поверхности ничего страшного не произойдет! Вы будете все ускорять свое падение и за доли секунды — по вашим часам — окажетесь в центре звезды вместе со всем ее веществом, которое свалится вам на голову (хотя о какой голове можно говорить, если плотность вещества в центре звезды окажется бесконечно большой).
А теперь взглянем на ваше падение с точки зрения астронома, следящего за коллапсом звезды в телескоп. Вот он видит, как в момент, когда газовое давление перестает уравновешивать тяжесть, звезда вдруг начинает быстро уменьшаться в размерах. За полчаса она сжимается (падает) от размеров Солнца до радиуса нейтронной звезды. Сжатие продолжается, и вы начинаете замечать странности. Вместо того чтобы ускоряться, ведь сила тяжести растет, падение замедлилось! Да, с приближением к сфере Шварцшильда сила тяжести устремляется к бесконечности.
Но ведь и время начинает течь бесконечно медленно! Если падающая частица сигнализирует о своем движении, ежесекундно испуская по фотону (по часам, установленным на частице), то вы улавливаете эти фотоны один раз в секунду, один раз в две секунды, один раз в три секунды, в четыре… И при этом энергия фотонов, преодолевших возрастающее поле тяжести, становится все меньше и меньше, пойманные вами фотоны оказываются все «краснее». Те фотоны, которые частица излучит вблизи самой сферы Шварцшильда, будут отделены для вас друг от друга интервалами в тысячи, десятки тысяч, миллионы лет. А последний фотон, который частица испустит, пересекая сферу Шварцшильда, дойдет до вас за бесконечно долгое время и будет иметь бесконечно малую энергию. Иными словами, вы этот фотон никогда не увидите.
Что же получилось? Звезда для вас как бы застыла. Процессы, которые вы наблюдаете, протекают все медленнее, пока не застывают окончательно. Впрочем, вряд ли вы вообще сможете что-нибудь наблюдать. Ведь красное смещение света будет так велико, что обычные видимые световые волны станут длинными радиоволнами и будут смещаться все дальше и дальше. Вы увидите, как звезда, начав сжиматься, попросту погасла… Вот какие странные метаморфозы произойдут со звездой, если в ней нечем будет поддерживать равновесие и если начнется катастрофический коллапс.
Так утверждает общая теория относительности. А сами эти звезды получили название коллапсирующих. Впоследствии появилось еще одно название — застывшие звезды. Но укоренилось и стало общепринятым более звучное и экстравагантное название — черные дыры. Черные дыры, откуда ни один луч света не может выйти к наблюдателю. Черные дыры, которые все заглатывают своим тяготением. Черные дыры, которые, в сущности, — не звезды, а растянутый до бесконечности процесс сжатия звезды. Черные дыры, которые и сейчас представляют для теоретиков, для всех знатоков теории относительности увлекательную и не разрешенную пока загадку.
И эти странные особенности коллапсирующего тела были впервые описаны в 1939 г. Оппенгеймером и Снайдером…
В Белорусском государственном Научно-исследовательском институте ядерных проблем уже не первый год работают над раскрытием тайны черных дыр во Вселенной. Если ранее черные дыры считались самыми экзотическими объектами космоса, то в последних космологических моделях утверждается, что черные дыры являются во Вселенной не чем-то уникальным, а естественным для нее. В основном они располагаются в центре галактик и по возрасту могут отличаться друг от друга: среди них есть древние, по земным понятиям, и молодые.
Большинство ученых сходится во мнении, что черные дыры — это ядра массивных звезд, которые, взорвавшись, приобретают такую плотность, а вместе с ней и силу притяжения, что с их поверхности даже свет не в состоянии вырваться. А отсюда и невозможность их визуального исследования — они просто невидимы.
По словам руководителя коллектива белорусских исследователей, доктора физико-математических наук Виктора Тихомирова, их работа сосредоточена на изучении малых черных дыр, размеры которых не превышают величину ядра водорода, но масса превышает массу целого Нью-Йорка. Такие дыры свободно путешествуют по космосу и, проходя через потухшую звезду, могут заставить ее взорваться, а вещество от взрыва всосать в себя и увеличиться в размерах.
И вот в лаборатории ядерного НИИ занялись исследованием того, как находить малые черные дыры. Свою работу ученые строят, исходя из способности черных дыр испускать излучение. Но излучение это не совсем обычное.
Казалось бы, как можно расщепить вакуум? Ведь это пустота, и сколько ее ни расщепляй, ничто останется тем же ничем. А вот черные дыры способны на такое расщепление, в результате чего в вакууме возникают обладающие энергией частицы. И если, скажем, малая черная дыра пройдет рядом с Землей, она может создать излучение гораздо большее, чем атомная электростанция. В результате все вокруг сильно нагреется.
Это предположение лежит в основе исследований белорусских ученых. В принципе черные дыры — это область теоретической астрономии. При чем же здесь ядерная физика? А при том, говори! профессор Тихомиров, что атомное ядро в естественных условиях — самое плотное из известных состояний вещества. Черные дыры — еще более плотное вещество. Разгадав загадку черных дыр, нетрудно будет понять основы строения Вселенной.
Черные дыры отвечают за рост галактик
В ходе компьютерного эксперимента астрофизикам удалось обнаружить взаимосвязь между ростом галактик и эволюцией черных дыр. Этот эксперимент проводился сотрудниками Университета Карнеги Меллона, Астрофизического центра имени Макса Планка и Гарвардского университета. Ученые пытались смоделировать столкновение двух зарождающихся галактик, в центре каждой из которых находится черная дыра. Под действием взаимного притяжения из двух черных дыр возникает новая, масса которой начинает стремительно расти за счет поглощения прилегающего вещества и становится в миллиарды раз больше массы Солнца.
«Излишки» газа образуют вблизи черной дыры квазар — тяжелый и протяженный излучающий объект, «подпитываемый» ее энергией. Излучения квазара оказывается достаточно, чтобы «разогнать» вещество галактики на значительные расстояния от центра и инициировать процесс образования звезд.
Развитие метода, считает профессор Хернквист (Негnquist), возглавляющий кафедру астрономии в Гарвардском университете, позволит применить его к взаимодействующим скоплениям галактик.
ЧЕРНЫЕ ДЫРЫ И МАГНЕТИЗМ
Черные дыры поглощают вещество за счет магнитных полей, утверждают астрофизики из Мичиганского университета. На основании данных, собранных орбитальным рентгеновским телескопом «Chandra», они построили математическую модель аккреции (то есть падения вещества на сверхтяжелый объект), доказывающую, что одной гравитации заведомо недостаточно.
Как объясняют астрономы, если бы черные дыры просто притягивали вещество из-за чрезмерной массы, оно бы в процессе падения накапливало угловую скорость и оставалось «размазанным» по орбите снаружи от горизонта событий — границы, которая отделяет черную дыру от остального мира. Такой вывод следует из закона сохранения углового момента, например, именно поэтому спутники не падают на планеты. Почти каждая черная дыра окружена аккреционным диском — облаком газа, который перед поглощением превращается в плазму и начинает излучать в рентгеновском или гамма-диапазоне. Запреты, действительные для планет и их спутников, газ способен обойти, но только в том случае, если угловой момент, теряемый падающим веществом, будет передаваться другой части облака.
Такой обмен физики называют турбуленцией , и, как выяснили в Мичиганском университете, турбуленция в аккреционном диске вызвана магнитными явлениями. Компьютерную модель магнитной аккреции астрофизики сравнили с поведением GRO J655-40 — черной дыры внутри Млечного Пути, которая поглощает вещество соседней звезды. Модель предсказывала магнитный ветер — поток частиц, удаляющихся от горизонта событий и уносящих угловой момент. «Ветру» должны были соответствовать особые пики в рентгеновском спектре (отличные от тех, которые оставляет падающее вещество) — и на снимках, сделанных орбитальным телескопом, такие пики удалось найти.
Ученые отмечают, что физики-теоретики предсказывали магнитную турбулентность еще в 1973 г. (то есть спустя всего несколько лет после открытия черных дыр), но до сих пор проверить гипотезу никому не удавалось. Ученые считают, что так называемая черная дыра представляет собой некое тело, похожее на пузырь, состоящее из сверхплотного вещества. Первоначальное название этого тела, которое пока нельзя считать термином, но которое, по всей видимости, войдет в словари астрономии, — гравастар (gravastar), что можно перевести как сокращение от гравитационная звезда. Гравастар представляет собой холодную, плотную оболочку, которая находится под напряжением из-за распирающего ее изнутри жидкого вещества или тела неизвестной консистенции. Такое описание соответствует тем фотографиям черных дыр, которые существуют на сегодняшний день.
По мнению астрофизиков-революционеров, традиционная физика стыдливо умалчивает о проблемах, связанных с черными дырами, и тема уже давно стала кулуарной. Желая противостоять такому положению дел в науке, они заявляют, что взрыв звезды влечет за собой совершенно иные последствия, чем было принято считать раньше. Новые исследования стали частью долгих дебатов, которые ведутся с начала XX в., о том, являются черные дыры реальностью или вымыслом.
Массивная звезда заканчивает свою жизнь взрывом сверхновой, и если вес ее ядра в два раза превышает вес Солнца, то нет такой силы (по крайней мере, известной), которая помешала бы гравитационным силам сжать ее. В результате образуется так называемая сингулярность , при которой плотность вещества становится бесконечной, известные законы физики перестают действовать. Гравитационная сила сингулярности настолько велика, что ее границы — так называемый горизонт событий — не может преодолеть даже фотон, иначе говоря, свет.
Сама возможность существования черных дыр была (да и остается) настолько впечатляющей, что взволновала умы не только физиков, но и литераторов, философов и художников. Однако долгое время этот великолепный образ-миф не рассматривали как природное явление и не связывали его с реальным положением дел во Вселенной.
Теория черных дыр пестрит белыми пятнами. По мнению исследователей, взявшихся встряхнуть и перевернуть один из интереснейших разделов астрофизики, это связано с тем, что Вселенная значительно отличается от той гипотетической модели, которую рассматривал Шварцшильд. Фактически это означает, что теорию Эйнштейна нужно пересмотреть с точки зрения полученных знаний в области квантовой физики.
Мазур и Мотолла, взявшись за теорию дыр, привлекли к анализу теорию квантовой гравитации. Они начали с вопроса: какова природа квантовых флуктуаций (колебаний) в космических, временных и энергетических полях? Ведь, по сути «пустое место», каковым обыватели считают космос, на самом деле таковым никогда не являлся. Как говорит Моттола, люди подобно рыбе в тихой воде, не задумывающейся о существовании и движении молекул воды, никогда не ощущают своего постоянного пребывания в квантовой среде. По мнению Моттолы, квантовые флуктуации в электромагнитных полях могут оказывать воздействие на такие колоссальные объекты, как черные дыры. Революционность теории в том, что все предшествующие модели черных дыр рассматривались без такого кардинального фактора, как квантовые поля, и расчеты велись для идеальной, не существующей черной дыры в несуществующем бес-квантовом пространстве-времени.
Среди белых пятен черных дыр, возникших по причине неправильного понимания модели, называют теорию энтропии звезды. Когда звезда превращается в черную дыру, вся уникальная информация о ней, например ее химическом составе, сбрасывается со счетов. Современная теория черных дыр допускает, что они обладают колоссальным количеством энтропии — в миллиарды раз превышающей энтропию самой звезды. Никто гак до сих пор и не объяснил природу, источник и местонахождение этой экстраэнтропии.
Еще одна загадка — это приписываемое черным дырам свойство наделять фотоны колоссальным объемом энергии к моменту, когда фотон достигает горизонта событий. Но в классической теории гравитационный эффект этого колоссального количества энергии игнорируется.
Итак, теория гравастар Моттолы — Мазура предлагает разрешить разногласия между приверженцами теории черных дыр и фундаментальной физикой, устранив очевидные противоречия. Физики-новаторы рассмотрели вероятность того, что после взрыва звезды под воздействием квантового эффекта появляется тело, имеющее принципиально иную природу, нежели дыра.
Мазур и Мотолла предположили, что когда вокруг коллапсирующей звезды формируется горизонт событий, сильнейшее гравитационное поле деформирует квантовые колебания в пространстве-времени. Эти колебания могут стать настолько мощными, что как раз они и способны производить эффект, подобный эффекту конденсата Бозе — Эйнштейна. Этот эффект становится причиной образования чего-то наподобие «пузыря», окруженного тонкой сферой — оболочкой гравитационного поля, которая относительно статична.
Существование гравастар не противоречит известным математическим аксиомам. В отличие от черных дыр (по крайней мере, это касается ее оболочки), природа вещества, находящегося под ней, пока неизвестна даже гипотетически. По новой теории, не существует и горизонта событий (вместо него — оболочка), а энтропия гравастар гораздо меньше, чем предполагаемая энтропия черных дыр.
Ученые предлагают рассмотреть гипотетически гравастар в 50 масс Солнца. Подобно горизонту событий сопоставимой по размеру черной дыры диаметр оболочки гравастар будет 300 километров, однако ее «толщина» составит приблизительно 10–35 метров. Чайная ложка вещества, составляющего его, будет весить 100 млн тонн.
Также отмечается, что теория гравастар поможет по-новому рассмотреть проблему расширяющейся Вселенной. Большинство астрофизиков считает, что Вселенная расширяется благодаря некой мистической «темной энергии», которая создает идущее вовне давление.
По мнению Мотоллы, давление, идущее изнутри гравастар, сопоставимо с силой, с которой расширяется Вселенная. Можно предположить, что Вселенная представляет собой одну большую гравастар, «поймавшую в ловушку» Млечный Путь и другие видимые галактики. То есть все небесные тела помещены в некое тело, имеющее оболочку. О том, не значит ли это, что наша Вселенная как раз и находится в зоне искривления пространства-времени, исследователи говорить пока не спешат.
На рентгеновских снимках орбитальной обсерватории «Chandra» впервые было обнаружено устойчивое излучение из супермассивной черной дыры, находящейся в группе галактик Персея, расположенной в 250 млн световых лет от Земли. В 2002 г. астрономы получили данные, которые показывают пульсации в газе, окружающем эту группу галактик. Andrew Fabian — лидер группы данных исследований.
Довольно долго астрономы пытались понять, почему так много горячего газа в группах галактик. Сейчас считается, что нагрев, вызванный излучением центральной черной дыры, предохраняет окружающий газ от охлаждения. Хотя само явление было ранее обнаружено в радиоволновом диапазоне, этот эффект в окружающем газе был непонятным. Предшествующие наблюдения «Chandra» в Персее показывали две обширные полости в окружающем газе, расширяющиеся от центральной черной дыры. Струя выброса в обе стороны от центральной черной дыры сформировала рентгеновские полости, которые являются яркими источниками радиоволн. Значительная часть энергии принесена волнами от черной дыры и должна рассеиваться в окружающем газе. Можно сказать, что в 2002 г. рентгеновская орбитальная обсерватория «Chandra» впервые «услышала» черную дыру!
Историю черных дыр надо рассказывать с 1795 г., когда Пьер Симон Лаплас предсказал: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром в 250 раз больше диаметра Солнца не дает ни одному лучу достичь нас из-за своего тяготения, поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми».
Само название черная дыра появилось в 1968 г. Его в популярной статье ввел Уиллер, и оно мгновенно прижилось, заменив собой использовавшиеся до того термины коллапсар и застывшая звезда.
Черной дырой называется область пространства-времени, в которой гравитационное поле столь сильно, что ни один объект (даже свет) не может вырваться из нее. Из области пространства-времени черной дыры невозможно никакое сообщение с внешней по отношению к ней Вселенной. У черной дыры нет поверхности как таковой, но есть граница, которая называется горизонтом событий. Размеры горизонта событий для невращающейся незаряженной черной дыры определяются формулой для гравитационного радиуса.
Мы не имеем никаких наблюдательных данных о внутренней структуре черных дыр, так как никакое сообщение изнутри поступить к нам не может. Мы не знаем, что произойдет с телом после того, как оно пересечет горизонт событий, кроме того, что тело будет продолжать падать и падать. Как и всякое массивное тело, черная дыра отклоняет световые лучи, проходящие вблизи нее. Но обладая очень сильным гравитационным полем, черная дыра и лучи отклоняет чрезвычайно сильно. Поэтому если близко от нас на луче зрения оказалась бы черная дыра, то вся открывающаяся перед нами картина исказилась бы. Все «стандартные» уравнения современной физики перестают действовать вблизи центра черной дыры, под горизонтом событий.
С другой стороны, черные дыры являются чрезвычайно простыми. Черная дыра описывается всего тремя параметрами:
— массой М (шварцшильдовская черная дыра);
— моментом импульса J (керровская черная дыра);
— электрическим зарядом Q (черная дыра Керра — Ньюмана).
Знание этих характеристик дает нам полную информацию о черной дыре.
Эволюция звезды на поздних стадиях зависит от ее массы. Если она не превышает 1,2–1,4 М (чандрасекхаровский предел), то звезда становится белым карликом. Сильное тяготение белого карлика уравновешивается давлением вырожденного электронного газа. Предполагают, что в нашей Галактике около миллиарда белых карликов.
Если масса звезды не превосходит 2–3 М (предел Оппенгеймера — Волкова), то звезда становится нейтронной. Мощное тяготение нейтронной звезды сдерживается давлением вырожденного нейтронного газа. Предположительное количество нейтронных звезд в нашей Галактике — около ста миллионов.
Если масса звезды больше 3 М, то звезда становится черной дырой. Гравитационное поле столь массивной звезды так сильно сдавливает ее вещество, что звезда не может остановиться на стадии нейтронной звезды и продолжает сжиматься вплоть до гравитационного радиуса. Предположительное количество черных дыр в нашей Галактике — около десяти миллионов.
Несмотря на огромное количество черных дыр, обнаружить одиночную черную дыру практически невозможно. Поэтому одним из лучших мест для поиска черных дыр являются двойные звезды. В 1964 г. Яков Зельдович и Э. Солпитер предсказали мощное рентгеновское энерговыделение от аккрецирующих черных дыр в тесной двойной системе. Такие наблюдательные данные в настоящее время получены. Другим местом, в котором астрофизики вплотную приблизились к открытию черных дыр, являются центры галактик. Массы центральных объектов, вычисленные по движению звезд вокруг них, превышают 106—109 М. Вот наиболее вероятные примеры галактик с черными дырами в ядре: М 87, NGC 3115, NGC 4486, NGC 4594 («Сомбреро»), NGC 3377, NGC 3379, NGC 4258, M 31 (Туманность Андромеды), M 32.
Большинство астрофизиков сейчас считают, что черные дыры уже реально открыты. Однако Нобелевская премия за открытие черных дыр все еще не вручена.
Космический рентгеновский телескоп «Chandra» обнаружил черную дыру нового типа. Несколько групп ученых сообщили 13 сентября 2000 г. о том, что они получили доказательства существования черной дыры нового типа, не наблюдавшегося ранее. Такая черная дыра была обнаружена в галактике М 82. Это средняя по массе черная дыра, которая располагается на расстоянии 600 световых лет от центра галактики М 82. Ученые считают, что эта черная дыра может представлять собой отсутствовавшее до сих пор звено между небольшими и сверхмассивными черными дырами, которые располагаются в центрах галактик.
«Полученные результаты открывают целую новую область исследований, — сказал Мартин Вард (Martin Ward) из Университета Leicester, Великобритания, участник наблюдений. — Никто не был уверен, что такие черные дыры существуют, особенно вне центров галактик». Черная дыра в галактике М 82 с массой, в 500 раз превышающей массу Солнца, по размерам сравнима с Луной. Такая черная дыра требует критических условий для создания, например, коллапса гиперзвезды или слияния нескольких черных дыр. «Эта черная дыра может со временем переместиться к центру галактики, где она может превратиться в супермассивную черную дыру», — говорит доктор Хиронори Мацумото (Dr. Hironori Маtsumoto) из Массачусетского технологического института (MIT) в Кембридже.
В прошлом в нашей Галактике во время периодов интенсивного звездообразования могли образоваться среднемассивные черные дыры, так что в дополнение к примерно двум десяткам известных черных дыр и сверхмассивной черной дыре, расположенной в центре Галактики, могут существовать сотни таких средних черных дыр.
Две независимые группы американских ученых объявили об открытии новой черной дыры, находящейся непосредственно над Млечным Путем. Найденный объект находится в так называемом гало Галактики — протяженной разреженной газовой оболочке нашей Галактики, имеющей сферическую форму и простирающейся на расстояние 5—10 тыс. световых лет. По своим размерам черная дыра, находящаяся на расстоянии 6 тыс. световых лет от Земли, в 7–8 раз превосходит Солнце.
Ученые обнаружили ее с помощью нового 6,5-метрового телескопа в Аризонском университете. Астрономы вели наблюдение за одной из маленьких звезд, которая в настоящее время медленно затягивается в обнаруженный объект. Примерно через 2–3 миллиарда лет звезда будет полностью поглощена черной дырой.
Почти одновременно пришли сообщения об открытии массивных черных дыр в центрах шаровых скоплений М 15 в нашей Галактике и G 1 в Туманности Андромеды. Шаровое скопление G 1 (Mayall II) — самое крупное в галактике М 31, а скопление М 15 — одно из наиболее крупных в Млечном Пути.
Открытия были сделаны с помощью Хаббловского космического телескопа. Получившиеся снимки объектов показали достаточно резкое увеличение числа звезд и дисперсии их скоростей к центру, что является типичным указанием на существование массивного и компактного тяготеющего тела. Скорее всего, там находится черная дыра, так как других компактных объектов столь высоких масс в центре скопления или в ядре галактики астрономы не знают. Вердикт наблюдателей был таков: поведение звезд в центрах скоплений М 15 и G 1 хорошо согласуется с наличием в них черных дыр с массами (3.92.2) х 103 М для М 15 и с массой 20(+14, -8) х 103 М для G 1.
Достаточно долгое время предполагалось, что существуют черные дыры двух типов:
1. Черные дыры звездной массы (известно 17 кандидатов в массивных двойных системах). Их массы от 7 до 20–30 масс Солнца. Массы их не могут превышать массы звезд, из которых они образуются (т. е. они меньше 100 М).
2. Сверхмассивные черные дыры в центрах галактик с массами от 105 до 109 М.
В принципе еще должны существовать первичные черные дыры, образовавшиеся на ранних стадиях эволюции Вселенной. Они могут иметь почти любую массу — как много меньше, так и много больше Солнечной. И вот теперь открыт новый тип черных дыр средних масс.
Черные дыры — это области пространства, настолько плотные, что даже свет не может преодолеть их гравитационного притяжения. Так как черная дыра поглощает газ, пыль и даже звезды, поглощаемое вещество становится настолько горячим, что начинает излучать с очень высокой энергией по мере того, как погружается в черную дыру. Эта энергия включает и рентгеновское излучение, которое способны обнаруживать телескопы на околоземной орбите. Астрономы обнаружили относительно малую черную дыру в центре галактики NGC 4395 в созвездии Гончих Псов, которая излучает в рентгене так же интенсивно, как черные дыры обычных размеров.
NGC 4395 — первая галактика, в центре которой найдена маленькая, но очень эффективная сверхмассивная черная дыра. В статье, которая была опубликована в Monthly Notices Королевского астрономического общества, астрономы из Института астрономии Кембриджского университета пишут о том, что они обнаружили «крошечную» супермассивную черную дыру, которая является столь же мощной, как большие черные дыры в центрах других галактик. Черная дыра, расположенная в галактике NGC 4395, массивнее нашего Солнца «всего» в 50 000 раз. Обычные известные нам сверхмассивные черные дыры, как правило, в миллионы и миллиарды раз массивнее Солнца.
Наличие таких небольших по размерам черных дыр может объяснить свойства сейфертовских галактик — одного из типов активных галактик, в центре которых, как считается, содержатся черные дыры. Такие галактики менее ярки, чем квазары и другие активные галактики, но испускают большое количество рентгеновского излучения. Астрономы пока не знают, сколько существует подобных черных дыр. NGC 4395 — единственная известная галактика с такой черной дырой.
Самая массивная во Вселенной
Группа астрономов из Стэнфордского университета обнаружила в дальнем космосе самую массивную черную дыру из известных к настоящему времени. Как сообщается на сайте Space.com, ее масса в 10 миллиардов раз превышает массу Солнца. Это означает, что черная дыра, получившая обозначение Q0906+6930, может удерживать в своем гравитационном поле до тысячи солнечных систем, а ее вес эквивалентен весу всех звезд нашей Галактики Млечный Путь.
Найденный объект был отнесен к классу блазаров , поскольку черная дыра испускает потоки радиации. Он находится в центре галактики, расположенной в созвездии Большой Медведицы, на расстоянии 12,7 млрд световых лет от Земли. По словам профессора Стэнфордского университета Роджера Романи (Roger Romani), астрономы определили возраст черной дыры примерно в 12,7 миллиарда лет, т. е. она образовалась всего через миллиард лет после Большого взрыва, давшего начало Вселенной.
Таким образом, астрономы застали черную дыру на первоначальном этапе ее существования.
Черные дыры невозможно увидеть, поэтому их наличие определяют по испускаемой радиации и гравитационному воздействию на соседние звезды. Как было сказано выше, астрономы делят черные дыры на два типа — звездообразные и сверхмассивные. Звездообразные черные дыры формируются из разрушившихся массивных звезд, весящих в несколько раз больше Солнца, а сверхмассивные могут достигать миллиардов солнечных масс.
Загадка черных дыр
Однажды некто придумал поучительный рассказ о бабочках, которые размышляли о великой тайне пламени. Тогда одна смелая бабочка вызвалась на собственном опыте выяснить, что же такое огонь. Она полетела к ближайшему замку, приблизилась к окну и увидела горящую свечу. Бабочка вернулась, взволнованная, и рассказала об увиденном. Но самая мудрая бабочка сказала, что информации не стало больше, чем было. Затем вторая бабочка отправилась к замку, влетела в окно и коснулась огня своими крылышками. Вернувшись, она рассказала свою историю, но вновь мудрая бабочка сказала: «Твое объяснение слишком коротко». И третья бабочка отправилась туда же, слишком приблизилась к огню и сгорела. И тогда мудрая бабочка сказала: «Ну что ж, она узнала все об огне. Но это знание потеряно для нас вместе с ней».
Как вы можете догадаться, эта история легко переносится с бабочек на ученых, занимающихся загадкой черных дыр. Некоторые астрономы, вооружившись мощными инструментами, такими как космические телескопы, проводят косвенные наблюдения очень далеких черных дыр. Как первая бабочка, они признают их существование, но способны получить совсем немного информации об их природе. Теоретики пытаются постичь эту загадку с помощью общей теории относительности, квантовой механики и высшей математики. Как вторая бабочка, они получают чуть больше информации, но немногим больше, чем первые. Наконец, третьей бабочке может уподобиться космонавт, направляющийся прямиком в черную дыру, но он не смог бы рассказать о том, что узнал.
Достарыңызбен бөлісу: |