Голубинцев В. О


YIII.2.2.Принцип рассмотрения во взаимосвязи



бет40/49
Дата03.07.2016
өлшемі4.03 Mb.
#173452
түріУчебник
1   ...   36   37   38   39   40   41   42   43   ...   49

YIII.2.2.Принцип рассмотрения во взаимосвязи.

Системное познание

Проблема учета связей исследуемой вещи с другими вещами занимает важное место в диалектическом методе познания, отличая его от метафизического. Метафизичность мышления многих ученых-естествоиспытателей, игнорировавших в своих исследованиях реальные взаимосвязи, существующие между объектами материального мира, породила в свое время немало трудностей в научном познании. Преодолеть эти трудности помог начавшийся в ХIX в. переход от метафизики к диалектике, «…рассматривающей вещи не в их изолированности, а в их взаимной связи».1

Прогресс научного познания уже в XIX веке, а тем более в ХХ столетии показал, что любой ученый – в какой бы области знания он ни работал – неизбежно потерпит неудачу в исследовании, если будет рассматривать изучаемый объект вне связи с другими объектами, явлениями или если будет игнорировать характер взаимосвязей его элементов. В последнем случае окажется невозможным понять и изучить материальный объект в его целостности, как систему.

Система – это всегда некоторая целостность, представляющая собой совокупность элементов, функциональные свойства и возможные состояния которой обусловлены не только составом, строением и т.п. составляющих ее элементов, но и характером их взаимных связей. Следует заметить, что понятие «система» означает более сложное образование, более высокий уровень интеграции элементов, по сравнению с понятием «комплекс».

Под комплексом «…понимается простое объединение элементов в

некоторую совокупность или множество по некоторому общему признаку… Причем комплексность можно рассматривать как начальную форму синтеза. Следующая форма интеграции – это упорядоченность. Нарастание связей ведет к новой качественной форме интеграции, когда получается хорошо организованное (органическое) множество, образующее целостное единство, которое мы называем системой и которое выступает наиболее совершенной формой синтеза объединяемых компонентов».1

Для изучения объекта как системы требуется и особый, системный подход к его познанию. Последний должен учитывать качественное своеобразие системы по отношению к своим элементам (т.е. что она – как целостность – обладает свойствами, которых нет у составляющих ее элементов).

При этом следует иметь в виду, что «… хотя свойства системы в целом не могут быть сведены к свойствам элементов, они могут быть объяснены в своем происхождении, в своем внутреннем механизме, в способах своего функционирования на основе учета свойств элементов системы и характера их взаимосвязи и взаимообусловленности. В этом заключена методологическая суть системного подхода. В противном случае – если бы между свойствами элементов и характером их взаимосвязи, с одной стороны, и свойствами целого, с другой стороны, не было связи, не было бы никакого научного смысла в рассмотрении системы именно как системы, то есть как совокупности элементов с определенными свойствами. Тогда пришлось бы систему рассматривать просто как вещь, обладающую свойствами безотносительно к свойствам элементов и структуре системы».2

Распространение системного подхода в науке было связано с усложнением объектов исследования и с переходом от метафизико-механистической методологии к диалектической. Симптомы исчерпания познавательного потенциала метафизико-механистической методологии, ориентировавшийся на сведение сложного к отдельным связям и элементам, появились еще в ХIX â., à íà ðóáåæå XIX и ХХ в.в. кризис такой методологии обнаружился уже совершенно отчетливо.

В ХХ веке «ученые оказались перед лицом принципиально новых по сравнению с классическим естествознанием объектов исследования – перед сложноорганизованными , целостными объектами. Присущие этим объектам специфические закономерности ставили перед наукой задачу создания соответствующих познавательных средств, которые открыли бы возможность конкретно-научного решения проблем целостности применительно к тому или иному классу объектов действительности. Результатом попыток решения этих проблем явилась разработка методов системного анализа, во многом определяющих стиль современного научного мышления».1



YIII.2.3.Принцип детерминизма. Динамические и статистические закономерности.

Недопустимость индетерминизма в науке
Детерминизм – (от лат.determino - определяю) – это философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира. Основу данного учения составляет положение о существовании причинности, т.е. такой связи явлений, в которой одно явление (причина) при определенных условиях с необходимостью порождает другое явление (следствие). Современный детерминизм предполагает наличие разнообразных объективно существующих форм взаимосвязи явлений. Но все эти формы в конечном счете складываются на основе всеобще действующей причинности, вне которой не существует ни одно явление действительности.

Идея о том, что все существующее возникает или уничтожается в результате действия определенных причин зародилась в глубокой древности при первых попытках осмыслить связь и взаимозависимость вещей. Представители материалистического направления в философии в трактовке детерминизма исходили из того, что все формы связей вещей, в том числе и причинно-следственные связи, свойственны самой реальности и что каждое явление причинно обусловлено. В древнегреческой философии материалистическое понимание детерминизма отстаивали Гераклит, Демокрит, Эпикур. Для материалистической философии Нового времени принцип детерминизма явился важной опорой в борьбе против средневекового схоластического мировоззрения. В трудах Галилея, Бэкона, Гоббса, Декарта, Спинозы было обосновано положение о том, что при изучении природы надо искать действующие причины и что «истинное знание есть знание посредством причин» (Ф.Бэкон). Детерминизм Нового времени помог создать методологическую почву для расцвета естественных наук.

Вместе с тем, это учение страдало исторической ограниченностью, выразившейся в метафизической трактовке детерминизма, в отождествлении его со связями явлений, подчиняющимся лишь принципам механики, в непонимании качественного своеобразия закономерностей более высоких форм движения.

Классическая наука Нового времени признавала только закономерную связь между состояниями материальных систем, т.е. считалось, что за данным состоянием всегда следует только одно, строго определенное состояние. Исходя из этого уровня развития науки, французский ученый Пьер Лаплас сформулировал принцип, согласно которому в мире существует только однозначная, динамическая связь состояний. Эта связь носит механический характер и подчиняется законам классической механики. Предпосылкой лапласовского вывода был взгляд на мир как на замкнутую систему, поведение которой можно, зная исходные условия, однозначно определить в любой момент времени. С позиций подобного механического детерминизма (получившего в истории науки и философии наименование лапласовского) значения координат и импульсов всех частиц Вселенной в данный момент времени совершенно однозначно определяет их состояние в любой прошедший или будущий момент времени. Такой подход означал признание лишь динамических закономерностей, которые длительное время лежали в основе научного и философского (метафизико-механистического) миропонимания. Динамическая закономерность есть форма причинной связи, при которой данное состояние системы однозначно определяет все ее последующие состояния, в силу чего знание начальных условий дает возможность точно предсказать дальнейшие состояния системы.

Появление материалистической диалектики и последующий прогресс науки (прежде всего, рождение квантовой механики) привели к отказу от лапласовского детерминизма при описании микроявлений. Оказалось, что между микрочастицами действует вероятностная (статистическая) связь, т.е. за данным состоянием системы могут следовать не строго определенные, а самые различные состояния, причем вероятность (степень возможности) появления нового состояния определяется уже не динамическими, а статистическими закономерностями. Статистическая закономерность – это форма причинной связи, при которой данное состояние системы определяет ее последующее состояние не однозначно, а лишь с определенной вероятностью, являющейся мерой возможности реализации заложенных в прошлом тенденций изменения.

Динамическая и статистическая закономерности являются различными формами проявления закономерной связи между предшествующими и последующими состояниями материальных систем.

Динамические закономерности действуют в автономных, мало зависящих от внешних воздействий системах с относительно небольшим числом элементов (такая закономерность определяет, например, движение планет в Солнечной системе). Статистические же закономерности действуют во всех неавтономных, зависящих от постоянно меняющихся внешних условий системах с очень большим количеством элементов (таковыми являются например, биологические системы).

Альтернативой детерминизму выступает индетерминизм –концепция, которая либо отвергает причинность вообще, либо отрицает ее всеобщий характер. Известный английский философ XYIII в. Д.Юм считал, например, что причинность в объективном мире не существует, что она представляет собой привычку человека связывать свои ощущения определенным образом. Споры вокруг принципа детерминизма продолжались и в последующие столетия. Сторонники индетерминизма утверждали, что к определенным областям (например, волевым действиям, процессам, происходящим в микромире) принцип причинной обусловленности неприменим. Когда классическая физика ХХ века столкнулась с тем обстоятельством, что микрообъект не может находиться в состоянии, в котором он имел бы одновременно совершенно строго определенные координату и импульс, некоторыми учеными и философами был сделан вывод, что будто бы в микромире принцип детерминизма теряет силу. В действительности же оказался непригодным старый механический детерминизм.

В целом прогресс научного познания показал, что методологические трудности, с которыми сталкиваются исследователи в различных отраслях знания, могут быть преодолены только на основе принципа детерминизма в его диалектико-материалистическом понимании. И хотя в ходе развития науки неоднократно возникали трудности в проведении идей детерминизма и появлялись течения, отрицающие детерминизм, в конце концов всегда оказывалось, что все действительные успехи науки были неразрывно связаны с его торжеством. Каждая из таких трудностей фактически означала не крах детерминизма, а ограниченную применимость тех или иных ранее известных форм причинной обусловленности явлений.
YIII.2.4.Принцип изучения в развитии.

Исторический и логический подходы в познании
Принцип изучения объектов в их развитии является одним из важнейших принципов диалектического метода познания. В этом состоит одно из принципиальных отличий диалектического метода от метафизического. Мы не получим истинного знания, если будем изучать вещь в мертвом, застывшем состоянии, если будем игнорировать такой важнейший аспект ее бытия, как развитие. Только изучив прошлое интересующего нас объекта, историю его возникновения и формирования, можно понять его нынешнее состояние, а также предсказать его будущее.

Неисторический подход в науке часто мешал получению важных научных результатов. Такой подход, например, в изучении живой природы длительное время препятствовал решению вопроса о возникновении нынешних видов растений и животных. Естествоиспытатели XYIII в. полагали, что органические виды качественно не меняются со временем, а их количество во все времена остается одним и тем же. Изучение существующих представителей растительного и животного мира без учета их исторического прошлого, хотя и давало определенные положительные результаты, (в плане, например, их систематизации) не позволяло, однако, решить проблему органических видов.

Отдельные попытки рассматривать объекты окружающей природы в их развитии не встречали поддержки в науке XYIII в. благодаря господству в ней метафизических воззрений. Так, уже упоминавшаяся ранее гипотеза Канта об историческом развитии Солнечной системы не было понята его современниками. И только в XIX в. необходимость изучения объектов с учетом их изменения, развития стала постепенно овладевать умами естествоиспытателей.

Принцип изучения объекта в развитии может реализоваться в познании двумя подходами: историческим и логическим (или, точнее сказать, логико-историческим).

При историческом подходе история объекта воспроизводится в точности, во всей ее многогранности, с учетом всех деталей, событий, включая и всякого рода случайные отклонения, «зигзаги» в развитии. Такой подход применяется при подробном, доскональном изучении человеческой истории, при наблюдениях, например, за развитием каких-то растений, живых организмов (с соответствующими описаниями этих наблюдений во всех подробностях) и т.д.

При логическом подходе также воспроизводится история объекта, но при этом она подвергается определенным логическим преобразованиям: обрабатывается теоретическим мышлением с выделением общего, существенного и освобождается в то же время от всего случайного, несущественного, наносного, мешающего выявлению закономерности развития изучаемого объекта.1

Такой подход в естествознании XIX века был успешно (хотя и стихийно) реализован Ч.Дарвиным. У него впервые логический процесс познания органического мира исходил из исторического процесса развития этого мира, что позволило научно решить вопрос о возникновении и эволюции видов растений и животных.

Выбор того или иного – исторического или логического – подхода в познании обусловливается природой изучаемого объекта, целями исследования и другими обстоятельствами. В то же время в реальном процессе познания оба указанных подхода тесно взаимосвязаны. Исторический подход не обходится без какого-то логического осмысления фактов истории развития изучаемого объекта. Логический же анализ развития объекта не противоречит его подлинной истории, исходит из нее.

Эту взаимосвязь исторического и логического подходов в познании особо подчеркивал Ф.Энгельс. «… Логический метод, - писал он, - … в сущности является не чем иным, как тем же историческим методом, только освобожденным от исторической формы и от мешающих случайностей. С чего начинается история, с того же должен начинаться и ход мыслей, и его дальнейшее движение будет представлять собой не что иное, как отражение исторического процесса в абстрактной и теоретически последовательной форме; отражение исправленное, но исправленное соответственно законам, которые дает сам действительный исторический процесс…».1

Логико-исторический подход, опирающийся на мощь теоретического мышления, позволяет исследователю достичь логически реконструированного, обобщенного отражения исторического развития изучаемого объекта. А это ведет к получению важных научных результатов.


YIII.3. ОБЩЕНАУЧНЫЕ МЕТОДЫ

ЭМПИРИЧЕСКОГО ПОЗНАНИЯ
YIII.3.1.Научное наблюдение

Наблюдение есть чувственное преимущественно-визуальное отражение предметов и явлений внешнего мира. Это – исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.



Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:

- целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей );

- планомерностью (наблюдение должно проводиться строго по плану, составленному исходя из задачи исследования);

- активностью (исследователь должен активно искать, выделять нуж-ные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения).

Научные наблюдения всегда сопровождаются описанием объекта познания. Последнее необходимо для фиксирования тех свойств, сторон изучаемого объекта, которые составляют предмет исследования. Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким-то свойствам, характеристикам, выясняют последовательность этапов их становления и развития.

Почти каждая наука проходит указанную первоначальную, «описательную» стадию развития. При этом, как подчеркивается в одной из работ, касающихся этого вопроса, «основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным. Описание должно давать достоверную и адекватную картину самого объекта, точно отображать изучаемые явления. Важно, чтобы понятия, используемые для описания, всегда имели четкий и однозначный смысл. При развитии науки, изменении ее основ преобразуются средства описания, часто создается новая система понятий».1

Наблюдение как метод познания более или менее удовлетворяло потребности наук, находившихся на описательно-эмпирической ступени развития. Дальнейший прогресс научного познания был связан с переходом многих наук к следующей, более высокой ступени развития, на которой наблюдения дополнялись экспериментальными исследованиями, предполагающими целенаправленное воздействие на изучаемые объекты.

Что касается наблюдений, то в них отсутствует деятельность, направленная на преобразование, изменение объектов познания. Это обусловливается рядом обстоятельств: недоступностью этих объектов для практического воздействия ( например, наблюдение удаленных космических объектов), нежелательностью, исходя из целей исследования, вмешательства в наблюдаемый процесс ( фенологические, психологические и др. наблюдения), отсутствием технических, энергетических, финансовых и иных возможностей постановки экспериментальных исследований объектов познания.

По способу проведения наблюдения могут быть непосредственными и опосредованными.

При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека. Такого рода наблюдения дали немало полезного в истории науки. Известно, например, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадцати лет Тихо Браге с непревзойденной для невооруженного глаза точностью, явились эмпирической основой для открытия Кеплером его знаменитых законов.

В настоящее время непосредственное визуальное наблюдение широко используется в космических исследованиях, как важный (а иногда и незаменимый) метод научного познания. Визуальные наблюдения с борта пилотируемой орбитальной станции – наиболее простой и весьма эффективный метод исследования параметров атмосферы, поверхности суши и океана из космоса в видимом диапазоне. «С орбиты искусственного спутника Земли глаз человека может уверенно определить границы облачного покрова, типы облаков, границы выноса мутных речных вод в море, просмотреть рельеф дна на мелководье, определить характеристики океанических вихрей и пылевых бурь размером несколько сот километров, различать типы планктона и т.п. Комплексное восприятие наблюдаемых явлений…, избирательная способность человеческого зрения и логический анализ результатов наблюдений – это те уникальные свойства метода визуальных наблюдений, которыми не обладают никакой набор аппаратуры».1

«Возможности визуального метода наблюдений существенно увеличиваются, если использовать инструменты, расширяющие границы человеческого зрения. Это могут быть бинокли, зрительные трубы, приборы ночного видения с оптико-электронным усилением света».2

Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным, т. е. проводится с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.

Если, например, до начала XYII в. астрономы наблюдали за небесными телами невооруженным глазом, то изобретение Галилеем в 1608 году оптического телескопа подняло астрономические наблюдения на новую, гораздо более высокую ступень. А создание в наши дни рентгеновских телескопов и вывод их в космическое пространство на борту орбитальной станции (рентгеновские телескопы могут работать только за пределами земной атмосферы) позволило проводить наблюдения за такими объектами Вселенной (пульсары, квазары), которые никаким другим путем изучать было бы невозможно.

Подобно развитию технических средств дальних наблюдений, создание в XYII веке оптического микроскопа, а много позднее, уже в ÕÕ веке, и электронного микроскопа позволило исследователям наблюдать удивительный мир микрообъектов и микроявлений.

Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств человека, ни с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, - это не сами микрообъекты, а только результаты их воздействия на определенные объекты, являющиеся техническими средствами исследования. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно – по таким видимым их проявлениям, как образование треков, состоящих из множества капелек жидкости.

Косвенные наблюдения обязательно основываются на некоторых теоретических положениях, устанавливающих определенную связь (скажем, в виде математически выраженной функциональной зависимости) между наблюдаемыми и ненаблюдаемыми явлениями. Подчеркивая роль теории в процессе таких наблюдений, А.Эйнштейн в разговоре с В.Гейзенбергом заметил: « Можно ли наблюдать данное явление или нет – зависит от вашей теории. Именно теория должна установить, что можно наблюдать, а что нельзя».1

Вообще любые научные наблюдения, хотя они опираются в первую очередь на работу органов чувств, требуют в то же время участия и теоретического мышления. Исследователь, опираясь на свои знания, опыт, должен осознать чувственные восприятия и выразить их (описать) либо в понятиях обычного языка, либо – более строго и сокращенно – в определенных научных терминах, в каких-то графиках, таблицах, рисунках и т.п.

Наблюдения могут нередко играть важную эвристическую роль в научном познании. В процессе наблюдений могут быть открыты совершенно новые явления, позволяющие обосновать ту или иную научную гипотезу. Приведем лишь один пример из области истории космических исследований. Участники длительных экспедиций в космос на орбитальной станции «Салют-6» вели наблюдения Мирового океана, ибо над ним и даже в его глубинах формируется погода планеты. В результате этих наблюдений были обнаружены так называемые синоптические вихри. Последние представляют собой специфические образования в океане, размеры и цвет которых бывают различными. Некоторые из них имеют зеленоватую окраску, что характеризует подъем глубинных вод к поверхности, другие отличаются голубой окраской – здесь вода с поверхности уходит в глубину. Эти наблюдения позволили подтвердить гипотезу академика Г.И.Марчука, согласно которой в Мировом океане есть энергоактивные зоны, являющиеся своеобразными «генераторами погоды». Именно над такими аномалиями и начинается формирование циклонов.2

Для получения каких-то выводов об исследуемом явлении, для обнаружения чего-то существенного в нем зачастую требуется проведение весьма большого количества наблюдений. Например, для получения даже краткосрочного (до 7-10 суток) прогноза погоды необходимо проводить огромное число наблюдений за различными метеорологическими параметрами атмосферы. Такие наблюдения в современном мире осуществляют свыше 10 тыс. метеорологических станций, получающих необходимые данные в районе земной поверхности, и около 800 станций радиозондирования, собирающих данные во всей толще атмосферы. К этому надо добавить метеорологическую информацию, которая является результатом наблюдений, проводимых с оснащенных специальной аппаратурой морских судов и самолетов, беспилотных метеорологических спутников Земли и пилотируемых орбитальных станций. Весь этот обширный комплекс технических средств обеспечивает глобальные наблюдения за состоянием атмосферы, поверхности суши и океана с целью изучения тех физических процессов, которые определяют аномалии погоды на нашей планете.

Из всего вышесказанного следует, что наблюдение является весьма важным методом эмпирического познания, обеспечивающим сбор обширной информации об окружающем мире. Как показывает история науки, при правильном использовании этого метода он оказывается весьма плодотворным.



Достарыңызбен бөлісу:
1   ...   36   37   38   39   40   41   42   43   ...   49




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет