ЩЕЛОЧНЫЕ МЕТАЛЛЫ (ГЛАВНАЯ ПОДГРУППА I ГРУППЫ)
Щелочные металлы химически очень активны и бурно реагируют с водой, в результате чего образуются сильные основания. С солями щелочных металлов калия и натрия мы уже познакомились.
Аналитически обнаружить эти металлы сложно, так как они не образуют нерастворимых солей при взаимодействии с наиболее употребимыми кислотами, поэтому реакции осаждения возможны лишь со сложными реагентами. Не известны также характерные цветные реакции с простыми реагентами в нерастворенном или твердом состоянии. По окраске пламени натрием и калием их можно обнаружить качественно.
Обнаружение калия и натрия
В несветящемся пламени бунзеновской горелки будем держать палочки магнезии до тех пор, пока не исчезнет начальная окраска пламени. Затем нанесем на палочку чуть-чуть поваренной соли и опять поместим ее в пламя, которое окрасится в яркий желтый цвет. Так как окраска очень интенсивна, а натрий является почти непременной примесью в солях, всегда следует убедиться, сравнивая полученную окраску пламени с окраской пламени чистого соединения натрия, находится ли элемент в виде примеси или в виде основного компонента.
Калий окрашивает пламя в красно-фиолетовый цвет. Чтобы избавиться от мешающего желтого цвета, в который окрашивает пламя присутствующий тут же натрий, воспользуемся голубым фильтром (кобальтовым стеклом). Таким образом можно проверить содержание калия в некоторых солях.
При наличии небольшого количества солей лития можно наблюдать окрашивание этим элементом пламени в чудесный красный цвет.
МЕТАЛЛЫ ПОБОЧНОЙ ПОДГРУППЫ I ГРУППЫ
В противоположность щелочным металлам, медь, серебро и золото очень инертны. Они обладают незначительным сродством к кислороду, их оксиды очень легко восстанавливать и металлы встречаются в природе в элементарной форме (золото чаще всего). Благородный характер металлов усиливается от меди к серебру, а от него — к золоту. Для остальных побочных групп периодической системы также существует правило, что с увеличением порядкового номера элемента убывает его активность. Разбавленными кислотами металлы побочной подгруппы 1 группы не разрушаются. Но медь и серебро растворяются в сильной азотной кислоте, а золото в царской водке (смесь одной объемной части азотной и трех частей соляной кислоты).
Общими свойствами щелочных металлов и металлов подгруппы меди являются их одновалентность во многих соединениях, а также отличная электропроводность. Правда, иногда медь и серебро могут быть двухвалентными, а золото может образовывать даже трехвалентные соединения.
Некоторые свойства и характерные реакции рассматриваемых металлов изучим в следующих опытах.
В несветящееся пламя бунзеновской горелки внесем пинцетом кусочек медной проволоки. Медь начнет интенсивно окисляться: сначала на поверхности появятся цвета побежалости, затем медь окрасится в черный цвет, так как образуется слой оксида меди (II) CuO. При обычной температуре очень быстро возникает слой красного оксида меди (1) Cu2O, который постоянно существует на поверхности.
Если внести окисленную медь в восстановительную зону пламени бунзеновской горелки (верхняя часть конуса), то оксид восстановится водородом, и мы увидим, что чистый металл красного цвета.
Летучие соединения меди окрашивают пламя в зеленый цвет. В этом мы убедимся, если погрузим медную проволоку в соляную кислоту и затем внесем ее в несветящуюся часть пламени. В этом случае образуется некоторое количество летучего хлорида меди CuCl2, который и окрашивает пламя,
Тонкая медная проволока плавится в несветящемся пламени бунзеновской горелки при 1084 °С. Чтобы нагреть больший кусок меди до этой температуры, нужно применить стеклодувную горелку.
Любую соль меди можно легко восстановить до металлической меди, если расплавить ее с содой на древесном угле с помощью паяльной трубки. Смешаем очень малое количество безводного сульфата меди с безводной содой в соотношении 1:3 и внесем смесь в углубление на кусочке древесного угля. (Обе соли высушим, прокаливая, содержащие воду кристаллы в пробирках из тугоплавкого стекла или в фарфоровых тиглях на пламени бунзеновской горелки.) Затем направим на смесь восстановительное пламя паяльной лампы. Через некоторое время охладим смесь и обнаружим в углублении красные крупинки металлической меди.
Обнаружение меди в сплавах
На присутствие меди укажет уже окраска. Если у сплава красный или желтый оттенок, вероятно, в нем имеется медь. Правда, например, сплавы меди с серебром даже при высоком содержании меди имеют серебристый цвет. Старые, так называемые серебряные монеты содержат от 10 до 75% меди! Предварительную пробу проведем, капнув на металл азотной кислотой. На присутствие меди укажет появляющаяся чаще всего после высыхания зеленая кромка нитрата меди (похожую реакцию дает никель). Исследуем полученное соединение с помощью перла буры. Для этого нагреем палочку магнезии в несветящемся пламени и горячей погрузим ее в буру. Прилипнувшая соль сплавится, в результате получится стекловидный шарик. Этот шарик в горячем состоянии положим на след соединения меди, например, на кромку нитрата, образовавшегося в предыдущем опыте. После нагревания в окислительном пламени перл буры окрасится в зеленый цвет, который при охлаждении изменится на голубой. Соединение никеля в этом случае окрасит буру в коричневый цвет.
Наконец, растворим немного металла в азотной кислоте. Как при всех аналитических реакциях, будем применять как можно меньшее количество вещества. Вполне достаточно будет кусочка, величиной с булавочную головку.
Зальем в пробирке металл азотной кислотой. Он растворится с образованием ядовитых красно-коричневых паров оксида азота. Поэтому будем проводить опыт обязательно на открытом воздухе или под тягой.
Если раствор окрасится в голубовато-зеленый цвет, то, вероятно, в сплаве присутствует медь. Чтобы убедиться в этом наверняка, разбавим раствор дистиллированной водой и разделим его. К первой порции добавим по каплям гидроксид аммония (нашатырный спирт). Если в сплаве присутствует медь, то сначала выпадет в осадок гидроксид меди Сu(ОН)2, который при добавлении избытка гидроксида аммония растворится, окрасив раствор в темно-синий цвет. При быстром добавлении нашатырного спирта осадок не выпадает, а сразу наблюдается синяя окраска:
Сu2+ + 2NH4OH Cu(OH)2 + 2NH4+
Cu(OH)2+ 4NH4OH— [Cu(NH3)4] (OH)2+ 4H2O
В результате этой реакции образуется гидроксидтетраммин меди (II). Это пример комплексного соединения. Для того чтобы понять его строение, представим себе, что четыре группы NН3 располагаются вокруг иона меди и образуют вместе с ним один большой катион, который в свою очередь связан с ионами гидроксида.
Такие комплексы могут быть очень устойчивы. Если в растворе присутствует медь, то она не даст осадка при взаимодействии с NaOH, но при добавлении сероводородной воды выпадет в осадок черно-коричневый сульфид меди.
Ко второй порции растворенной металлической пробы добавим немного раствора желтой кровяной соли (гексациано-(II)феррат калия). (Осторожно! Яд!) Если выпадет красно-коричневый осадок, то наличие меди будет доказано.
Прежде чем проводить все аналитические реакции обнаружения, следует поставить вопрос, достаточно ли они отчетливы.
Например, если в растворе содержится ион никеля, то при добавлении аммиака будет наблюдаться такая же окраска раствора, которая образуется при наличии меди, а в присутствии железа, напротив, обе пробы могут быть неотчетливо выражены. Поэтому для точного определения меди необходим совпадающий результат всех предварительных проб и реакций.
Если же в растворе имеются ионы железа, то иногда металлы следует химически разделить.
Укажем также на то, что соли меди ядовиты (как большинство солей тяжелых металлов). Раствор сульфата меди, например, действует как рвотное средство.
Достарыңызбен бөлісу: |