Курс общей астрономии



бет10/15
Дата28.04.2016
өлшемі0.59 Mb.
#92687
1   ...   7   8   9   10   11   12   13   14   15

Чтобы отделить звезды, принадлежащие скоплению, от звезд поля, случайно проектирующихся в ту же область неба, можно построить диаграмму спектр – светимость. Для скоплений обычно строят диаграмму цвет – видимая звездная величина, откладывая по осям показатель цвета (вместо спектрального класса) и видимую звездную величину которая одинаково для всех звезд скопления отличается от абсолютной. На диаграмме Герцшпрунга – Рессела для рассеянных скоплений, как правило, хорошо заметна главная последовательность. Ветвь гигантов в большинстве случаев отсутствует или почти отсутствует (рис. 221). Поскольку все звезды скопления практически находятся на одинаковом расстоянии, его диаграмма цвет – видимая звездная величина отличается от обычной сдвигом по вертикальной оси на величину модуля расстояния, а из-за влияния межзвездного поглощения света, о котором

будет сказано в § 167, и по горизонтальной оси. Ясно, что звезды, не попадающие

на “свои” места на диаграмме, могут не принадлежать скоплению. Проверить принадлежность этих звезд скоплению можно, изучив собственные движения и лучевые скорости, которые для звезд скопления должны быть примерно одинаковыми. Выделив звезды, принадлежащие скоплению, и найдя нормальное положение главной последовательности, получим модуль расстояния, а следовательно, и само расстояние до звездного скопления. Коль скоро расстояние до звездного скопления установлено, легко вычислить его линейные размеры, которые для большинства рассеянных скоплений в среднем составляют от 2 до 20 пс.

В отличие от рассеянных, шаровые звездные скопления сильно выделяются на окружающем фоне благодаря значительно большему числу входящих в них звезд и четкой своей сферической или эллиптической форме, обусловленной сильной концентрацией звезд к центру (рис. 222). В среднем диаметры шаровых скоплений составляют около 40 пс. Вследствие своей большой светимости шаровые скопления видны на больших расстояниях в нашей Галактике. Поэтому наблюдаемое их число (более 100) близко к общему числу этих объектов в Галактике. Шаровые скопления обнаружены также и в ближайших к нам других галактиках (например, в Магеллановых Облаках, туманности Андромеды). Пространственное распределение шаровых скоплений показывает, что, в отличие от рассеянных скоплений, они образуют сферическую подсистему и сильно концентрируются к центру Галактики.

Диаграмма цвет – видимая звездная величина для звезд шаровых звездных скоплений имеет особый вид (рис. 223). На ней обычно четко выделяется характерная для шаровых скоплений горизонтальная ветвь, ветвь гигантов, соединяющаяся с главной последовательностью, и сама главная последовательность, начинающаяся в области меньших светимостей, чем на обычной диаграмме Герцшпрунга

– Рессела. В шаровых скоплениях часто наблюдается значительное количество переменных звезд, особенно типа RR Лиры, которые позволяют определить расстояния до этих объектов. В 1947 г. В. А. Амбарцумяном и его сотрудниками были обнаружены особые группы звезд, названные звездными ассоциациями. В них входят звезды определенного типа, а их звездна плотность заметно больше средней звездной плотности звезд того же типа в Галактике. Известны два типа ассоциаций. Первый – О-ассоциации – содержит звезды ранних спектральных классов от О до В2. Их. Их размеры составляют десятки и сотни парсеков, т.е. во много pаз превышают размеры рассеянных звездных скоплений. Ассоциации второго типа состоят из звезд типа Т Тельца и поэтому называются Т-ассоциациями.



§ 165. Пространственные скорости звезд и движение Солнечной системы

Если известно собственное движение звезды m в секундах дуги за год (см. § 91) и расстояние до нее r в парсеках, то не трудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью Vt и вычисляется по формуле (12.3)

Чтобы найти пространственную скорость V звезды, необхо­димо знать ее лучевую скорость Vr , которая определяется по доплеровскому смещению линий в спектре

звезды (§ 107). По­скольку Vr и Vt взаимно перпендикулярны, пространственная скорость звезды равна (12.4)

Знание собственных движений и лучевых скоростей звезд позволяет судить о

движениях звезд относительно Солнца, ко­торое вместе с окружающими его планетами также движется в пространстве. Поэтому наблюдаемые движения звезд складываются из двух частей, из которых одна является следствием движения Солнца, а другая – индивидуальным движением звезды. Чтобы судить о движениях звезд, следует найти скорость движения Солнца и исключить ее из наблюдае­мых скоростей движения звезд.

Определим величину и направле­ние скорости Солнца в пространстве. Та точка на небесной сфере, к кото­рой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная ей точка – антиапексом. Чтобы пояснить прин­цип, на основании которого находят положение солнечного апек­са, предположим, что все звезды, кроме Солнца, неподвижны. В этом случае наблюдаемые собственные движения и лучевые скорости звезд будут вызваны только перемещением Солнца, происходящим со скоростью V¤ (рис. 224). Рассмотрим какую-нибудь звезду S, направление на которую составляет угол q с вектором V¤. Поскольку мы предположили, что все звезды не­подвижны, то кажущееся относительно Солнца

движение звез­ды S должно иметь скорость, равную по величине и противопо­ложную по направлению скорости Солнца, т.е. – V¤. Эта ка­жущаяся скорость имеет две составляющие: одну – вдоль луча зрения, соответствующую лучевой скорости звезды Vr = V¤cos q,(12.5)

и другую, – лежащую в картинной плоскости, соответствующую собственному движению звезды, Vt = V¤ sin q.(12.6)

Учитывая зависимость величины этих проекций от угла q, получим, что вследствие движения Солнца в пространстве лу­чевые скорости всех звезд, находящихся в

направлении движе­ния Солнца, должны казаться меньше действительных на величину V¤. У звезд, находящихся в противоположном направле­нии, наоборот, скорости

должны казаться больше на ту же ве­личину. Лучевые скорости звезд, находящихся в направлении, перпендикулярном к направлению движения Солнца, не изме­няются. Зато у них будут собственные движения, направленные к антиапексу и по величине равные углу, под которым с рас­стояния звезды виден вектор V¤. По мере приближения к апек­су и антиапексу величина этого собственного движения умень­шается пропорционально sin q, вплоть до нуля.

В целом создается впечатление, что все звезды как бы убе­гают в направлении к антиапексу. Таким образом, в случае, когда движется только Солнце, величину и направление скорости его движения можно найти двумя способами: 1) измерив лучевые скорости звезд, на­ходящихся в разных направлениях, найти то направление, где лучевая скорость имеет наибольшее отрицательное значение; в этом направлении и находится апекс; скорость движения Солн­ца в направлении апекса равна найденной

максимальной луче­вой скорости; 2) измерив собственные движения звезд, найти на небесной сфере общую точку, к которой все они направлены: противоположная ей точка будет апексом; для определения величины скорости Солнца надо сначала

перевести угловое пе­ремещение в линейную скорость, для чего необходимо выбрать звезду с известным расстоянием, а затем найти V¤ по формуле (12.6). Если теперь допустить, что не только Солнце, но и все дру­гие звезды имеют

индивидуальные движения, то задача услож­нится. Однако, рассматривая в данной области неба большое количество звезд, можно считать, что в среднем

индивидуаль­ные их движения должны скомпенсировать друг друга. Поэтому средние значения собственных движений и лучевых скоростей для большого числа звезд

должны обнаруживать те же законо­мерности, что и отдельные звезды в только что рассмотренном случае движения одного только Солнца. Описанным методом установлено, что апекс Солнечной си­стемы находится в

созвездии Геркулеса и имеет прямое вос­хождение a = 270° и склонение d = +30°. В этом направлении Солнце движется со скоростью около 20 км/сек.

§ 166. Вращение Галактики

Обычно апекс движения Солнца определяют по наиболее близким звездам, так как далекие объекты могут обладать каким-нибудь общим движением Если имеется такое общее движение, то при осреднении лучевых скоростей и собственных движений даже по большому числу звезд в некоторой области неба индивидуальные скорости не скомпенсируют друг друга, так как будут обладать составляющей, равной общей скорости всей группы звезд. Рассмотрим Солнце 5 вместе с окружающими его далекими звездами (рис. 225, а). Предположим, что вся эта группа звезд имеет какое-то общее движение. Если бы все участвующие в нем звезды двигались с одинаковой скоростью, то никакими способами не удалось бы обнаружить этого движения. Теперь предположим, что движение в рассматриваемой области происходит так, что линейные скорости звезд постепенно возрастают в определенном направлении, скажем, слева направо, как это показано стрел ками на рис. 225,а. Такое распределение скоростей возникает, если, например, вся рассматриваемая область совершает вращение вокруг точки, расположенной далеко вправо.

Теперь рассмотрим, какие лучевые скорости должны иметь звезды, если их наблюдать в различных направлениях из точки S (рис. 225,6). Очевидно, что при наблюдении вправо и влево от точки S лучевые скорости окажутся равными нулю, так как вдоль этих направлений вообще нет относительных движений. То же самое будет иметь место и в перпендикулярном направлении по другой причине: вдоль направления вектора скорости Солнца скорость всех звезд одинакова, и потому относительная лучевая скорость равна нулю. Во всех других направлениях будут наблюдаться лучевые скорости, причем наибольшей величины они достигают в направлениях, составляющих угол 45° с только что рассмотренными. Кроме того, наблюдаемые лучевые скорости будут тем больше, чем более далекие рассматриваются объекты. Измерения лучевых скоростей далеких звезд позволяют обнаружить плавное их изменение (рис. 226), в точности согласующееся с описанной картиной, причем нулевые значения лучевых скоростей наблюдаются как раз в направлениях на центр и антицентр Галактики и под углами 90° к ним. Отсюда следует, что все звезды вместе с Солнцем движутся перпендикулярно к направлению на центр Галактики. Это движение является следствием общего вращения Галактики, скорость которого меняется с расстоянием от ее центра (дифференциальное вращение) .

Это вращение имеет следующие особенности: 1. Вращение происходит по часовой стрелке, если смотреть на Галактику со стороны северного ее полюса, находящегося в созвездии Волос Вероники. 2. Угловая скорость вращения убывает по мере удаления от центра. Однако это убывание несколько медленнее чем если бы вращение звезд вокруг центра Галактики происходило по законам Кеплера. 3. Линейная скорость вращения сначала возрастает по мере удаления от центра. Затем примерно на расстоянии Солнца она достигает наибольшего значения около 240 км/сек, после чего очень медленно убывает. 4. Солнце и звезды в его окрестности совершают полный оборот вокруг центра Галактики примерно за 200 миллионов лет. Этот промежуток времени называется галактическим годом.

§ 167. Межзвездная пыль

На фотографиях звездного неба, особенно в областях Млечного Пути, можно заметить сильную неоднородность распределения звезд, вызванную наличием темной непрозрачной материи.

Замечательными примерами объектов такого типа являются темные туманности,

известные под названием “Конской Головы” (рис. 227) и “Угольного Мешка” (последняя расположена рядом с двумя самыми яркими звездами созвездия Южного

Креста). Видимый угловой диаметр области неба, занимаемой “Угольным Мешком”, больше 3°. Этот объект очень близок к нам и находится на расстоянии около 150 пс. Следовательно, истинные его размеры – около 8 пс. Из-за контраста с окружающими яркими областями Млечного Пути туманность кажется черным пятном. В телескоп видны в ней слабые звезды, число которых примерно в три раза меньше

количества звезд в соседних областях того же размера. Это значит, что “Угольный

Мешок” поглощает свет далеких звезд, уменьшая общее количество света примерно в три раза. Такое поглощение соответствует оптической толщине или ослаблению света, выраженному в звездных величинах (12.7)

Множество облаков, подобных “Угольному Мешку”, образуют широкую темную полосу вдоль средней линии Млечного Пути, начинающуюся от созвездия Лебедя и тянущуюся через созвездия Орла, Змеи, Стрельца и Скорпиона. Это – знаменитая Большая развилка Млечного Пути. Особенно большое количество темных облаков наблюдается в области центрального сгущения нашей Галактики, в созвездии Стрельца (стр. 228), вследствие чего этот крайне интересный объект Галактики особенно трудно наблюдать. Наличие в межзвездном пространстве вещества, поглощающего свет, подтверждается еще одним явлением, называемым межзвездным покраснением света. Оно состоит в том, что спектральный состав излучения многих звезд, особенно далеких, оказывается не таким, как у звезд того же спектрального класса, например в окрестности Солнца. Разница заключается в недостатке излучения в синей части спектра, который приводит к кажущемуся его покраснению. В результате

для многих звезд, особенно вблизи Млечного Пути, нарушается установленная в §149 зависимость между показателем цвета и спектральным классом.

Для количественной характеристики этого явления вводится понятие избытка цвета СЕ или Е (color excess); так называется разность между наблюдаемым показателем цвета данного объекта и показателем цвета, соответствующим его спектральному классу. Изменение спектральной состава излучения вызывается тем же самым веществом, которое вызывает поглощение света. Последнее оказывается более сильным для синих лучей и менее сильным для красных. Количественные измерения этого поглощения, выполненные в различных участках спектра, показывают, что в видимой области величина поглощения обратно пропорциональна длине волны излучения. Такое ослабление испытывает свет при прохождении через среду, состоящую из мелких твердых частиц (пылинок), если их диаметр порядка длины световой волны и в среднем составляет 2 r = 0,8 мк, а поперечное сечение В условиях межзвездной среды твердые частицы, похожие на кристаллы льда, могут образовываться в результате конденсации молекул подобно частицам дыма, возникающим из газообразных продуктов горения. Молекулярные соединения, существование которых следует из спектральных наблюдении играют важную роль в межзвездной среде. Подробнее они будут рассмотрены в следующем параграфе. Плотность r образующихся таким путем пылинок должна быть немногим менее плотности льда, так что можно считать r « 0,5 г/см3. Учитывая приведенные выше размеры, получим, что масса отдельной частицы межзвездной пыли должна составлять Оказывается, что поглощение лучей определенного цвета, выраженное в звездных величинах (обозначим его через Dm), пропорционально избытку цвета, т.е.

Dm = g Ч CE.(12.8)

Коэффициент пропорциональности у оказывается близким к 4, если поглощение измерять в фотографических звездных величинах и около 3, если его оценивать в визуальных звездных величинах. Если бы межзвездного поглощения света не было,

звезды казались бы “ярче” и вместо наблюдаемой звездной величины т мы наблюдали бы т' = т – Dm = т – g Ч СЕ.(12.9)

В среднем для звезд в окрестности Солнца, находящихся на расстоянии в 1000 пс, избыток цвета около 0m,5. Согласно формуле (12.9) это означает, что видимое излучение этих звезд ослаблено примерно на Dm = 1m ,5, т.е. раза в четыре. Следовательно, оптическая толщина слоя межзвездной среды в 1 кпс в среднем составляет Обращаем внимание на то, что эта величина получается в среднем на основании измерений поглощения в различных направлениях. В отдельных местах поглощение может быть как меньше, так и значительно больше этой величины. Например, как мы видели, почти такое же ослабление света (на lm,2) дает только одна туманность

Угольный Мешок”, имеющая размер 8 пс. Отсюда следует, что в ней вещества примерно столько же, сколько и в среднем в межзвездном пространстве на протяжении 1000 пс, т.е. плотность поглощающего вещества в 100 с лишним раз больше. Оценим теперь количество отдельных пылинок, вызывающих межзвездное поглощение света. Предположим, что поглощающее действие частиц сводится к простому экранированию ими проходящего излучения. Тогда, учитывая физический смысл оп-тической толщины t , получим, что при t 1кпс = 1.4 поперечники всех частиц в столбе длиной 1000 пс и сечением 1 см2 в сумме составляют 1,7 см2. Поскольку поперечник каждой частицы в среднем равен 5Ч10 –9 см2, всего в этом столбе находится Объем этого столба V = 103 пс Ч 1 см2 =3 Ч1021 см3. Поэтому на каждую частицу приходится объем т.е. куб со стороной более 200 м. Обратная величина дает концентрацию пылинок На самом деле частицы размером 10-4-10-5 см поглощают видимые лучи сильнее, чем экранчики таких же размеров. Поэтому полученный результат завышен примерно в два раза. Даже такое ничтожное содержание крошечных пылинок в межзвездном пространстве заставляет внести важную поправку в метод определения расстояний путем сравнения видимой и абсолютной звездных величин. Действительно, чтобы получить верное значение r, в формулу (11.6) следует подставить не т, а т', в результате чего получим lg r = l + 0,2 (m – M – g Ч CE).(12.10)



Если, например, избыток цвета в фотографических лучах достигает целой звездной величины, то без учета межзвездного поглощения расстояние окажется завышенным в 8 раз! Для выяснения физической природы поглощающей материи мы воспользовались средним значением величины селективного поглощения света на единицу длины в окрестности Солнца. Теперь рассмотрим, как меняется в различных направлениях полное поглощение, т. е. какова величина и форма всего поглощающего слоя. Наиболее сильное поглощение – вблизи плоскости Галактики. Здесь оно очень велико (особенно в направлении на центр Галактики) и меняется в больших пределах. По мере удаления от плоскости Млечного Пути общая величина межзвездного поглощения быстро падает за счет уменьшения толщины поглощающего слоя, расположенного на луче зрения. Уменьшение это оказывается примерно пропорциональным косинусу угла b между плоскостью Галактики и лучом зрения. В направлении, перпендикулярном к плоскости Галактики (полюс Галактики), полное поглощение видимого света (т.е. не на 1 кпс, а на всем протяжении слоя) составляет около 0m,4. Пропорциональность поглощения величине cos b означает, что поглощающий слой – плоский. Аналогичную зависимость мы получали при определении оптической толщины

земной атмосферы, предполагая ее слои плоскопараллельными (§ 118). Приведенная только что величина поглощения в направлении, перпендикулярном к этой плоскости (0m,4), составляет 1/4 от среднего значения поглощения Dm на 1 кпс. Поэтому, предполагая пылевой слой однородным, получим, что его толщина составляет всего лишь около Таким образом, пыль относится к плоской подсистеме Галактики, распределяясь в пределах диска толщиной в несколько сотен парсеков. Внешний вид пылевых туманностей позволяет считать, что распределение пыли в этом диске должно иметь клочковатый характер. В некоторых случаях удается видеть часть пылевой туманности, освещенную какой-либо близко находящейся яркой, но не слишком горячей звездой. Поперечник освещенной области обычно меньше 1 пс. Но и в пределах таких небольших объемов распределение пылевой материи оказывается очень неравномерным. Часто наблюдаются изогнутые тонкие волокна, обращенные выпуклостью в сторону от освещающей звезды, которую обычно легко удается найти, пользуясь тем обстоятельством, что спектры звезды и туманности очень похожи. Последнее подтверждает, что свечение вызывается пылинками, отражающими излучение звезды, почему эти светлые туманности и называются отражающими. Множество таких облаков (по 8-10 на каждые

1000 пс) часто встречается в спиральных рукавах Галактики (см. §168) вместе с газовыми туманностями, образуя так называемые газово-пылевые комплексы. Исследования изменения поглощения с расстоянием в каком-либо определенном направлении показывают, что пыль сосредоточена в отдельных облаках, каждое из которых в среднем имеет размер 5-10 пс и поглощает процентов 20 проходящего через него света. Это соответствует ослаблению на 0m, 25, что раз в шесть меньше среднего ослабления света в окрестностях Солнца, рассчитанного на 1 кпс. Поэтому в отдельном облаке на луче зрения столько же вещества, сколько в среднем приходится на . При размерах облаков 5-10 пс это означает, что плотность пыли в отдельных облаках должна превышать среднюю в несколько десятков раз (как мы видели, в “Угольном Мешке” даже в 100 раз). Еще большей величины она достигает в маленьких (размером несколько десятых долей парсека) плотных образованиях, называемых глобулами и часто наблюдаемых в виде темных круглых деталей на фоне светлых туманностей. Концентрация пыли в них в десятки и сотни раз больше, чем даже в самых плотных пылевых облаках. Мы видим, что плотность отдельных областей межзвездной среды сильно меняется, причем, как правило, она тем больше, чем меньше ее размеры. Поэтому возможно, что сжатие межзвездных облаков в плотные туманности в конечном счете приводит к образованию звезд. Однако значительно более важную роль, чем пыль, в этом процессе играет газ, также присутствующий в диффузной межзвездной среде. Количество межзвездного газа в среднем в 100 раз больше, чем пыли.

§ 168. Межзвездный газ

Газовые туманности. Самая известная газовая туманность – в созвездии Ориона (рис. 229), протяженностью свыше 6 пс, заметная в безлунную ночь даже невооруженным глазом. Не менее красивы туманности Омега, Лагуна и Трехраздельная в созвездии Стрельца, Северная Америка и Пеликан в Лебеде, туманности в Плеядах, вблизи звезды h Киля, Розетка в созвездии Единорога и многие другие. Всего насчитывают около 400 таких объектов. Естественно, что полное их число в Галактике значительно больше, но мы их не видим из-за сильного межзвездного поглощения света.

В спектрах газовых туманностей имеются яркие эмиссионные линии, что доказывает газовую природу их свечения. У наиболее ярких туманностей прослеживается и слабый непрерывный спектр. Как правило, сильнее всех выделяются водородные линии Нa и Нb и знаменитые небулярные линии с длинами волн 5007 и 4950 Е, возникающие при запрещенных переходах дважды ионизованного кислорода О III. До того, как эти линии удалось отождествить, предполагалось, что их излучает гипотетический элемент небулий. Интенсивны также две близкие запрещенные линии однократно ионизованного

кислорода О II с длинами волн около 3727 Е, линии азота и ряда других элементов. Внутри газовой туманности или непосредственно вблизи от нее почти всегда можно найти горячую звезду спектрального класса О или В0, являющуюся причиной свечения всей туманности. Эти горячие звезды обладают очень мощным ультрафиолетовым излучением, ионизующим и заставляющим светиться окружающий газ точно так же, как это имеет место в планетарных туманностях (см. § 152). Поглощенная атомом туманности энергия ультрафиолетового кванта звезды большей частью идет на ионизацию атома. Остаток энергии расходуется на придание скорости свободному электрону, т.е. в конечном счете превращается в тепло. В ионизованном газе должны также происходить и обратные процессы рекомбинации с возвращением электрона в связанное состояние. Однако чаще всего это реализуется через промежуточные энергетические уровни, так что в итоге вместо первоначально поглощенного жесткого ультрафиолетового кванта атомы туманности излучают несколько менее энергичных квантов видимых лучей (этот процесс называется


Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   15




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет