Курс общей астрономии



бет15/15
Дата28.04.2016
өлшемі0.59 Mb.
#92687
1   ...   7   8   9   10   11   12   13   14   15

периоду обращения лунных узлов (см. § 76). Вследствие этого движения земной оси полюсы мира описывают на небесной сфере эллипсы, большие оси которых равны 18”,42, а малые – 13'', 72. В результате прецессии и нутации земной оси полюсы мира в действительности описывают на небе сложные волнистые линии. Притяжение планет слишком мало, чтобы вызвать изменения в положении оси вращения Земли, но оно действует на движение Земли вокруг Солнца, изменяя положение в пространстве плоскости земной орбиты, т.е. плоскости эклиптики. Эти изменения положения плоскости эклиптики называются планетной прецессией, которая смещает точку весеннего равноденствия к востоку на 0”, 114 в год.

§ 73. Следствия прецессионного движения земной оси

Как уже было сказано, вследствие прецессионного движения земной оси полюсы мира за 26 000 лет описывают вокруг полюсов эклиптики круги радиусом приблизительно в 23°,5. Но так как полюсы эклиптики также перемещаются по небесной сфере (прецессия от планет), то кривые, описываемые полюсами мира, не замыкаются. На рис. 53 показано прецессионное движение северного полюса мира среди звезд. В настоящее время северный полюс мира находится вблизи звезды a Малой Медведицы, почему эта звезда и называется Полярной. Но 4000 лет назад ближе всех к северному полюсу мира была звезда a Дракона, а через 12 000 лет “полярной звездой” станет a Лиры (Вега). Вместе с изменением направления оси мира меняется и положение небесного экватора, плоскость которого перпендикулярна к этой оси и параллельна плоскости земного экватора. Плоскость эклиптики также несколько меняет свое положение в пространстве вследствие прецессии от планет. Поэтому точки пересечения небесного экватора с эклиптикой (точки равноденствий) медленно перемещаются среди звезд к западу. Скорость этого перемещения за год называется общей годовой прецессией в эклиптике.

Общая годовая прецессия в экваторе m = 50»,26 cos e = 46”,11, где e – наклонение эклиптики к экватору, которое в настоящее время медленно уменьшается (на 0»,47 в год), но через несколько тысяч лет уменьшение сменится столь же медленным увеличением, так как это возмущение (прецессия от планет) имеет периодический характер. В начале нашей эры точка весеннего равноденствия находилась в созвездии Овна, а точка осеннего равноденствия – в созвездии Весов. Равноденственные точки обозначались тогда знаками этих созвездий ^ и d соответственно. С тех пор точка весеннего равноденствия переместилась в созвездие Рыб, а точка осеннего равноденствия – в созвездие Девы, но их обозначения остались прежними.

Так как движение равноденственных точек направлено навстречу видимому годовому движению Солнца по эклиптике, то Солнце приходит в эти точки каждый раз

несколько раньше, чем если бы они были неподвижными (слово “прецессия” и

означает “предварение равноденствий”). По этой причине промежуток времени между последовательными прохождениями центра Солнца через точку весеннего

равноденствия, называемый тропическим годом (см. § 18), короче периода обращения

Земли вокруг Солнца, называемого звездным годом (см. § 38). Разница между обоими годами составляет около 20 минут – столько времени нужно Солнцу, движущемуся по

эклиптике к востоку со скоростью приблизительно 1° в сутки, чтобы пройти 51”,26. Точка весеннего равноденствия является началом счета в. экваториальной и

эклиптической системах координат (см. § 11 и 15). Поэтому вследствие ее движения к западу эклиптические долготы всех звезд ежегодно увеличиваются на 50»,26, а эклиптические широты не изменяются, так как лунно-солнечная прецессия не изменяет положения плоскости эклиптики. Обе экваториальные координаты, прямое восхождение и склонение всех звезд непрерывно изменяются. В результате происходит медленное изменение вида звездного неба для данного места на Земле. Некоторые невидимые ранее звезды будут восходить и заходить, а некоторые видимые

– станут невосходящими светилами. Так, например, через несколько тысяч лет в Европе можно будет наблюдать невидимый теперь Южный Крест, но зато нельзя будет увидеть Сириус и часть созвездия Ориона.



§ 74. Движение полюсов Земли по ее поверхности

По многолетним измерениям географических широт в нескольких пунктах Земли было замечено, что широты пунктов. не остаются постоянными, а периодически меняются, отклоняясь. от их среднего значения до 0»,3, причем, когда в одном пункте широта несколько увеличивается, то в другом пункте, лежащем на противоположном географическом меридиане, широта уменьшается приблизительно на такую же величину. Эти колебания географических широт объясняются тем, что тело Земли смещается относительно оси вращения, а так как это смещение не влияет на ось вращения Земли, направление которой остается фиксированным в пространстве, то в разное время с полюсами вращения совпадают различные точки поверхности Земли. В результате полюсы Земли “блуждают” по ее поверхности. Северный полюс Земли, описывая на ее поверхности сложную кривую, не выходит из квадрата со сторонами около 30 м. При этом его движение происходит против часовой стрелки (рис. 54), если смотреть на северный полюс извне. Движение полюсов Земли, как и колебания географических. широт, имеет периодический характер. Основными периодами. являются 14-месячный период Чандлера и 12-месячный или годовой период. Последний период явно связан с сезонными изменениями в распределении воздушных масс, с переносом масс воды в виде снега с одного полушария Земли на другое и т. п. Период Чандлера – естественный период колебаний Земли, который был теоретически предсказан Эйлером еще в XVIII в. Если бы Земля была абсолютно твердым телом, естественный период был бы около 10 месяцев. Однако Земля пластична и подвержена упругим деформациям, вследствие чего естественным период увеличивается до 14 месяцев.

Рис. 54. Движение северного полюса Землю по ее поверхности с 1952 по 1957 г.

Движение полюсов Земли по ее поверхности было обнаружено в конце XIX в. В 1898 г. была организована Международная служба широты (МСШ), в которую вошло 6 станций, расположенных на одной широте j = + 39° 08’: в Италии, России (в Чарджоу, ныне Туркменская ССР), Японии и три в США. В настоящее время в МСШ число станций достигает 30; расположены они на различных географических широтах. Из систематических наблюдений всех станций МСШ, начиная с конца 1899 г., регулярно выводились и выводятся положения северного полюса на поверхности Земли для каждой десятой доли года.

§ 75. Неравномерность вращения Земли. Эфемеридное время. Атомное время

Период вращения Земли вокруг оси есть промежуток времени, за который Земля делает один полный оборот относительно какого-нибудь неизменного направления. Этот промежуток близок к продолжительности звездных суток (см. § 19), но не равен ему, так как направление на точку весеннего равноденствия (в плоскости небесного экватора) вследствие прецессии (см. § 73) изменяется за год

приблизительно на 46”. За одни звездные сутки направление на точку весеннего равноденствия изменяется на 0»,126 = 46»:366. Земля на такой угол поворачивается за время 0s,008, и так как точка весеннего равноденствия смещается к западу, т. е. навстречу вращению Земли, то период вращения Земли превосходит звездные сутки на 0s,008 и равен 23h 56m 04s,098 среднего солнечного времени. В результате многочисленных исследований было установлено, что угловая скорость вращения Земли непостоянна, т.е. вращение Земли неравномерно. Изменения скорости вращения Земли делятся на три типа: вековые, нерегулярные (скачкообразные) и периодические, или сезонные. В результате вековых изменений продолжительность одного оборота Земли увеличивалась за последние 2000 лет в среднем на 0s,0023 в столетие (по наблюдениям за последние 250 лет это увеличение меньше – около 0s,0014 за 100 лет). Вековое замедление скорости вращения Земли вызвано тормозящим действием лунных и солнечных приливов (см. § 55). Скачкообразные изменения скорости вращения могут увеличить или уменьшить продолжительность суток на 0s,004. Причина этих изменений с достоверностью еще не установлена. В результате сезонных изменений скорости вращения Земли продолжительность суток

в течение года может отличаться от их средней продолжительности за год на ± 0s,001. При этом самые короткие сутки приходятся на июль – август, а самые длинные – на март. Наиболее вероятной причиной периодических. изменений скорости являются сезонные перераспределения воздушных и водных масс на поверхности Земли. Эти изменения скорости вращения Земли были обнаружены в 40-х годах нашего века экспериментально с помощью кварцевых часов. Неравномерность вращения Земли векового и нерегулярного характера проявляется в расхождениях наблюдаемых положений Луны и близких к Земле планет (Меркурий, Венера) с вычисленными (эфемеридными) положениями этих тел. Еще в середине XIX в. в наблюдаемом движении Луны были обнаружены отклонения от вычисленного движения, не объяснимые теорией тяготения. Уже тогда было высказано предположение, что эти отклонения кажущиеся и могут быть вызваны неравномерным вращением Земли вокруг оси. Действительно, когда вращение Земли замедляется, нам кажется, что Луна движется по своей орбите быстрее, а когда оно ускоряется, движение Лупы кажется замедленным. Это объяснение подтвердилось, когда в XX в. были обнаружены отклонения в движениях Меркурия и Венеры, аналогичные отклонениям в движении Луны, одновременные с ними и пропорциональные средним движениям этих планет. Вследствие неравномерного вращения Земли средние сутки, оказываются величиной непостоянной. Поэтому в астрономии пользуются двумя системами счета времени: неравномерным временем, которое получается из наблюдений и определяется действительным вращением Земли, и равномерным временем, которое является аргументом при вычислении эфемерид планет и определяется по движению Луны и планет. Равномерное время называется ньютоновским или эфемеридным временем. Начиная с 1960 г., в астрономических ежегодниках эфемериды Солнца, Луны, планет и их спутников даются в системе эфемеридного времени. Чтобы вычислить положения этих небесных тел в системе всемирного (неравномерного) времени, необходимо знать разность DT между эфемеридным временем ТЕ и всемирным Т0 . Точное значение разности DT может быть получено лишь для прошедших моментов времени, из сравнения наблюденных координат Луны с ее вычисленными координатами. Поэтому в астрономических ежегодниках публикуется экстраполированное значение DT на данный год. Разность DT была равна нулю около 1900 г. Но так как скорость вращения Земли в XX в. в среднем уменьшалась, т.е. наблюденные сутки были длиннее равномерных

(эфемеридных) суток, то эфемеридное время за протекшие 75 лет “ушло” вперед относительно всемирного времени на 46s, а для 1978 г. принято DT = ТЕ – T0 = + 47s. В связи с использованием системы эфемеридного времени в астрономии и физике введено новое определение производной единицы времени – секунды. Раньше она определялась как доля средних солнечных суток. В октябре 1956 г. Международное

Бюро мер и весов постановило: “секунда есть доля тропического года”, продолжительность которого, в системе эфемеридного времени, в 1900 г. равнялась

365,2421988 средних солнечных суток. (Число 31 566 925,9747 = 365,2421988 Ч 86 400 – есть число секунд в этом тропическом году.) Секунда в таком определении получила название эфемеридной. Таким образом, новое определение секунды учитывает непостоянство средних солнечных суток.

Создание атомных и молекулярных эталонов частоты (см. § 100) позволило впервые получить принципиально новую, не зависящую от вращения Земли шкалу времени. В 1967 г. была установлена система атомного времени – TUA, единицей которого является атомная секунда, определяемая как продолжительность 9 192 631 770 колебаний излучения, соответствующего резонансной частоте перехода между двумя. сверхтонкими уровнями основного состояния атома цезия-133. Атомное время TUA вычисляется Международным Бюро времени на основе регулярного сравнения атомных эталонов отдельных обсерваторий. Результаты нескольких лет исследовании и сравнений между собой атомных эталонов показали, что шкала времени, задаваемая ими, чрезвычайно стабильна и легко воспроизводима – продолжительность атомной секунды на разных обсерваториях отличалась не более, чем на 1 Ч10 –10. Атомное время не зависит от астрономических наблюдений. и движений небесных тел. По этой причине, а также в силу высокой точности воспроизводства равномерной шкалы времени: оно является основой для изучения периодической неравномерности вращения Земли вокруг своей оси.

§ 76. Орбита Луны и ее возмущения

Орбита невозмущенного движения Луны вокруг Земли есть эллипс, эксцентриситет которого равен 0,055, или 1/18, а большая полуось равна 384 400 км. В перигее расстояние от Земли до Луны меньше среднего на 21 000 км, а в апогее – на столько же больше. Плоскость лунной орбиты наклонена к плоскости эклиптики в среднем под углом 5°

09’. Луна движется вокруг Земли в направлении с запада к востоку, т.е. в том же направлении, что и Земля вокруг Солнца. Период обращения Луны вокруг Земли называется сидерическим или звездным месяцем. Его продолжительность равна 27,32 средних солнечных суток. По истечении этого времени Луна снова занимает прежнее положение на своей орбите. Движение Луны является одним из самых трудных для исследования по двум причинам:

1) возмущения в движении Луны очень нелики (см. § 54); 2) Луна близка к Земле, и поэтому в ее движении заметны такие отклонения, которые ускользают при наблюдении более далеких небесных тел. Вследствие возмущений элементы лунной орбиты постоянно изменяются. Периодическим возмущениям подвержены все элементы лунной орбиты. Например, наклонение орбиты,

равное в среднем 5° 09’, колеблется в пределах от 4° 58’ до 5° 20’ за время, несколько меньшее полугода. Каждый элемент лунной орбиты имеет не одно периодическое возмущение, а несколько сотен с разными периодами и амплитудами. Вследствие этого действительное движение Луны необычайно сложно, и его исследование составляет одну из самых трудных задач небесной механики. Вековым возмущениям подвержены долгота восходящего узла и долгота перигея лунной орбиты. Лунные узлы непрерывно перемещаются по эклиптике навстречу движению самой Луны, т.е. к западу, совершая полный оборот по эклиптике за 18 лет 7 месяцев (6793 средних суток). Перигей лунной орбиты непрерывно движется к востоку, завершая полный оборот за 9 лет (3232 средних суток). За каждый оборот Луны вокруг Земли перемещение узлов составляет около 1°,5. Следовательно, по истечении звездного месяца Луна никогда не возвращается в точности к прежнему положению, и каждый следующий оборот она совершает, строго говоря, по новому пути. И только через 18 лет и 7 месяцев, когда узлы сделают полный оборот по эклиптике, лунная орбита занимает опять прежнее положение. Движение узлов весьма заметно влияет на условия видимости Луны. Когда восходящий узел лунной орбиты совпадает с точкой весеннего равноденствия, то орбита Луны расположена вне угла между небесным экватором и эклиптикой. Следовательно, угол между орбитой Луны и небесным экватором в этом случае равен 28°36' (23°27' + 5°09’). Если в точке весеннего равноденствия находится нисходящий узел, то орбита Луны расположена между небесным экватором и эклиптикой, а угол между

орбитой Луны и небесным экватором равен 18°18' (23°27’ – 5°09'). Таким образом, в первом случае склонение Луны в течение месяца будет изменяться от +28° 36' до

-28° 36', а во втором случае от +18° 18' до –18° 18', т. е. в меньших пределах. Изменение пределов склонения Луны оказывает существенное влияние на условия ее видимости.

§ 77. Видимое движение и фазы Луны

Видимое движение Луны на фоне звезд есть следствие действительного движения Луны вокруг Земли. Луна в течение звездного месяца перемещается среди звезд всегда в одну и ту же сторону – с запада на восток, или прямым движением. Видимый путь Луны на небе – незамыкающаяся кривая, постоянно меняющая свое положение среди звезд зодиакальных созвездий. Видимое движение Луны сопровождается непрерывным изменением ее внешнего вида, характеризуемого фазой Луны. В некоторые дни Луна совсем не видна на небе. В другие дни она имеет вид узкого серпа, полукруга и полного круга. Лунные фазы объясняются тем, что Луна подобно Земле является темным, непрозрачным шарообразным телом и при движении вокруг Земли занимает различные положения относительно Солнца (рис. 55). Из-за удаленности Солнца солнечные лучи, падающие на Луну, почти параллельны и всегда освещают ровно половину лунного шара; другая его половина остается темной. Но так как к Земле обычно обращены часть светлого полушария и часть темного, то Луна чаще всего кажется нам неполным кругом. Линия, отделяющая темную часть диска Луны от светлой, называется терминатором и всегда является полуэллипсом. Угол f между направлениями от Солнца к Луне и от Луны к Земле называется фазовым углом. Различают четыре основные фазы Луны, которые постепенно переходят одна в другую в следующей последовательности: новолуние, первая четверть, полнолуние, последняя четверть.

Во время новолуния Луна проходит между Солнцем и Землей (т.е. находится в соединении с Солнцем), фазовый угол Во время новолуния Луна проходит между Солнцем и Землей (т.е. находится в соединении с Солнцем), фазовый угол f = 180°, к Земле обращена темная сторона Луны и она не видна на небе. Дня через два после новолуния Луна видна в виде узкого серпа на западе, в лучах вечерней зари, вскоре после захода Солнца, Лунный серп, обращенный выпуклостью к Солнцу, ото дня ко дню постепенно расширяется и приблизительно через 7 суток после новолуния принимает форму полукруга. Наступает фаза, называемая первой четвертью. В это время Луна находится в восточной квадратуре, т.е. на 90° к востоку от Солнца, фазовый угол f = 90°, и к Земле обращена половина освещенного и половина неосвещенного полушария Луны. При этой фазе Луна видна в первой половине ночи, а затем заходит за горизонт. С каждым днем с Земли видна все большая часть освещенного полушария Луны и приблизительно через 7 суток после первой четверти наступает полнолуние, когда Луна имеет вид полного круга. Во время полнолуния Луна находится в противостоянии с Солнцем, f = 0°, и к Земле обращено все освещенное полушарие Луны. Полная Луна видна на небе в направлении, противоположном направлению на Солнце (ее эклиптическая долгота отличается от эклиптической долготы Солнца на 180°). Поэтому полная Луна видна на небе всю ночь; восходит она приблизительно во время захода Солнца, а заходит – около момента его восхода.

После полнолуния Луна начинает “убывать”, с западной стороны ее диска появляется

ущерб”, который постепенно растет, так как с каждым днем с Земли видна все меньшая часть освещенного полушария Луны. Приблизительно через 7 дней после полнолуния Луна снова видна в виде полукруга. Наступает последняя четверть. В это время Луна находится в западной квадратуре, f = 90°, и к Земле снова обращена половина освещенного и половина неосвещенного полушария Луны. Но теперь Луна отстоит уже на 90° к западу от Солнца и видна во второй половине ночи, вплоть до восхода Солнца. Постепенно ущерб лунного диска увеличивается, Луна снова принимает вид узкого серпа и видна на востоке, в лучах утренней зари, незадолго перед восходом Солнца. Через 2-3 дня лунный серп исчезает, и Луна снова не видна на небе, так как приблизительно через 7 суток после последней четверти опять наступает новолуние. Соединение Луны с Солнцем во время новолуния и противостояние во время полнолуния называются сизигиями.



§ 78. Периоды обращения Луны

Промежуток времени между двумя последовательными одноименными фазами Луны (например, между двумя полнолуниями) называется синодическим месяцем. Из наблюдений установлено, что синодический месяц в среднем равен 29,53 средних солнечных суток. Таким образом, синодический месяц длиннее сидерического. Это легко понять из рис. 56, на котором положение 1 соответствует взаимному расположению Луны, Земли и Солнца в момент полнолуния. Через 27,32 суток, т. е. через сидерический месяц, Луна, сделав полный оборот по своей орбите, займет прежнее положение относительно звезд, но так как Земля за это время переместится в положение 2, то полнолуния еще не будет. Оно наступит спустя некоторое время, когда Земля займет положение 3.

Математическая связь синодического и сидерического обращения Луны та же, что и для внутренних планет (см. § 38). Кроме сидерического и синодического периодов обращений в движении Луны различают еще три периода: аномалистический месяц – промежуток времени между двумя последовательными прохождениями Луны через перигей (27,55 средних суток); драконический месяц – промежуток времени между двумя последовательными прохождениями Луны через один и тот же узел своей орбиты (27,21 средних суток); тропический месяц – промежуток времени, в течение которого долгота Луны увеличивается на 360°. Вследствие прецессии тропический месяц короче сидерического месяца приблизительно на 7 секунд. Драконический месяц короче сидерического из-за движения узлов лунной орбиты навстречу движению Луны, а аномалистический месяц длиннее сидерического потому, что перигей лунной орбиты движется в ту же сторону, что и сама Луна.

§ 79. Вращение и либрации Луны

Луна обращена к Земле всегда одной и той же стороной, одним и тем же полушарием, так как она вращается вокруг своей оси с тем же периодом (и в том же

направлении), с каким она обращается вокруг Земли, т.е. “звездные сутки” на Луне составляют 27,32 земных средних суток. Ось вращения Луны наклонена к плоскости

лунной орбиты на угол 83° 20' (изменяется в пределах от 83° 10' до 83° 31’). Таким образом, плоскость лунного экватора с плоскостью лунной орбиты составляет угол 6°39', а с плоскостью эклиптики 1° 30'. При этом плоскость эклиптики лежит между плоскостями лунного экватора и орбиты Луны и все три плоскости пересекаются по одной прямой. Последнее замечательное обстоятельство было обнаружено Кассини в 1721 г. и называется законом Кассини. В каждый данный момент с Земли видна ровно половина поверхности Луны, но продолжительные наблюдения позволяют изучать почти 60% ее поверхности. Это возможно благодаря явлениям, носящим общее название либрации (качаний) Луны. Оптические, или видимые либрации, при которых Луна в действительности никаких “колебаний” не совершает, бывают трех видов: по долготе, по широте и параллактическая. Либрация по долготе вызывается тем, что Луна вращается вокруг оси равномерно, а ее движение по орбите согласно второму закону Кеплера вблизи перигея быстрее, а вблизи апогея – медленнее. Поэтому за четверть месяца после прохождения перигея П (рис. 57) Луна пройдет путь больше четверти всей орбиты, а вокруг оси повернется ровно на 90°. Точка а, которая ранее была в центре лунного диска, теперь будет видна уже левее центра диска (сместится к востоку).

В том же направлении сместится и точка b, которая раньше была видна на правом (западном) краю диска, и, следовательно, станет видимой часть поверхности Луны за западным краем ее диска. В апогее А будет видна та же поверхность Луны, что и в перигее, но за четверть месяца после прохождения апогея Луна пройдет меньше четверти всей орбиты, а вокруг оси снова повернется ровно на 90°, и теперь уже будет видна часть поверхности Луны за восточным краем ее диска. Период либрации по долготе равен аномалистическому месяцу, а наибольшая возможная величина ее 7° 54'. Либрация по широте возникает от наклона оси вращения Луны к плоскости ее орбиты и сохранения направления оси в пространстве при движении Луны (рис. 58).

В результате с Земли попеременно видна то часть поверхности Луны, расположенная вокруг ее южного полюса, то, наоборот, вокруг северного полюса. Период либрации по широте равен драконическому месяцу, а ее величина достигает 6°50’. Суточная или параллактическая либрация возникает вследствие сравнительной близости Луны к Земле. Поэтому из разных точек Земли поверхность Луны видна неодинаково. Два наблюдателя, находящиеся в двух противоположных точках земного экватора, в один и тот же момент видят несколько различные области лунной поверхности. Так, наблюдатель, для которого Луна только еще восходит, видит часть поверхности Луны за ее западным краем диска, а второй наблюдатель, для которого Луна в этот момент уже заходит, этой части поверхности Луны не видит, но зато видит часть поверхности за восточным краем диска. Параллактическая либрация составляет около 1°.

Физическая либрация, т.е. действительное “качание” Луны, происходит оттого, что большая полуось лунного эллипсоида периодически отклоняется от направления на Землю, а притяжение Земли стремится вернуть ее в это положение. Величина физической либрации очень мала – около 2».

§ 80. Покрытия светил Луной. Солнечные затмения

При движении вокруг Земли Луна проходит перед более далекими светилами и своим диском может их заслонить. Это явление носит общее название покрытий светил Луной. Определение точных моментов начала и конца покрытий имеет большое значение для изучения движения Луны и формы ее диска. Чаще всего происходят покрытия звезд, реже случаются покрытия планет.

Покрытия Солнца Луной называются солнечными затмениями. Солнечное затмение имеет различный вид для разных точек земной поверхности. Диск Солнца будет целиком закрыт только для наблюдателя, находящегося внутри конуса лунной тени, максимальный диаметр которой на поверхности Земли не превосходит 270 км. В этой сравнительно узкой области земной поверхности, куда падает тень от Луны, будет видно полное солнечное затмение (рис. 59). В областях земной поверхности, куда падает полутень от Луны, внутри так называемого конуса лунной полутени будет видно частное солнечное затмение – диск Луны закроет только часть солнечного диска. Чем ближе наблюдатель к оси тени, тем большая часть диска Солнца закрыта, тем больше фаза затмения. Вне конуса полутени виден весь диск Солнца, и никакого затмения не наблюдается. Так как расстояние Луны от Земли изменяется от 405 500 км до 363 300 км, а длина конуса полной тени от Луны в среднем равна 374 000 км, то вершина конуса лунной тени иногда не доходит до поверхности Земли. В этом случае для наблюдателя вблизи оси конуса лунной тени солнечное затмение будет кольцеобразным – края солнечного диска останутся незакрытыми и будут образовывать вокруг темного диска Луны тонкое блестящее кольцо. В разных точках Земли солнечное затмение наступает в разное время. Вследствие движения Луны вокруг Земли и вращения Земли вокруг своей оси тень от Луны перемещается по земной поверхности приблизительно с запада на восток, образуя полосу тени длиной в несколько тысяч километров и шириной в среднем около 200 км (максимальная ширина 270 км). Так как Луна движется с запада на восток, то солнечное затмение начинается с западного края солнечного диска. Сначала на нем появляется ущерб, имеющий форму дуги круга радиуса, равного радиусу диска Солнца. Затем ущерб постепенно растет, и Солнце принимает форму все более и более узкого серпа. Когда исчезнет последняя точка солнечного диска, наступает фаза полного затмения, которая длится всего несколько минут – не более семи, а чаще всего две-три минуты. Затем темный диск Луны постепенно сходит с солнечного диска, и затмение кончается. Общая продолжительность всех фаз солнечного затмения может длиться свыше двух часов. Совершенно очевидно, что затмения Солнца могут происходить только во время новолуния.

§ 81. Лунные затмения

Земля, освещаемая Солнцем, отбрасывает от себя тень (и полутень) в сторону, противоположную Солнцу (рис. 60). Так как диаметр Солнца больше диаметра Земли, то ее тень подобно лунной тени имеет форму постепенно суживающегося конуса. Конус земной тени длиннее конуса лунной, а его диаметр на расстоянии Луны превышает диаметр Луны больше, чем в 2,5 раза. При движении вокруг Земли Луна может попасть в конус земной тени, и тогда произойдет лунное затмение. Поскольку во время затмения Луна в действительности лишается солнечного света, то лунное затмение видно на всем ночном полушарии Земли и для всех точек этого полушария начинается в один и тот же физический момент и заканчивается также одновременно. Но эти моменты по местному времени каждой точки Земли, конечно, различны и зависят от географической долготы места. Так как Луна движется с запада на восток, то первым входит в земную тень левый край Луны. На нем появляется ущерб, который постепенно увеличивается, и видимый диск Луны принимает форму серпа, отличающегося от серпа лунных фаз тем, что линия, отделяющая светлую часть диска Луны от затемненной, представляет собой дугу окружности с радиусом, приблизительно в 2,5 раза большим радиуса лунного диска, тогда как при лунных фазах терминатор имеет вид полуэллипса.

Если Луна полностью войдет в земную тень, то произойдет полное затмение Луны, если в тени окажется только часть Луны, то затмение будет частным. Так как диаметр земной тени на расстоянии Луны от Земли может превышать диаметр Луны до 2,8 раза, то полное лунное затмение может продолжаться почти до двух часов. Полному или частному лунному затмению предшествует (и завершает их) полутеневое лунное затмение, когда Луна проходит сквозь земную полутень. Полутеневое затмение может быть и без последующего наступления теневого затмения. Совершенно очевидно, что затмения Луны могут происходить только во время полнолуний.

§ 82. Условия наступления солнечных и лунных затмений

Если бы плоскость лунной орбиты совпадала с плоскостью эклиптики, то солнечные и лунные затмения происходили бы каждый синодический месяц. Но плоскость лунной орбиты наклонена к плоскости эклиптики под углом в 5° 09', поэтому Луна во время новолуния или полнолуния может находиться далеко от плоскости эклиптики, и тогда ее диск пройдет выше или ниже диска Солнца или конуса тени Земли, и никакого затмения не случится. Чтобы произошло солнечное или лунное затмение, необходимо, чтобы Луна во время новолуния или полнолуния находилась вблизи узла своей орбиты, т.е. недалеко от эклиптики.

Пусть на рис. 61 С, Т и L обозначают центры Солнца, Земли и Луны и находятся в

одной плоскости, перпендикулярной к плоскости эклиптики. Тогда Р LTC = b есть геоцентрическая эклиптическая широта Луны, и если этот угол будет меньше изображенного на рисунке, то произойдет, хотя и непродолжительное, частное затмение Солнца для точки О на Земле. Угол b равен сумме трех углов, а именно: b = Р LTL' + Р L'TC' + Р C'TC.

Но угол LTL’ = r( есть угловой радиус Луны; L’TC’ = r¤ – угловой радиус Солнца;

угол L'TC' = Р TL’O – Р TC'O, где Р TL'O = р( есть горизонтальный параллакс Луны, a РTC'O = p¤ – горизонтальный параллакс Солнца. Следовательно, b = r( + r¤ + p( – p¤. Если для величин в правой части принять их средние значения r( = 15',5, r¤ = 16',3, p( = 57',0, p¤ « 8»,8, то b = 88',7. Следовательно, для наступления хотя бы непродолжительного частного затмения Солнца необходимо, чтобы геоцентрическая эклиптическая широта Луны была меньше 88',7. Угловое расстояние центра Луны от узла, т.е. долгота Луны относительно узла Dl может быть вычислена из сферического прямоугольного треугольника

0 излучение происходит в красном крыле, а при vr

> D ; поэтому интерферометрами можно разрешить очень близко расположенные точечные источники.

Радиоизлучение точечного источника при наблюдениях с одиночной антенной записывается так, как показано на рис. 108, а, а при наблюдениях интерферометром так, как на рис. 108,6. Если угловые размеры источника много больше, чем Dq , то источник не регистрируется интерферометром. Изменяя длину базы, можно определить размеры и распределение яркости источника вдоль одной координаты. Проделав такой же ряд измерений при другой ориентации базы, можно узнать распределение яркости и по другой координате. В последние годы разработана методика радиоинтерферометрических наблюдений с использованием двух раздельных приемников. В этом случае антенны интерферометра могут быть разнесены на тысячи километров. С помощью таких систем в радиоастрономии удалось получить угловое разрешение порядка 10-4 секунды дуги – намного лучше, чем дают оптические телескопы. Благодаря мощному развитию радиоастрономической техники к настоящему времени исследовано радиоизлучение Солнца и Луны, планет Солнечной системы от Меркурия до Урана включительно, многих объектов, принадлежащих нашей Галактике (остатков сверхновых звезд, пульсаров, диффузных и планетарных туманностей, облаков межзвездного газа), радиоизлучение внегалактических объектов. В результате радиоастрономических наблюдений были обнаружены внегалактические объекты нового

типа – квазары (см. § 174). Радиоастрономические исследования позволили получить очень важные результаты во многих разделах астрофизики. С точки зрения наблюдательной радиодиапазон имеет некоторые особые преимущества перед оптическим. Так как радиоволны облаками не задерживаются, наблюдения на радиотелескопах ведутся и в облачную погоду. Кроме того, даже самые слабые космические источники радиоизлучения могут наблюдаться днем так же хорошо, как и

ночью, поскольку Солнце радиодиапазоне “не подсвечивает” земную атмосферу. В инфракрасном диапазоне (на волнах длиной от 1 микрона до 1 миллиметра) используются обычные оптические телескопы. Главная трудность в этом диапазоне – помехи со стороны теплового излучения телескопа и атмосферы. Кроме того, атмосфера сильно поглощает излучение в большей части инфракрасного диапазона.

Однако имеется ряд участков спектра (“окна прозрачности”), в которых пропускание достаточно велико. Особые трудности возникают при наблюдениях рентгеновского излучения (длины волн от 0,1 до 10 ангстрем). Современные методы шлифовки и полировки материалов не позволяют изготовить зеркало с такой высокой точностью. Однако оказывается, что при падении и отражении луча под углом к нормали близким к 90° (“косое

падение”), требования к точности изготовления зеркальной поверхности значительно ослабляются. Телескопы, использующие этот принцип, называются телескопами косого падения, и, будучи установленными на искусственных спутниках, позволяют измерять рентгеновское излучение космических источников. В рентгеновском и гамма-диапазоне для выделения более или менее узких углов используются также трубчатые коллиматоры – пакеты из параллельных трубок с достаточно толстыми стенками, установленные перед счетчиком энергичных фотонов.

На длинах волн короче 10-4 Е (энергия кванта больше 100 Мэв) угловое разрешение

получается благодаря самому методу регистрации (см. § 113): такие кванты при взаимодействии с веществом дают пары электронов и позитронов, направление движения которых почти такое же, как у самого кванта.

§ 111. Глаз как приемник излучения

В современной астрономии глаз наблюдателя используется в качестве приемника излучения не очень широко, главным образом при гидировании или в астрометрических наблюдениях. Почти все виды астрофизических исследований выполняются с помощью приемников других типов. Чувствительность глаза зависит от длины волны. В среднем глаз наблюдателя

наиболее чувствителен к излучению с длиной волны l m = 5550 Е (зеленый цвет). По мере удаления от l m в обе стороны чувствительность глаза уменьшается и падает

до нуля около 3900 и 7600 Е. Это – фиолетовая и красная границы видимой, или визуальной, области спектра. Зависимость чувствительности приемника излучения от длины волны называется спектральной характеристикой. Спектральную характеристику глаза часто называют кривой видности. У разных наблюдателей кривые видности несколько различаются. Средняя кривая видности дневного зрения, принятая международным соглашением, приведена на рис. 109, а. Максимум кривой видности ночного зрения сдвинут в сторону коротких волн примерно на 450 Е.

Минимальный поток излучения, который может быть обнаружен приемником, называется его порогом чувствительности. Порог чувствительности глаза очень мал – около

10-9 эргЧ сек –1. Это соответствует примерно 103 квант/сек. Для того чтобы глаз достиг такой чувствительности, наблюдатель должен некоторое время побыть в темноте, адаптироваться. Явление адаптации к темноте состоит в том, что увеличивается диаметр зрачка, восстанавливается чувствительность ночного зрения и на сетчатой оболочке появляется особое светочувствительное вещество (зрительный пурпур). В результате глаз становится чувствительным к слабому освещению. Способность к адаптации позволяет глазу работать в очень широком диапазоне освещенностей (от дня к ночи освещенность изменяется, например, в 108 раз).

§ 112. Астрофотография

С середины прошлого века в астрономии стал применяться фотографический метод регистрации излучения. В настоящее время он занимает ведущее место в оптических методах астрономии. Длительные экспозиции на высокочувствительных пластинках позволяют получать фотографии очень слабых объектов в том числе таких, которые практически недоступны для визуальных наблюдений. В отличие от глаза, фотографическая эмульсия способна к длительному накоплению светового эффекта. Очень важным свойством фотографии является панорамность: одновременно регистрируется сложное изображение которое может состоять из очень большого числа элементов. Существенно, наконец, что информация, которая получается фотографическим методом, не зависит от свойств глаза наблюдателя, как это имеет место при визуальных наблюдениях. Фотографическое изображение, полученное однажды, сохраняется как угодно долго, и его можно изучать в лабораторных условиях. Фотографическая эмульсия состоит из зерен галоидного серебра (AgBr, AgCl и др.; в различных сортах эмульсии применяются разные соли), взвешенных в желатине. Под действием света в зернах эмульсии протекают сложные фотохимические процессы, в результате которых выделяется металлическое серебро. Чем больше света поглотилось данным участком эмульсии, тем больше выделяется серебра. Галоидное серебро поглощает свет в области l

3000

Е, используемых в наземных астрономических наблюдениях и в технике. Поэтому разработаны специальные фотокатоды, имеющие сложную физико-химическую структуру, которая обеспечивает малую работу выхода. Наиболее распространенные типы современных фотокатодов – это сурьмяно-цезиевый, мультищелочной и кислородно-цезиевый. Их спектральные характеристики показаны на рис. 113.

Фотокатоды для длин волн, превышающих 12 500 Е, отсутствуют. Из-за малой работы выхода фотокатод эмитирует не только фотоэлектроны, но и термоэлектроны, т.е. такие, которые из-за тепловых движений приобрели энергию, превышающую работу выхода, и смогли покинуть фотокатод. Они образуют термоэлектронный темновой ток, который мешает измерению слабых фототоков. Простые фотоэлементы с внешним фотоэффектом применяются сейчас сравнительно редко. На смену им пришли более сложные фотоэлектрические приемники – фотоумножители (ФЭУ). В этих приборах используется явление вторичной электронной эмиссии: электрон, обладающий достаточной энергией и разогнанный электрическим полем, попав на поверхность с малой работой выхода, может выбить несколько электронов. Таким образом, с помощью вторичной электронной эмиссии можно получить усиление фототока. Между фотокатодом (F) и анодом (A) в ФЭУ (рис. 114) имеется некоторое количество вторичноэлектронных эмиттеров – динодов (Д1 , Д2 и т.д.). Форма и расположение всех

электронов ФЭУ, а также приложенные к ним напряжения таковы, что фотоэлектрон, вырвавшийся из фотокатода, попадает на первый динод и выбивает из него несколько электронов, которые затем попадают на второй динод и выбивают соответственно еще большее количество электронов и т.д. В результате каждый фотоэлектрон приводит к образованию лавины вторичных электронов (до 108-109) на аноде. После фотоумножителя ставится либо прибор, измеряющий средний анодный ток, либо прибор, считающий отдельные импульсы, из которых состоит анодный ток. Поскольку каждый импульс соответствует отдельному фотоэлектрону, последний способ называется методом счета электронов. Так же как и в фотоэлементах, в фотоумножителях имеется фон темнового тока, мешающий измерениям слабых световых потоков.

Фотометрические приборы, в которых в качестве приемника света используется фотоэлемент или фотоумножитель, называются электрофотометрами. На рис. 115 приведена упрощенная схема звездного электрофотометра – прибора для фотоэлектрического измерения звездных величин: а – диафрагма, которая находится в фокусе телескопа; б – выдвижной окуляр с призмой для наведения на звезду; в – радиоактивный люминофор, который служит для контроля постоянства чувствительности; с – светофильтр; л – линза поля, которая проектирует на фотокатод изображение объектива телескопа; Ф – фотоумножитель; Б1 – блок питания фотоумножителя; У – усилитель; Б2 – блок питания усилителя; Э – самопишущий электроизмерительный прибор, регистрирующий показания на движущейся бумажной ленте. Наблюдатель в процессе измерений несколько раз вводит звезду в диафрагму и выводит ее. Когда звезды нет, прибор записывает отсчет от фона неба, обусловленного свечением верхней атмосферы. Этот отсчет пропорционален площади диафрагмы, поэтому диафрагму стараются брать поменьше. Когда звезда находится в диафрагме, прибор записывает суммарный отсчет от фона и звезды и при обработке наблюдатель берет разность обоих отсчетов. Сравнивая отсчеты n1 и n2 от разных звезд, можно определить разность звездных величин, и по известной звездной величине m1 одной звезды вычислить звездную величину m2 другой звезды. Чтобы исключить влияние атмосферы, надо либо сравнивать звезды, находящиеся на одном зенитном расстоянии, либо определить из специальных наблюдений коэффициент прозрачности атмосферы. Если звезды не очень слабые, то с помощью звездного электрофотометра можно получить точность 0m,005-0m,01. Пользуясь светофильтрами, можно электрофотометром определить цветовые характеристики звезд, а если ввести в оптический путь поляризационный анализатор, то можно измерять с высокой точностью степень поляризации света звезд. В последнее время в астрономических наблюдениях все шире применяются преобразователи изображения – электоонно-оптические преобразователи (ЭОП) и телевизионные системы. Электронно-оптический преобразователь (рис. 116) состоит из фотокатода Ф, электронной линзы Л и экрана Э, люминесцирующего под действием электронов.

Электронная линза представляет собой положительно заряженный электрод, который разгоняет электроны до сравнительно большой энергии и заставляет их двигаться по строго определенным траекториям, так что фотоэлектрон, выбитый из какой-либо точки катода, попадает в только ей соответствующую точку экрана, и на экране образуется изображение такое же, как на фотокатоде, только более яркое. Благодаря большому квантовому выходу фотокатодов, ЭОП позволяет в принципе регистрировать изображения с более короткими экспозициями, чем обычная фотография. Особенно большой выигрыш в экспозиции дают ЭОП с кислородно-цезиевыми катодами (из-за низкой чувствительности эмульсий в инфракрасной области спектра). Телевизионные системы с чувствительными телевизионными трубками в принципе также позволяют регистрировать очень слабые изображения, причем может быть получено большое усиление контраста. Однако такие системы более сложны, и в астрономическую практику внедряются медленно. В инфракрасной области спектра (l> 1 мк) для регистрации излучения используются главным образом фотосопротивления – пленочные слои или кристаллы определенных полупроводниковых веществ, концентрация или подвижность носителей заряда в которых возрастает при облучении. Это явление называется фотопроводимостью и может быть использовано для регистрации излучения вплоть до миллиметрового диапазона. Красная граница спектральной характеристики фотосопротивления определяется конкретной природой материала. Фотосопротивления, чувствительные в инфракрасной области спектра, как правило, требуют охлаждения до низкой температуры. Высокая чувствительность в инфракрасной области может быть получена также с помощью некоторых типов болометров, охлаждаемых жидким гелием. Болометры принадлежат к классу тепловых приемников, действие которых основано на увеличении температуры при поглощении излучения. В болометрах используется зависимость электрического сопротивления от температуры. К классу тепловых приемников относятся также термопары, в которых используется термоэлектрический эффект, и оптико-акустические преобразователи (ОАП), в которых излучение поглощается в некотором газовом объеме, нагревает его и расширяет. Термопары и ОАП работают без охлаждения и годятся только для измерения сравнительно больших потоков излучения. Все тепловые приемники имеют перед фотоэлектрическими то преимущество, что их чувствительность в принципе не зависит от длины волны, т.е. они не селективны. В приборах, установленных на искусственных спутниках, для регистрации рентгеновского излучения используются счетчики Гейгера, сцинтилляционные счетчики и фотоумножители с особыми фотокатодами. Счетчики Гейгера представляют собой колбу с двумя электродами, наполненную некоторым газом, ионизующимся под действием рентгеновского излучения, и имеющую прозрачное для него окно. Рентгеновский квант, пройдя через газ, образует пару ион – электрон, они ускоряются в электрическом поле между электродами, сталкиваются с нейтральными молекулами, ионизуют их, и в результате образуется лавина ионов и электронов, которая регистрируется в виде импульса тока. Каждый импульс соответствует одному кванту. Сцинтилляционный счетчик состоит из сцинтиллятора – пластины вещества, которое дает световую вспышку при попадании рентгеновского кванта, – и фотоумножителя, который эту вспышку регистрирует. Разработаны фотоумножители, катоды которых непосредственно воспринимают рентгеновские кванты. В этом случае сцинтиллятор не нужен. Сцинтилляционные счетчики специальных типов используются и для обнаружения гамма-квантов при энергиях меньше 30 Мэв. При энергиях более 30 Мэв гамма-кванты образуют при взаимодействии с веществом электронно-позитронные пары, которые могут регистрироваться ионизационными камерами и ядерными эмульсиями. Если энергия кванта больше 1000 Мэв, то образованная им электронно-позитронная пара вызывает достаточно яркую вспышку при движении в атмосфере, которая может быть обнаружена специально сконструированным наземным телескопом. Эта вспышка объясняется оптическим эффектом, открытым акад. П.А. Черенковым: электрон или позитрон, имеющий скорость большую, чем скорость распространения света в некоторой среде (она всегда меньше, чем скорость света в пустоте), излучает световую энергию. Это излучение сконцентрировано в довольно узком угле, и, наблюдая его, можно определить направление прихода пары и породившего ее кванта.

§ 114. Спектральные приборы

В главе VII было показано, как, изучая спектры небесных светил, можно получить сведения об их химическом составе, температуре, давлении, вращении и т.д. Ниже мы рассмотрим основные типы спектральных приборов, применяемых в астрономии. Впервые спектры звезд и планет начал наблюдать в прошлом веке итальянский астроном Секки. После его работ спектральным анализом занялись многие другие астрономы. Вначале использовался визуальный спектроскоп, потом спектры стали фотографировать, а сейчас применяется также и фотоэлектрическая запись спектра. Спектральные приборы с фотографической регистрацией спектра обычно называют спектрографами, а с фотоэлектрической – спектрометрами.

На рисунке 117 дана оптическая схема призменного спектрографа. Перед призмой находятся щель и объектив, которые образуют коллиматор. Коллиматор посылает на призму параллельный пучок лучей. Коэффициент преломления материала призмы зависит от длины волны. Поэтому после призмы параллельные пучки, соответствующие различным длинам волн, расходятся под разными углами, и второй объектив (камера) дает в фокальной плоскости спектр, который фотографируется. Если в фокальной плоскости камеры поставить вторую щель, то спектрограф превратится в монохроматор. Перемещая вторую щель по спектру или поворачивая призму, можно выделять отдельные более или менее узкие участки спектра. Если теперь за выходной щелью монохроматора поместить фотоэлектрический приемник, то получится спектрометр. В настоящее время наряду с призменными спектрографами и спектрометрами широко применяются дифракционные. В этих приборах вместо призмы диспергирующим (т.е. разлагающим на спектр) элементом является дифракционная решетка. Наиболее часто используются отражательные дифракционные решетки. Отражательная решетка представляет собой алюминированное зеркало, на котором нанесены параллельные штрихи. Расстояние между штрихами и их глубина сравнимы с длиной волны. Например, дифракционные решетки, работающие в видимой области спектра, часто делаются с расстоянием между штрихами 1,66 мк (600 штрихов на 1 мм). Штрихи должны быть прямыми и параллельными друг другу по всей поверхности решетки, и расстояние между ними должно сохраняться постоянным с очень высокой точностью. Изготовление дифракционных решеток поэтому является наиболее трудным из оптических производств. Получая спектр с помощью призмы, мы пользуемся явлением преломления света на границе двух сред. Действие дифракционной решетки основано на явлениях другого типа – дифракции и интерференции света. Не объясняя в деталях принцип работы дифракционной решетки (он изучается в курсе физики), мы заметим лишь, что она дает, в отличие от призмы, не один, а несколько спектров. Это приводит к определенным потерям света по сравнению с призмой. В результате применение дифракционных решеток в астрономии долгое время ограничивалось исследованиями Солнца. Указанный недостаток был устранен американским оптиком Вудом. Он предложил придавать штрихам решетки определенный профиль, такой, что большая часть энергии концентрируется в одном спектре, в то время как остальные оказываются сильно ослабленными. Такие решетки называются направленными или эшелеттами. Основной характеристикой спектрального прибора является спектральная разрешающая сила где Dl – минимальный промежуток между двумя близкими линиями, при котором они регистрируются как раздельные. Чем больше разрешающая сила, тем более детально может быть исследован спектр и тем больше информации о свойствах излучающего объекта может быть в результате получено. Спектральные аппараты с направленными дифракционными решетками, при прочих равных условиях, могут обеспечить более высокую разрешающую силу, чем призменные. Другой важной характеристикой спектральных аппаратов является угловая дисперсия (8.11)

где Da – угол между параллельными пучками, прошедшими диспергирующий элемент и различающимися по длине волны на Dl . Величина (8.12)

где f – фокусное расстояние камеры, называется линейной дисперсией, которая выражает масштаб спектра в фокальной плоскости камеры и обозначается либо в миллиметрах на ангстрем, либо (для малых дисперсий) в ангстремах на миллиметр Так, дисперсия спектрографа 250 Е/мм, означает, что один миллиметр на спектрограмме соответствует интервалу длин волн Dl = 250 Е. Особенности оптической схемы и конструкции астрономических спектральных приборов сильно зависят от конкретного характера задач, для которых они предназначены. Спектрографы, построенные для получения звездных спектров (звездные спектрографы), заметно отличаются от небулярных, с которыми исследуются спектры туманностей. Солнечные спектрографы тоже имеют свои особенности. Мы не будем обсуждать здесь этих различий подробно, отметим лишь, что реальная разрешающая сила астрономических приборов зависит от свойств объекта. Если объект слабый, т.е. от него приходит слишком мало света, то его спектр нельзя исследовать очень детально, так как с увеличением разрешающей силы количество энергии, приходящейся на каждый разрешаемый элемент спектра, уменьшается. Поэтому самую высокую разрешающую силу имеют, естественно, солнечные спектральные приборы. У больших солнечных спектрографов она достигает 106. Линейная дисперсия этих приборов достигает 10 мм/Е (0,1 Е/мм). При исследовании наиболее слабых объектов приходится ограничиваться разрешающей

силой порядка 100 или даже 10 и дисперсиями ~1000 Е/мм. Например, спектры слабых звезд получаются с помощью объективной призмы, которая является. простейшим астрономическим спектральным прибором. Объективная призма ставится прямо перед объективом телескопа, и в результате изображения звезд растягиваются в спектр. Камерой служит сам телескоп, а коллиматор не нужен, поскольку свет от звезды приходит в виде параллельного пучка. Такая конструкция делает минимальными потери света из-за поглощения в приборе. На рис. 118 приведена фотография звездного поля, полученная с объективной призмой.

Грубое представление о спектральном составе излучения можно получить с помощью светофильтров. В фотографической и визуальной областях спектра часто применяют светофильтры из окрашенного стекла. На рис. 119 приведены кривые, показывающие зависимость пропускания от длины волны для некоторых светофильтров, комбинируя которые с тем или иным приемником, можно выделить участки не уже нескольких сотен ангстрем. В светофильтрах из окрашенного стекла используется зависимость поглощения (абсорбции) света от длины волны. Светофильтры этого типа называются абсорбционными. Известны светофильтры, в которых выделение узкого участка спектра основано на интерференции света. Они называются интерференционными и могут быть сделаны довольно узкополосными, позволяющими выделить участки спектра шириной в несколько десятков ангстрем. Еще более узкие участки спектра (шириной

около 1 Е) позволяют выделять интерференционно-поляризационные светофильтры. С помощью узкополосных светофильтров можно получить изображение объекта в каком-либо интересном участке спектра например, сфотографировать солнечную хромосферу в лучах Нa , (красная линия в бальмеровской серии спектра водорода), солнечную корону в зеленой и красной линиях, газовые туманности в эмиссионных линиях.

Для солнечных исследований разработаны приборы, которые позволяют получить монохроматическое изображение в любой длине волны. Это – спектрогелиограф и спектрогелиоскоп. Спектрогелиограф представляет собой монохроматор, за выходной щелью которого находится фотографическая кассета. Кассета движется с постоянной скоростью в направлении, перпендикулярном к выходной щели, и с такой же скоростью в плоскости выходной щели перемещается изображение Солнца. Легко понять что в этом случае на фотографической пластинке получится изображение Солнца в заданной длине волны, называемое спектрогелиограммой. В спектрогелиоскопе, перед выходной щелью и после выходной щели устанавливаются вращающиеся призмы с квадратным сечением. В результате вращения первой призмы некоторый участок солнечного изображения периодически перемещается в плоскости входной щели. Вращение обеих призм согласовано, и если оно происходит достаточно быстро то, наблюдая в зрительную трубу вторую щель, мы увидим мо-нохроматическое изображение Солнца. Радиоастрономические приемники, как правило не могут быстро перестраиваться с одной длины волны на другую без существенной потери чувствительности. Поэтому спектр космических источников радиоизлучения приходится воспроизводить по отдельным измерениям на различных частотах. В случае непрерывного спектра это может быть удовлетворительным, если он достаточно плавный, однако линии излучения и поглощения таким способом найти трудно. Поэтому монохроматические радиолинии (линия излучения нейтрального водорода l = 21 см, линии поглощения межзвездных молекул) были открыты только после того как теоретически было предсказано их существование и были вычислены ожидаемые длины волн.

§ 115. Астрофизические исследования с воздушных шаров, самолетов и космических аппаратов. Понятие о радиолокационных методах

До начала сороковых годов XX в. астрономы использовали для своих наблюдений почти исключительно визуальную область спектра и прилегающие к ней участки

приблизительно от 3000 до 7000 Е. После окончания второй мировой войны стали быстро развиваться радиоастрономические методы исследования (радиоастрономия). Успехи радиоастрономии показали, как важно вести исследования в новых областях спектра, распространить наблюдения на возможно более широкий диапазон длин волн. Однако земная атмосфера непрозрачна в области l

Спасибо, что скачали книгу в бесплатной электронной библиотеке Royallib.ru

Оставить отзыв о книге

Все книги автора

Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   15




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет