Опытные наблюдатели различают на диске Меркурия более или менее устойчивые детали. Анализ визуальных зарисовок и фотографий показывает, что наблюдаемые на них повторения можно объяснить периодами вращения (10.7)
где T – период обращения вокруг Солнца. Третье из этих значений в пределах ошибок совпадает с радиолокационным периодом. По наблюдениям деталей на диске отношение t/T = 2/3 выдерживается с точностью не ниже 0,01 земных суток. Нетрудно убедиться, что при таком отношении периодов меркурианские солнечные сутки (интервал от одного восхода Солнца до другого) должны длиться вдвое дольше меркурианского года! Еще недавно было распространено убеждение, что периоды вращения и обращения Меркурия равны и Меркурий обращен к Солнцу постоянно одной и той же стороной. Причина понятна: из ряда чисел (10.7) выбиралось только первое, остальные отбрасывались как маловероятные. Радиолокация показала ошибочность этой точки зрения. Американский космический аппарат «Маринер-10» передал фототелевизионные изображения Меркурия примерно с такой же степенью детальности, какая получается при изучении Луны в наземные телескопы. Прямой перелет космического аппарата от Земли к Меркурию требует больших затрат энергии. Эту трудность можно обойти, если рассчитать такую орбиту, чтобы аппарат прошел вблизи Венеры прежде, чем идти к Меркурию. По такой орбите и совершил перелет к Меркурию «Маринер-10». На рис. 164 приведено «мозаичное» изображение Меркурия, полученное с помощью телевизионных камер «Маринера-10». Поверхность Меркурия очень напоминает лунную. Первое, что бросается в глаза, – это большое число кратеров самых различных размеров. Однако имеются и различия. На Меркурии нет обширных морских районов, сравнительно гладких и более свободных от кратеров. С другой стороны, на поверхности Меркурия имеются такие образования, как очень высокие (в несколько километров) уступы, которые тянутся на расстояния в тысячи километров. Они свидетельствуют о том, что планета сжималась в процессе своей эволюции.
Рис. 164. «Мозаичная» (сложенная из многих отдельных изображений) фотография Меркурия, полученная с помощью телевизионных камер «Маринера-10».
О подобии Луны и Меркурия говорит также сходство их фотометрических и поляриметрических характеристик: зависимость звездной величины и поляризации от фазы, отражательная способность поверхности. Как и на Луне, очень велики перепады температуры поверхности, измеренные по инфракрасному излучению. В полдень на экваторе максимальная температура достигает 700 °К, а на ночной стороне падает до 100°К,. В то же время интенсивность теплового радиоизлучения сантиметрового диапазона на ночной и дневной стороне мало отличается. Следовательно, поверхностный слой грунта на Меркурии, так же как и на Луне, представляет собой мелко раздробленную породу с относительно низкой плотностью (реголит). Атмосфера Меркурия имеет чрезвычайно малую плотность – концентрация не более 106 см –3 у поверхности. Такая концентрация газа в земной атмосфере имеется на высоте 700 км. Состав атмосферы точно не известен; спектроскопические измерения на «Маринере-10» обнаружили гелий (концентрация около 104 см –3), но, по-видимому, должны быть и другие газы. Меркурий имеет собственное магнитное поле. Напряженность его вблизи поверхности у экватора около 0,002 э (в 300 раз меньше, чем на Земле). Ось магнитного диполя приблизительно совпадает с осью вращения. Спутников Меркурий не имеет.
§ 135. Венера
Масса и радиус Венеры (рис. 165) очень близки к земным (0,82 МЕ и 0,95 RЕ соответственно). Уже в 1761 г. наблюдения прохождения Венеры по диску Солнца позволили М. В. Ломоносову установить, что эта планета, как и Земля, обладает мощной атмосферой. Таким образом, Венера и Земля во многом похожи друг на друга. Еще недавно многие астрономы, основываясь на этом, считали, что физические условия на поверхности Венеры и Земли не могут сильно различаться. Однако исследования, проведенные в последние годы, заставили пересмотреть. старые представления.
Угловой диаметр Венеры довольно велик. Он меняется от 20» вблизи верхнего соединения почти до 1’ вблизи нижнего. Вблизи наибольшей элонгации можно заметить постепенное потемнение видимой поверхности диска от лимба к терминатору. Иногда это потемнение является не вполне регулярным. Опытные наблюдатели отмечают на диске наличие туманных пятен, вид которых меняется ото дня ко дню. Эти пятна могут быть только деталями облачной структуры. Облака на Венере образуют мощный сплошной слой, полностью скрывающий от нас поверхность планеты. Фотографии Венеры в ультрафиолетовых лучах (l « 3500 Е) часто показывают более или менее устойчивые (в течение нескольких дней) детали, иногда имеющие вид параллельных полос, но и они, безусловно, не связаны с твердой поверхностью. Что скрывается под облачным слоем Венеры, как высоко расположен облачный слой над ее поверхностью, какова температура поверхности и давление атмосферы? Только недавно мы получили ответ на эти вопросы. Даже период вращения Венеры до последнего времени не был известен. Проще всего можно определить период вращения планеты по измерению скорости видимого перемещения деталей, наблюдаемых на диске. Движение деталей, наблюдаемых на ультрафиолетовых фотографиях Венеры, дает период вращения около четырех земных суток, т. е. намного меньше периода обращения вокруг Солнца (около 225 суток). Однако в ультрафиолетовых лучах мы наблюдаем облака, плавающие в довольно высоких слоях атмосферы, и эти облака могут иметь систематические движения, связанные с циркуляцией атмосферы. Скорость вращения твердого тела Венеры уверенно можно определить только радиолокацией. Впервые радиолокационное отражение от Венеры было получено в 1957 г. Сначала радиолокационные импульсы посылались на Венеру с целью измерения расстояния для уточнения астрономической единицы. В последние годы в США и СССР стали исследовать размытие отраженного импульса по частоте («спектр отраженного импульса») и затягивание во времени. Размытие по частоте объясняется вращением планеты (эффект Доплера), затягивание во времени – различным расстоянием до центра и краев диска. Эти исследования проводились главным образом на радиоволнах дециметрового диапазона и показали, что период вращения составляет 243,2 земных суток, причем направление вращения обратно направлению орбитального движения. Ось приблизительно перпендикулярна к плоскости орбиты и, следовательно, на Венере отсутствует явление смены времен года. По-видимому, на планете есть участки, лучше отражающие радиоволны, чем остальная часть ее поверхности, что сказывается на спектре отраженного импульса: он содержит минимумы и максимумы, частота которых медленно изменяется из-за вращения планеты По скорости этого изменения определяется период вращения. Период вращения, определенный из радиолокационных экспериментов, дает скорость вращения твердого тела планеты, так как дециметровые радиоволны должны свободно проходить сквозь облачный слой. Период, найденный по ультрафиолетовым фотографиям, определяется, видимо, систематическими движениями облаков в относительно высоких слоях атмосферы. Поскольку периоды вращения (243 суток) и обращения (225 суток) близки по величине, а направление противоположно, то за один оборот вокруг Солнца на Венере наблюдаются два восхода и два захода Солнца, т.е. длительность солнечных суток на Венере составляет земных 117 суток. Вращение Венеры обладает еще одной очень интересной особенностью. Скорость его как раз такова, что во время нижнего соединения Венера обращена к Земле все время одной и той же стороной. Причины такой согласованности между вращением Венеры и орбитальным движением Земли пока не ясны. Радиолокация позволила определить радиус твердой поверхности Венеры. Он равен 6050 км с точностью порядка нескольких километров. С помощью радиолокации получались также изображения поверхности Венеры с разрешением от нескольких сотен до нескольких километров. При этом были обнаружены кратеры, похожие на лунные и марсианские, но гораздо более сглаженные. В экваториальном поясе относительная высота различных участков поверхности не превышает 2 км.
В октябре 1975 г. спускаемые аппараты АМС «Венера-9» и «Венера-10» совершили мягкую посадку на поверхность планеты и передали на Землю изображение места посадки (рис. 166). Это были первые в мире фотографии, переданные с поверхности другой планеты. Изображение получалось в видимых лучах с помощью телефотометра – системы, по принципу действия напоминающей механическое телевидение. Мы видим на рис. 166, что место посадки «Венеры-9» представляет собой россыпь довольно крупных камней. Возраст поверхности такого типа не может быть большим (106-107 лет) и, следовательно, Венера является геологически активной планетой. На АМС «Венера-8», «Венера-9» и «Венера-10» были установлены приборы для измерения плотности поверхностных пород и содержания в них естественных радиоактивных элементов. В местах посадки «Венеры-9» и «Венеры-10» плотность близка к 2,8 а/см3, а по уровню содержания радиоактивных элементов можно заключить, что эти породы близки по составу к базальтам – наиболее широко распространенным изверженным породам земной коры. Перейдем к характеристикам венерианской атмосферы. Спектроскопические наблюдения показали, что в атмосфере Венеры присутствует СО2 , а также некоторые другие газы (Н2О, СО, НСl, HF), но в гораздо меньших количествах, чем СО2 . На рис. 167 показан участок спектра Венеры с полосой СО2 (напомним, что инфракрасные спектры молекул состоят из полос – групп линий, расположенных в определенной закономерности). Несмотря на большое количество спектроскопических данных, было невозможно определить полное содержание СО2 в атмосфере Венеры из-за присутствия мощного облачного слоя. Оценки процентного содержания СО2 тоже были весьма неточны. До полетов советских АМС предполагали, по аналогии с Землей, что в атмосфере Венеры много азота. Прямые измерения на советских АМС «Венера-4, 5, 6» показали, что содержание СО2 в атмосфере Венеры около 97%, а количество азота не превышает 2%. Содержание Н2О в глубоких слоях атмосферы составляет около 0,1% (по данным «Венеры-9 и 10»). Заметим, что это очень малая величина в сравнении с количеством воды на Земле. На Венере нет океанов, и вся вода, выделившаяся в течение геологической истории планеты, должна быть в атмосфере.
Советские АМС «Венера-4» – «Венера-10» измерили давление, температуру и плотность в нижних слоях атмосферы планеты. На рис. 168 показана зависимость давления и температуры от высоты, полученная в этих экспериментах. Станции «Венера-7», «Венера-8», «Венера-9» и «Венера-10» измеряли основные параметры атмосферы и передавали их на Землю вплоть до посадки на поверхность планеты и продолжали работать некоторое время после посадки. В результате работы этих станций установлено, что температура на поверхности Венеры составляет около 750°К, а давление близко к 100 атм. Изучение Венеры космическими средствами проводится не только с помощью спускаемых аппаратов. Космический аппарат «Венера-4», после отделения спускаемого отсека, использовался для исследований верхней атмосферы при помощи ультрафиолетового фотометра с пролетной траектории. Американские космические аппараты «Маринер-5» и «Маринер-10» также исследовали Венеру с пролетной траектории. Однако гораздо
более полные данные путем изучения планеты из космоса с близкого расстояния позволяют получить искусственные спутники, выведенные на орбиту вокруг этой планеты. Первыми искусственными спутниками Венеры стали орбитальные аппараты «Венера-9» и «Венера-10», выведенные на околопланетную орбиту после отделения спускаемых аппаратов. Они оснащены набором аппаратуры для исследования атмосферы, облачного слоя и взаимодействия солнечного ветра с планетой. Просвечивание атмосферы радиоволнами с американских пролетных и советских орбитальных аппаратов позволило получить данные о высотной зависимости плотности и температуры атмосферы между уровнями 0,001 и 5 атм. При этих наблюдениях параметры атмосферы определялись по сдвигу фазы радиоволн (проходящих сквозь атмосферу планеты), вызванному их преломлением. Высокая температура поверхности, большое атмосферное давление и большое относительное содержание СO2 – факты, видимо, связанные между собой. Высокая температура способствует превращению карбонатных пород в силикатные, с выделением СО2 . На земле CO2 связывается и переходит в осадочные породы в результате действия биосферы, которая на Венере, конечно, отсутствует. С другой стороны, большое содержание СО2 способствует разогреву венерианской поверхности и нижних слоев атмосферы.
Вывод о высокой температуре в нижних слоях венерианской атмосферы был получен еще по результатам наземных астрономических исследований, хотя измерения на АМС существенно уточнили наши представления. На рис. 169 представлен спектр радиоизлучения Венеры, полученный по многочисленным измерениям с помощью наземных радиотелескопов. По оси ординат дана яркостная температура (температура абсолютно черного тела, монохроматическая яркость которого равна измеренной яркости реального источника). В диапазоне от 3 до 20 см она достигает 600-700 °К. Атмосфера Венеры прозрачна для этих частот, и здесь измерялось непосредственно тепловое излучение поверхности. Когда это было обнаружено, вначале делались попытки объяснить наблюдения по-иному (астрономы не ожидали такой высокой температуры на Венере), но попытки эти оказались несостоятельными. Исследования Венеры с помощью космических аппаратов – это один из немногих случаев, когда удалось проверить прямыми измерениями выводы астрономических наблюдений, причем выводы смелые и необычные. Уменьшение яркостной температуры на сантиметровых волнах объясняется поглощением в углекислом газе, которое возрастает с уменьшением длины волны. Так как коэффициент излучения пропорционален коэффициенту поглощения, то на коротких волнах атмосфера сама является источником излу-чения. Чем короче длина волны (и соответственно больше коэффициент поглощения), тем выше эффективный уровень в атмосфере, который испускает наблюдаемое излучение. В инфракрасном диапазоне (от примерно 5 до 100 микрон) излучают венерианские облака, имеющие температуру около 235-240 °К на верхней границе.
На рис. 170 показано, с каких уровней атмосферы Венеры идет излучение в различных диапазонах. Интересно, что и радио– и инфракрасные температуры практически одинаковы на ночной и дневной стороне. Это объясняется очень медленной реакцией атмосферы на изменение режима освещения, связанной с ее большой массой, иными словами, с ее большой тепловой инерцией. Наиболее вероятная причина, вызывающая разогрев поверхности Венеры, – это парниковый эффект, который возникает при выполнении двух условий: а) атмосфера достаточно прозрачна для солнечного излучения; б) атмосфера в высокой степени непрозрачна для теплового излучения поверхности (максимум в инфракрасной области). Направленный вверх поток тепла, идущий от поверхности и проходящий через атмосферные слои с низкой лучистой теплопроводностью, приводит к возникновению большого перепада температур в тропосфере. Условие (б) обеспечивается составом атмосферы: CO2 с небольшой примесью Н2О сильно поглощает инфракрасное излучение. Относительно условия (а) были большие сомнения до самого последнего времени, пока «Венера-9» и «Венера-10» не измерили освещенность у поверхности. Эти измерения показали, что 5-10% солнечной энергии достигает поверхности планеты в виде излучения, рассеянного облаками. Не нужно думать, что все проблемы строения атмосферы Венеры полностью решены. Многое еще не ясно, еще на многие вопросы предстоит ответить, и решаться они будут комплексными методами с использованием средств и космической техники, и наземной астрономии. Не ясна, например, природа облачного слоя Венеры. Высказывались разные предположения о его составе. В последнее время серьезно рассматривается гипотеза, предполагающая, что облачный слой Венеры состоит в верхней части из капель концентрированного раствора серной кислоты. Оптические свойства облачного слоя Венеры (зависимость коэффициента преломления и коэффициента поглощения от длины волны) очень хорошо согласуются с этой гипотезой. Исследования на спускаемых и орбитальных аппаратах «Венера-9» и «Bенера-10» существенно уточнили представления о структуре облачного слоя. Наиболее плотный слой облаков простирается на высоте от 50 до 65 км, ниже, от 50 до 35 км, плотность в несколько раз падает, еще ниже атмосфера ослабляет солнечное излучение главным образом за счет рэлеевского рассеяния в СO2. При этом даже наиболее плотный верхний ярус облаков (50-65 км) по своим оптическим свойствам скорее ближе к разреженному туману, чем к облакам в земном смысле слова. Дальность видимости здесь достигает нескольких километров. В заключение необходимо сказать несколько слов о магнитосфере и ионосфере Венеры. Магнитометры, установленные на советских и американских космических аппаратах, показали, что планета Венера практически не обладает магнитным полем, оно по крайней мере в 3000 раз слабее земного. Однако Венера создает возмущения в межпланетном магнитном поле, связанном с солнечным ветром; она рассекает солнечный ветер, образуя при своем орбитальном движении характерный конус ударной волны. Это взаимодействие имеет место благодаря наличию электрических зарядов в верхней атмосфере планеты, иными словами, ионосферы. Венера очень близка по массе и размерам к Земле. Предполагается, что и внутренне строение у нее примерно такое же: имеется кора, мантия, жидкое ядро. Отсутствие магнитного поля у Венеры представляется, в связи с этим, несколько загадочным. Возможно, характер гидродинамических движений в ядре зависит от скорости вращения планеты, и при таком медленном вращении, как у Венеры, поле не возникает. Из-за того, что ионосфера Венеры не защищена магнитным полем, солнечный ветер проникает в относительно плотные слои атмосферы планеты. В результате на дневной стороне Венеры образуется узкий ионосферный слой с концентрацией около 105 см –3 в максимуме. На ночной стороне электронная концентрация меньше. Высота этого слоя около 100 км. Верхние слои земной атмосферы (выше 100 км) нагреты солнечным ультрафиолетовым излучением до температуры 1000-1500 °К. Атмосфера Венеры на такой высоте значительно холоднее – ее температура 400-500°К. Это различие вызвано тем, что в верхних слоях атмосферы Венеры молекулы СO2 не диссоциированы, а они являются хорошими излучателями в области спектра около 15 мк, и их присутствие приводит к охлаждению верхней атмосферы. Самые верхние слои атмосферы Венеры (выше 500 км) состоят из атомарного водорода, аналогично самой внешней части земной атмосферы. Это было установлено по измерениям интенсивности резонансного рассеяния солнечной линии водорода 1215
Е, проведенного с помощью ультрафиолетовых фотометров, установленных на борту советских и американских космических аппаратов. Спутников Венера не имеет.
§ 136. Марс. Общие вопросы строения планет земной группы
Марс, четвертая из планет земной группы, примерно вдвое меньше Земли по размерам (экваториальный радиус 3394 км) и в девять раз меньше по массе. Ускорение силы тяжести на поверхности планеты равно 376 см/сек2. Угловой диаметр Марса во время великих противостояний 25», во время афелийных 14». На поверхности Марса наблюдаются устойчивые детали, что позволило определить период его вращения с очень большой точностью: 24h 37m 22s,6. Экватор планеты наклонен к плоскости ее орбиты на 24° 56', почти так же, как и у Земли. Поэтому на Марсе наблюдается смена времен года, очень похожая на земную, с той лишь разницей, что лето в южном полушарии Марса жарче и короче, чем в северном, так как оно наступает вблизи прохождения планетой своего перигелия. Марсианский год длится 687 земных суток.
Детали, наблюдаемые в телескоп на диске Марса (рис. 171), можно классифицировать следующим образом: 1. Яркие области, или материки, занимающие 2/3 диска. Они представляют собой однородные светлые поля оранжево-красноватого цвета. 2. Полярные шапки – белые пятна, образующиеся вокруг полюсов осенью и исчезающие в начале лета. Это самые заметные детали. В середине зимы полярные шапки занимают поверхность до 50° по широте. Летом северная полярная шапка исчезает целиком, от южной сохраняется небольшой остаток. Сквозь синие светофильтры полярные шапки выделяются очень контрастно. 3. Темные области (или моря), занимающие 1/3 Диска. Они видны на фоне светлых областей в виде пятен, различных по величине и форме. Изолированные темные области небольших размеров называются озерами или оазисами. Вдаваясь в материки, моря образуют заливы. И материки и моря имеют красноватый цвет. Отношение яркости материков и морей максимально в красной и инфракрасной области (до 50% для самых темных морей), в желтых и зеленых лучах оно меньше, в синих на диске Марса моря вообще не различаются. Темные области наряду с полярными шапками участвуют в цикле периодических сезонных изменений. Зимой темные области имеют наименьший контраст. Весной вдоль границы полярной шапки образуется темная кайма, и контраст темных областей вокруг нее увеличивается. Потемнение распространяется постепенно в направлении к экватору, захватывая все новые и новые области. Многие детали, не различающиеся в данном полушарии зимой, становятся хорошо заметными летом. Волна потемнения распространяется со скоростью примерно 30 км в сутки. В некоторых районах изменения повторяются регулярно из года в год, в других происходят каждую весну по-разному. Кроме повторяющихся сезонных изменений, неоднократно наблюдалось необратимое исчезновение и появление темных деталей (вековые изменения). Светлые области не участвуют в сезонном цикле, но могут испытывать необратимые вековые изменения. 4. Облака – временные детали, локализованные в атмосфере. Иногда они закрывают значительную часть диска, препятствуя наблюдению темных областей. Различаются два вида облаков: желтые облака, по общему мнению, пылевые (бывают случаи, когда желтые облака закрывают весь диск на целые месяцы; такие явления называются «пылевыми бурями»); белые облака, состоящие скорее всего из ледяных кристалликов подобно земным циррусам.
В последние годы изучение Марса сильно продвинулось вперед благодаря использованию автоматических межпланетных станций. Американская АМС «Маринер-4» впервые сфотографировала Марс с близкого расстояния (около 10 000 км) в 1965 г. Оказалось, что Марс подобно Луне покрыт кратерами. За «Маринером-4» пролетели вблизи Марса и сфотографировали его «Маринер-6» и «Маринер-7», а в 1971 г., через несколько месяцев после великого противостояния, на орбиты вокруг Марса вышли его первые искусственные спутники, сделанные руками землян: два советских («Марс-2» и «Марс-3») и один американский («Маринер-9»). Программы их существенно отличались и взаимно дополняли друг друга. Американский спутник был нацелен в основном на фотографирование Марса; он получил несколько тысяч фотографий с разрешением около 1 км, покрывающих почти всю поверхность Марса. Некоторые из них показаны на рис. 172 и 173. Советские спутники проводили фотографирование в гораздо меньшем объеме, но зато они были оснащены большим количеством аппаратуры, предназначенной для исследования поверхности Марса, его атмосферы и околопланетного пространства физическими методами. Инфракрасным радиометром измерялась температура поверхностного слоя и одновременно радиотелескопом температура грунта на глубине в несколько десятков сантиметров; измерялась яркость в различных длинах волн, атмосферное давление и высоты по интенсивности полос СO2 , содержание H2O в атмосфере, магнитное поле, состав и температура верхней атмосферы, электронная концентрация в ионосфере, поведение межпланетного вещества в окрестностях Марса.
От АМС «Марс-3» отделился спускаемый аппарат, который впервые совершил мягкую посадку на поверхность Марса. Советская программа исследований Марса с помощью космических аппаратов получила дальнейшее развитие в 1974 г., когда четыре советских космических аппарата прибыли к планете. Один из них, «Марс-6» совершил посадку на поверхность, и во время спуска в атмосфере впервые провел прямые измерения ее состава, температуры и давления. «Марс-5» вышел на орбиту искусственного спутника планеты, а «Марс-4» и «Марс-7» проводили исследования планеты и межпланетного пространства на пролетных траекториях.
Фотографии поверхности, полученные с борта «Маринера-9», «Марса-4» и «Марса-5» показали, что поверхность Марса весьма разнообразна по характеру геологических форм. Большая часть ее покрыта кратерами, однако имеются и ровные области, почти лишенные кратеров. Среди кратеров попадаются такие, которые расположены на вершинах огромных конусообразных гор (см. рис. 172). Такое расположение означает, что это не метеоритные кратеры, а вулканические. На склонах крупнейших вулканов мало метеоритных кратеров и, следовательно, эти вулканы «молодые», они образовались сравнительно недавно. Таким образом, Марс – геологически активная планета. Марс, видимо, обладает собственным магнитным полем, хотя и значительно более слабым, чем Земля; существование собственного магнитного поля указывает на присутствие в центре планеты жидкого ядра. На поверхности Марса имеются образования, очень похожие на высохшие русла рек (см. рис. 173). 20 июля 1976 г. совершил посадку на поверхность Марса американский спускаемый аппарат «Викинг-1». На рис. 174 показана одна из панорам, переданных им на Землю. Марсианский пейзаж очень напоминает некоторые земные пустыни. Видны отлогие песчаные дюны, много угловатых камней. На рис. 175 представлены температуры и яркость поверхности, а также содержание Н2O в атмосфере, измеренные «Марсом-3» во время одного из прохождений перицентра своей орбиты (перицентр – ближайшая к планете точка орбиты спутника). На карте Марса (рис. 176) показана трасса, вдоль которой проводились измерения при данном прохождении. Приборы «увидели» сначала южное полушарие Марса и за полчаса их оптические оси пересекли всю планету с юга на север. Видно, что более темные области являются и более теплыми (они поглощают больше солнечного тепла). В северных областях (широта j> 45°) температура падает до очень низкого уровня, около 150 °К. Здесь находится зона полярной шапки. Она проявляется как резкое увеличение яркости в ультрафиолетовых лучах (0,37 мк), но совсем не видна в ближней инфракрасной области (1,38 мк; здесь планета светит все еще отраженным, а не тепловым излучением). Это означает, что мы видим в данном случае не снег или лед на поверхности, а облака (из тонких кристалликов), плавающие в атмосфере. Размеры кристалликов так малы, что на длине волны около 1 мк они уже свет не рассеивают. Возможно, что это кристаллики обычного льда Н2О: мы видим, как резко падает здесь содержание пара Н2О. Он должен переходить в твердую фазу. При таких температурах может конденсироваться и углекислый газ. Температура поверхности Марса колеблется в широких пределах. На экваторе днем она достигает +30 °С, а ночью –100 °С. Это происходит из-за малой теплопроводности марсианского грунта. Она почти столь же низка, как у лунного. Самая низкая температура бывает зимой на поверхности полярных шапок (-125°С). В спектре Марса наблюдаются хорошо заметные полосы СО2, хотя и более слабые, чем в спектре Венеры (см. рис. 166). Облака на Марсе обычно закрывают незначительную долю поверхности (в отличие от Венеры), и поэтому из спектроскопических наблюдений можно определить абсолютную величину
содержания СО2 в атмосфере. Так как на интенсивность слабых и сильных линий полное давление газа влияет по-разному, то можно определить и его. Аппаратура, установленная на «Mapсе-6» и «Викинге-1 и 2» измерила давление в атмосфере Марса непосредственно с помощью барометрических датчиков. Оно равно у поверхности в среднем 6 мб. На «Викинге-1 и 2» были проведены прямые измерения химического состава с помощью. масс-спектрометра, которые показали, что атмосфера Марса на 95% состоит из СО2 .
Давление в различных районах Марса может отличаться в несколько раз из-за различия высот. Самые высокие области Марса лежат на 20 км выше самых низких. Интересно, что темные и светлые области с одинаковой вероятностью могут быть и низкими и высокими. В северном полушарии преобладают низкие районы. В спектре Марса обнаружены линии водяного пара. При наземных наблюдениях их удается отделить от земных линий только благодаря доплеровскому смещению, так как они очень слабы. При наблюдениях с космических аппаратов эта трудность отсутствует. Пример наблюдений с космического аппарата приводился выше (см. рис. 175). Содержание водяного пара в атмосфере Марса меняется во времени и различно в разных районах. Иногда оно ниже предела обнаружения (около 1 микрона осажденной воды для измерений, произведенных на «Марсе-3»), иногда достигает 50 микрон. Такова толщина пленки воды, которая покрыла бы планету, если сконденсировать весь. атмосферный водяной пар. На Земле в атмосфере содержится воды примерно в 1000 раз больше. Средняя температура Марса (200 °К) заметно ниже земной, и под его поверхностью следует ожидать слой вечной мерзлоты, который задерживает выделение H2O из недр планеты. Заметим, что в жидкой фазе вода при марсианских темпе-ратурах и давлениях существовать не может; она может быть только в виде льда или пара. Кроме Н2О в атмосфере Марса обнаружены и некоторые другие малые составляющие – N2 (2,5%), Аг (1,5%), СО (~0,01%), O2 (~0,01%), следы озона О3. Полярные шапки Марса имеют сложную природу. Только на краях и лишь в некоторые определенные периоды времени это облака. Значительная часть видимой полярной шапки представляет собой твердый осадок на поверхности, причем этот осадок образован замерзшей углекислотой с примесью обычного водяного льда. В полярных шапках (главным образом в неисчезающей полностью южной) содержится больше СО2 и Н2О, чем в атмосфере. Было высказано следующее очень интересное предположение. Вследствие прецессии полярной оси Марса один раз в 50 000 лет получается так, что обе полярные шапки исчезают полностью и тогда давление в атмосфере повышается, увеличивается содержание Н2О, появляется жидкая. вода. Может быть, в эти периоды текла река, оставившая русло, изображенное на рис. 173. Во время полета американских и советских космических станций вблизи Марса были проведены эксперименты по просвечиванию его атмосферы радиоволнами, такие же,
как при исследовании Венеры (см. § 135). Они позволили определить атмосферное давление и температуру на высоте
10 м). Оно имеет спорадический характер, т.е. состоит из отдельных всплесков разной интенсивности. В появлении кратковременных радиовсплесков наблюдается определенная периодичность. Период вращения, вычисленный из наблюдений спорадического радиоизлучения, равен 9h 55m 29s,4. Он близок к периоду системы II, но отличается от него вполне заметно. Для анализа радионаблюдений в связи с этим была предложена система долгот III, соответствующая периодичности спорадического радиоизлучения. На рис. 181 показано распределение числа случаев наблюдения спорадического радиоизлучения Юпитера по долготе в системе III на различных частотах. Можно выделить по крайней мере два мощных источника декаметрового радиоизлучения, один из которых находится на долготах 100-150°, а другой – на 190-250°. Оба источника являются, по-видимому, направленными, причем ширина конуса излучения составляет несколько десятков градусов. Спорадическое
радиоизлучение Юпитера не наблюдается на частотах выше 35 Мгц (l = 9 м), а на частоте 27 Мгц уже имеет большую интенсивность. Природа спорадического радиоизлучения Юпитера остается пока не раскрытой. Высказывалось предположение, что источником его могут служить мощные грозовые разряды, однако спектр радиоизлучения земных грозовых разрядов не обрывается резко со стороны высоких частот. В качестве механизма генерации предлагаются плазменные колебания в ионосфере Юпитера (аналогично спорадическому радиоизлучению Солнца), но как они возбуждаются и почему источники локализованы на определенных долготах – не ясно.
В области длин волн 8 мм – 68 см наблюдалось спокойное радиоизлучение Юпитера, почти не меняющее своей интенсивности по времени. Спектр радиоизлучения Юпитера в области 3-68 см приведен на рис. 182. Яркостная температура на волне 3 см составляет около 160 °К и очень близка к температуре облачного слоя, но она быстро возрастает с длиной волны, достигая 50 000 °К на волне в 68 см. При вычислении яркостной температуры предполагалось, что источник радиоизлучения совпадает по угловым размерам с диском Юпитера. На волне 3 см это предположение правильно, так как основной вклад здесь дает, вероятно, обычное тепловое излучение. На дециметровых волнах были проведены непосредственные измерения угловых размеров Юпитера радиоинтерферометром и оказалось, что источник радиоизлучения больше видимого диска. Он вытянут в экваториальном направлении симметрично по отношению к диску примерно на величину диаметра планеты в обе стороны. Было высказано предположение, что Юпитер обладает, как и Земля, радиационными поясами, но плотность и энергия электронов, а также напряженность магнитного поля в поясах Юпитера больше. Энергичные электроны в магнитном поле излучают электромагнитные волны. Это излучение называется магнитно-тормозным, и в частном случае релятивистских энергий – синхротронным. Синхротронное излучение должно быть поляризовано, и действительно, специальные наблюдения обнаружили поляризацию дециметрового радиоизлучения Юпитера. В конце 1973 г. американский космический аппарат «Пионер-10» пролетел вблизи Юпитера, а еще через год так же прошел «Пионер-11». Приборы, установленные на них, непосредственно измерили концентрацию электронов и протонов различных энергий в окрестностях планеты, а также ее магнитное поле, и предположение о существовании радиационных поясов Юпитера полностью подтвердилось. Напряженность магнитного поля вблизи поверхности достигает, примерно, 10 э. Радиус магнитосферы составляет около 100 радиусов планеты. Кроме измерений магнитного поля и захваченной им радиации, проводился ряд других интересных экспериментов: были получены изображения планеты с разрешением, превосходящим наземные снимки в несколько раз, исследовались инфракрасное излучение, ультрафиолетовый спектр свечения верхней атмосферы (в частности, впервые была обнаружена линия гелия, и тем доказано его присутствие в атмосфере планеты). Вокруг Юпитера обращается 13 спутников. Четыре из них открыл Галилей – это Ио (I), Европа (II), Ганимед (III) и Каллисто (IV). Мы привели их в порядке возрастающих расстояний. По размерам они примерно такие же, как Луна, но вследствие большого расстояния от нас их диски (порядка 1») различаются лишь на пределе. В очень хороших атмосферных условиях опытные наблюдатели видели отдельные пятна па дисках галилеевых спутников, и удалось составить карты основных деталей на их поверхности. Установлено, что галилеевы спутники вращаются вокруг осп синхронно с движением вокруг Юпитера и обращены к нему все время одной стороной. Галилеевы спутники являются объектами 5-6m, и их можно наблюдать в любой телескоп или бинокль. Остальные спутники гораздо слабее. Спутник V (Амальтея), открытый Барнардом в 1892 г., является самым близким к планете и находится от нее на расстоянии в 2,56 радиуса планеты. Спутники VI-XIII были открыты уже в нашем веке по фотографическим наблюдениям. Все они слабые, от 13m до 18m, имеют небольшие размеры и удалены на большие расстояния от Юпитера (от 160 до 332 радиусов планеты). Спутники VIII, IX, XI и XII обращаются вокруг Юпитера в обратном направлении, остальные – в прямом.
§ 138. Сатурн
Сатурн (рис. 183) расположен примерно вдвое дальше от Солнца, чем Юпитер, и обращается вокруг Солнца за 29,5 года. Экваториальный радиус Сатурна равен 60 400 км, масса в 95 раз больше земной, ускорение силы тяжести на экваторе 1100 см/сек2 Сатурн имеет заметное сжатие диска, равное 1/10 т.е. больше, чем у Юпитера. Период вращения на экваторе равен 10h14m и, как у Юпитера, увеличивается с увеличением широты. На диске Сатурна тоже можно различить полосы, зоны и другие более тонкие образования, но контрастность деталей значительно меньше, чем у Юпитера, и в целом диск Сатурна деталями гораздо беднее.
Спектроскопические исследования обнаружили в атмосфере Сатурна H2 , CH4 , С2Н2 , С2Н6 . Элементный состав, по-видимому, не отличается от солнечного, т.е. планета состоит на 99% из водорода гелия. Глубина атмосферы (водород и гелий – в сверхкритическом состоянии) может достигать половины радиуса планеты. Инфракрасные наблюдения показывают температуру Сатурна около 95 °К. Так же как и у Юпитера, больше половины излучаемой энергии обусловлено потоком внутреннего тепла. Были сделаны попытки обнаружить спорадическое декаметровое радиоизлучение Сатурна, но уверенных результатов не получено. В диапазоне 3-21 см наблюдается спокойное радиоизлучение планеты. Яркостная температура в этом диапазоне монотонно растет с длиной волны. Возможно, это объясняется, как и у Юпитера, излучением радиационных поясов планеты, однако не исключены и другие объяснения. Кольца Сатурна – один из самых красивых объектов, которые можно наблюдать в телескоп. Их впервые увидел Галилей в 1610 г., но установить действительную форму найденного им образования Галилею не удалось. Это сделал в 1655 г. Гюйгенс, который обнаружил, что оно представляет собой плоское кольцо, концентричное телу планеты, но не примыкающее к нему. Ныне известно, что кольцо состоит из трех концентрических колец, которые, как и экватор планеты, наклонены
к плоскости орбиты под углом в 26°45’. Внешнее кольцо А отделено от среднего кольца В резким темным промежутком, называемым щелью Кассини. Среднее кольцо является самым ярким. От внутреннего кольца С оно тоже отделено темным промежутком. Внутреннее кольцо С, темное и полупрозрачное, называется креповым кольцом. Край этого кольца с внутренней стороны размыт и сходит на нет постепенно. В кольцах различается много других, более тонких градаций, но нельзя найти ни одной детали, ориентированной по радиусу или имеющей форму пятна. Причина, по которой Сатурн на расстоянии около 105 км имеет именно кольцо, а не спутник, состоит в приливной силе. Было показано, что если бы спутник и образовался на таком расстоянии, то он был бы разорван под действием приливной силы на мелкие осколки. В эпоху формирования планет-гигантов вокруг них на некотором этапе возникли уплощенные облака протопланетной материи, из которой потом образовались спутники. В зоне колец приливная сила воспрепятствовала образованию спутника. Таким образом, кольца Сатурна, вероятно, являются остатками допланетной материи. При прохождении Земли через плоскость колец Сатурна удалось установить, что их толщина очень мала (от 2 до 20 км). Еще в прошлом веке было теоретически показано, что кольца не могут быть сплошными твердыми телами. В начале XX в. по доплеровскому смещению линий в спектре колец было установлено, что скорость обращения различных участков колец уменьшается с увеличением их расстояния от планеты в полном соответствии с третьим законом Кеплера. Следовательно, кольца состоят из огромного количества частиц, независимо обращающихся вокруг планеты по кеплеровским орбитам. Из десяти известных спутников Сатурна шестой спутник, Титан, имеет угловой диаметр около 0»,8 (линейный диаметр – 4850 км) и на нем, так же как на галилеевых спутниках Юпитера, удается различить некоторые детали. На Титане спектроскопическими наблюдениями удалось обнаружить CH4 . Титан – единственный спутник в Солнечной системе, на котором найдена атмосфера. Все спутники, кроме IX, Фебы, обращаются вокруг планеты в прямом направлении.
§ 139. Уран и Нептун. Общие вопросы строения планет-гигантов. Плутон
Все планеты, рассмотренные нами ранее, видны на небе невооруженным глазом и принадлежат к числу наиболее ярких объектов. Уран виден только в телескоп (его звездная величина 5m,8) и выглядит маленьким зеленоватым диском диаметром около 4». Большая полуось орбиты планеты равна около 19,2 а.е., а период обращения вокруг Солнца – 84 года. Масса Урана в 14,6 раза больше земной, радиус 24 800 км. Уран обладает заметным сжатием (1/14). Детали на диске Урана уверенным образом не различаются, но наблюдаются периодические колебания блеска. По этим колебаниям и по эффекту Доплера был определен период вращения вокруг оси 10h49m. Удалось установить также направление оси вращения планеты, причем оказалось, что экватор Урана наклонен к плоскости его орбиты на 82°, а направление вращения – обратное. Уран имеет пять спутников. Плоскости их орбит почти перпендикулярны к плоскости орбиты планеты и движутся они в сторону ее вращения. Угловой диаметр Нептуна около 2»,4, линейный радиус равен 25 050 км, масса – 17,2 массы Земли. Большая полуось орбиты планеты равна около 30,1 а.е., а период обращения вокруг Солнца почти 165 лет. Период вращения был определен
спектроскопически и составляет 15h,8 ±1h. Направление вращения прямое. Один из двух спутников Нептуна, Тритон, принадлежит к числу крупнейших в Солнечной системе (его радиус равен 2000 км) и движется вокруг планеты в обратном направлении. В результате спектроскопических наблюдений в спектрах Урана и Нептуна найдены водород Н2 и метан СН4. Наблюдательные данные о физических условиях на этих планетах очень ограничены. Средняя плотность Урана 1,6 г/см3, Нептуна 1,6 г/см3 – больше, чем у Юпитера и Сатурна, но размеры этих планет меньше. По-видимому, они содержат больше тяжелых элементов. Юпитер, Сатурн, Уран и Нептун образуют группу планет-гигантов (или планет типа Юпитера). По массе и размерам они значительно превосходят планеты земной группы. Все они быстро вращаются, имеют большое количество спутников. Резко отличаются планеты-гиганты от планет типа Земли по химическому составу. Юпитер и Сатурн содержат водород, гелий и другие элементы, видимо, в той же пропорции, что и Солнце, Уран и Нептун более богаты тяжелыми элементами, но водород и гелий все же преобладают. По-видимому, в центральной части протопланетного облака легкие газы были потеряны вследствие термической диссипации, здесь образовались планеты типа Земли, а на периферии, где температура была ниже, водород и гелий остались и вошли в состав планет-гигантов (см. § 180). Плутон, наиболее далекая среди известных нам планет Солнечной системы, открыт сравнительно недавно, в 1930 г. Удалось определить только верхний предел его радиуса – 2900 км. В телескоп Плутон выглядит как звезда 15m. Блеск Плутона испытывает периодические изменения, видимо, связанные с вращением (период 6,4 суток). Надежные данные о массе Плутона отсутствуют, но, скорее всего, его средняя плотность больше земной. Плутон ближе к планетам земного типа, чем к планетам-гигантам. Плутон обращается вокруг Солнца на среднем расстоянии 39,5 а.е. по орбите с большим эксцентриситетом (е = 0,249), настолько большим, что оказывается иногда ближе к Солнцу чем Нептун. Наклонение орбиты (i = 17°) тоже очень большое, и Плутон выходит за пределы пояса зодиакальных созвездий. В настоящую эпоху он находится в созвездии Девы вблизи его границы с созвездием Волос Вероники. Спутников у Плутона не обнаружено.
§ 140. Малые планеты
1 января 1801 г. итальянский астроном Пиацци случайно, во время астрометрических наблюдений, обнаружил звездообразный объект, прямое восхождение и склонение которого, по дальнейшим наблюдениям, заметно изменялось от ночи к ночи. Гаусс вычислил его орбиту, и оказалось, что он движется вокруг Солнца по эллипсу, большая полуось которого равна 2,77 а.е., наклонение i = 10° и эксцентриситет е = 0,08. Стало ясно, что открыта планета, имеющая очень малые размеры. Ее назвали Церерой. Вскоре были найдены еще три такие планеты – Паллада, Веста и Юнона. В течение XIX в. количество планет-малюток постепенно увеличивалось. Их стали называть астероидами или малыми планетами. С конца XIX века для поисков малых планет начали применять фотографию. При длительных экспозициях изображение астероида вследствие изменения a и s получается в виде черточки, и его нетрудно отличить от звезд. В настоящее время известны орбиты 1800 астероидов. Самый яркий из них, Веста, представляет собой в противостоянии объект 6m,5; имеется несколько астероидов 7m-9m, все остальные – слабее. Статистика показывает, что малые планеты подчиняются определенному закону светимости: астероидов, имеющих звездную величину т, в 2,5 раза больше, чем астероидов со звездной величиной т – 1. Астероидам с хорошо определенной орбитой присвоены номера (в порядке открытия) и названия. Сначала использовались исключительно женские имена, заимствованные из мифологии, потом обычные женские имена, а позднее производные от имен известных ученых, стран и городов. Некоторым астероидам с необычной орбитой были даны мужские имена, взятые из мифологических источников. Только у четырех первых астероидов удалось прямыми измерениями определить диаметры. Самый большой оказался у Цереры (780 км), самый маленький у Юноны (200 км). Детали на дисках этих астероидов различить невозможно, но наблюдаются периодические колебания блеска и поляризации света, которые объясняются, по-видимому, вращением. В основном астероиды имеют диаметры от нескольких километров до нескольких десятков километров. Большинство малых планет движется на средних расстояниях от Солнца между 2,2 а.е. и 3,6 а.е., т.е. между орбитами Марса и Юпитера. Эта зона называется поясом астероидов. Эксцентриситеты орбит большинства астероидов (97%) меньше 0,3, а наклонения – меньше 16° (90%). Но есть планеты, орбиты которых выходят далеко за пределы пояса астероидов. Встречаются наклонения до 43° (Гидальго) и эксцентриситеты до 0,83 (Икар). Среди малых планет имеются семейства астероидов, орбиты которых близко подходят одна к другой. Две такие группы называются греками и троянцами: Ахилл, Патрокл, Гектор и др. (всего 15); 10 из них («греки») движутся вокруг Солнца приблизительно по орбите Юпитера, на 60° по долготе впереди и пять («троянцы») позади него, так что Солнце, Юпитер и эти группы астероидов образуют два равносторонних треугольника. Для этого частного случая задачи трех тел Лагранж
нашел строгое решение (см. § 56), показав, что движение тел, находящихся вблизи таких точек, устойчиво по отношению к возмущающим влияниям больших планет. Количество астероидальных тел в межпланетном пространстве, по-видимому, очень велико, и мы наблюдаем только самые большие из них. Сталкиваясь между собой, такие тела дробятся и разрушаются, и в результате межпланетное пространство должно быть заполнено роем твердых обломков самых разнообразных размеров, от пылинок диаметром в доли микрона до размеров астероидов. Сталкиваясь с Землей,
они выпадают на ее поверхность в виде метеоритов (см. § 143). Таким образом идет процесс, обратный дроблению, – захват крупными телами более мелких. Высказывалось предположение, что на ранних стадиях эволюции Солнечной системы плотность метеоритных тел в межпланетном пространстве была больше, и падения метеоритов играли существенную роль в формировании поверхности планет и спутников, в частности, Луны (см. гл. XIV). В ряде чисел, выражающих средние расстояния планет от Солнца, имеется некоторая закономерность, подмеченная еще в XVIII в. (правило Тициуса – Боде):
a = 0,1 Ч (3.2» + 4) а.е.(10.8)
где n = – Ґ для Меркурия, 0 для Венеры, 1 для Земли и т.д., а – среднее расстояние от Солнца в астрономических единицах. Табл. 8 позволяет сравнить расстояния, вычисленные по формуле (10.8), с истинными.
Из таблицы 8 видно, что средние расстояния планет вплоть до Урана удовлетворительно представляются формулой (10.8). Как раз в промежутке между Марсом и Юпитером, где должна была быть еще одна планета, находится пояс астероидов. По-видимому, в этой части Солнечной системы, которая разделяет планеты типа Земли и типа Юпитера, физические условия были таковы, что промежуточная планета не могла сформироваться или оказалась неустойчивой. Возможно, что на каком-то этапе эволюции Солнечной системы в поясе астероидов существовала одна или несколько крупных планет, но они были разрушены вследствие столкновений с другими телами или в результате действия какой-либо другой силы, например, приливного действия Юпитера. Физическая сущность приливного механизма разрушения состоит в том, что сила притяжения постороннего тела действует по-разному на различные части системы частиц, связанных между собой гравитацией, стремится их разделить и заставить каждую частицу двигаться по независимой орбите. Если это разделяющее действие окажется сильнее, чем притяжение между частицами, то система частиц (а ею может быть и твердое тело больших размеров, такое как планета) разрушится.
§ 141. Кометы
Большие кометы с хвостами, далеко простиравшимися по небу, наблюдались с древнейших времен. Некогда предполагалось, что кометы принадлежат к числу атмосферных явлений. Это заблуждение опроверг Браге, который обнаружил, что комета 1577 г. занимала одинаковое положение среди звезд при наблюдениях из различных пунктов и, следовательно, отстоит от нас дальше, чем Луна.
Движение комет по небу объяснил впервые Галлей (1705 г.), который нашел, что их орбиты близки к параболам. Он определил орбиты 24 ярких комет, причем оказалось, что кометы 1531, 1607 и 1682 гг. имеют очень сходные орбиты. Отсюда Галлей сделал вывод, что это одна и та же комета, которая движется вокруг Солнца по очень вытянутому эллипсу с периодом около 76 лет. Галлей предсказал, что в 1758 г. она должна появиться вновь, и в декабре 1758 г. она действительно была обнаружена. Сам Галлей не дожил до этого времени и не мог увидеть, как блестяще подтвердилось его предсказание. Эта комета (одна из самых ярких) была названа кометой Галлея (рис. 184). Поиски комет производились сначала визуально, а потом и по фотографиям, но открытия комет при визуальных наблюдениях совершаются нередко и сейчас. Кометы обозначаются по фамилиям лиц, их открывших. Кроме того, вновь открытой комете присваивается предварительное обозначение по году открытия с добавлением буквы, указывающей порядковый номер среди комет, найденных в данном году. Потом предварительное обозначение пересматривается, и буква заменяется римской цифрой, указывающей последовательность прохождения кометы через перигелий в данном году. Лишь небольшая часть комет, наблюдаемых ежегодно, принадлежит к числу периодических, т.е. известных но своим прежним появлениям. Большая часть комет движется по очень вытянутым эллипсам, почти параболам. Периоды обращения их точно не известны, но есть основания полагать, что они достигают многих миллионов лет. Такие кометы удаляются от Солнца на расстояния, сравнимые с межзвездными. Плоскости их почти параболических орбит не концентрируются к плоскости эклиптики и распределены в пространстве случайным образом. Прямое направление движения встречается так же часто, как и обратное. Периодические кометы движутся по менее вытянутым эллиптическим орбитам и имеют совсем иные характеристики. Из 40 комет, наблюдавшихся более чем один раз, 35 имеют орбиты, наклоненные меньше чем на 45° к плоскости эклиптики. Только комета Галлея имеет орбиту с наклонением, большим 90°, и, следовательно, движется в обратном направлении. Остальные движутся в прямом направлении. Среди короткопериодических (т.е. имеющих периоды 3-10 лет) комет выделяется «семейство Юпитера» – большая группа комет, афелии которых удалены от Солнца на такое же расстояние, как орбита Юпитера.. Предполагается, что семейство Юпитера образовалось в результате захвата планетой комет, которые двигались ранее по более вытянутым орбитам. В зависимости от взаимного расположения Юпитера и кометы эксцентриситет кометной орбиты может как возрастать, так и уменьшаться. В первом случае происходит увеличение периода или даже переход на гиперболическую орбиту и потеря кометы Солнечной системой, во втором – уменьшение периода. Орбиты периодических комет подвержены очень заметным изменениям. Иногда комета проходит вблизи Земли несколько раз, а потом притяжением планет-гигантов отбрасывается на более удаленную орбиту и становится ненаблюдаемой. В других случаях, наоборот, комета, ранее никогда не наблюдавшаяся, становится видимой из-за того, что она прошла вблизи Юпитера или Сатурна и резко изменила орбиту. Кроме подобных резких изменений, известных лишь для ограниченного числа объектов, орбиты всех комет испытывают постепенные изменения. Изменения орбит не являются единственной возможной причиной исчезновения комет. Достоверно установлено, что кометы быстро разрушаются. Яркость короткопериодических комет ослабевает со временем, а в некоторых случаях процесс разрушения наблюдался почти непосредственно. Классическим примером является комета Биэлы. Она была открыта в 1772 г. и наблюдалась в 1815, 1826 и 1832 гг. В 1845 г. размеры кометы оказались увеличенными, а в январе 1846 г. наблюдатели с удивлением обнаружили две очень близкие кометы вместо одной. Были вычислены относительные движения обеих комет, и оказалось, что комета Биэлы разделилась на две еще около года назад, но вначале компоненты проектировались один на другой, и разделение было замечено не сразу. Комета Биэлы наблюдалась еще один раз, причем один компонент был много слабее другого, и больше ее найти не удалось. Зато неоднократно наблюдался метеорный поток, орбита которого совпадала с орбитой кометы Биэлы. Когда комета приближается к Солнцу, она испытывает целый ряд изменений. Возрастает ее яркость, увеличивается размер хвоста, иногда наблюдаются быстрые изменения структуры. Хвост кометы обычно имеет вид конуса, в вершине которого находится размытое пятно (голова). Голова состоит из туманной оболочки (комы) и звездообразного ядра, которое является самой яркой точкой кометы. Яркость комы возрастает по направлению к ядру. Головы комет могут иметь очень большие размеры
– несколько десятков и даже сотен тысяч километров. Хвост кометы всегда направлен от Солнца. Когда расстояние от Солнца велико, хвост отсутствует или очень мал, хорошо видна только кома. Быстрое развитие хвоста кометы начинается при сближении ее с Солнцем, примерно до 1 а.е. В это время обычно хвост растет с огромной скоростью, около 106 км в сутки, пока не достигнет величины около 108 км. Силы, отталкивающие кометный хвост от Солнца, – это световое давление и корпускулярные потоки. Корпускулярные потоки несут с собой магнитное поле, и так как ионы не могут двигаться поперек силовых линий, то через это поле передают давление на ионизованный газ в кометных хвостах. Скорость движения вещества в хвостах может быть измерена в тех случаях, когда в них заметны какие-либо конденсации в виде узелков или небольших облачков. В некоторых случаях эти скорости очень велики и отталкивающие силы в 103 раз превосходят действие солнечной гравитации. Однако чаще всего различие не превосходит нескольких раз. Согласно Ф.А. Бредихину, принято различать три типа кометных хвостов (рис. 185): хвосты I типа, в которых отталкивающие силы в 10-100 раз больше сил притяжения и которые поэтому направлены почти точно от Солнца; хвосты II типа, заметно изогнутые, в которых отталкивающие силы несколько больше сил притяжения, и хвосты III типа, сильно изогнутые, в которых отталкивающие силы несколько меньше сил притяжения.
Массы комет точно не известны. Они оказались слишком малыми, чтобы даже при очень близком прохождении повлиять на движение планет, и можно лишь указать верхний предел массы комет. У больших комет он составляет примерно 10-4 массы Земли, но на самом деле масса может быть на несколько порядков меньше. Понятно, что средняя плотность кометного вещества тоже должна быть весьма низкой. Кома представляет собой очень разреженную газовую среду с концентрацией молекул 105-1010 см –3. Истинное, практически невидимое ядро, окруженное этой атмосферой, по современным представлениям является твердым телом диаметром от 1 до 30 км. Ядро состоит главным образом из летучих веществ, находящихся в твердом состоянии («льдов»), таких, как СН4 , NН3 , Н2О, СО2 . В основную ледяную массу вкраплены молекулы нелетучих веществ и более или менее крупные их частицы. Приближение к Солнцу вызывает сублимацию (возгонку) льдов, и в результате выделяется газообразный материал, образующий хвост кометы. Под действием ультрафиолетового излучения выделяющиеся молекулы диссоциируются и ионизуются, и в спектрах кометных хвостов наблюдаются линии излучения ионов (СО+ СO2+, СН+ N2+). В области комы концентрация газа больше, ионизующее ультрафиолетовое излучение Солнца уже заметно поглощается и наблюдается свечение нейтральных молекул. Среди молекул, обнаруженных в спектрах комет, много радикалов (СН, ОН, СН2 , NH2), которые в лабораторных условиях обычно не наблюдаются вследствие большой химической активности. В кометах. они появляются в результате диссоциации более сложных молекул и могут долго сохраняться благодаря низкой плотности. На очень близких расстояниях от Солнца в спектре ядра наблюдаются линии металлов. Это и доказывает, что, кроме летучих веществ, в ядрах комет присутствуют и тугоплавкие. Если бы Земля столкнулась с кометой, то это не привело бы к каким-либо катастрофическим последствиям. При прохождении Земли сквозь кометный хвост лишь немного увеличилась. бы яркость неба, а столкновение с головой привело бы к сильному метеорному дождю. В 1908 г. в Сибири наблюдался огромный болид, который взорвался вблизи реки Подкаменной Тунгуски. К сожалению, только через 20 лет в эти места была направлена экспедиция, но и тогда последствия этой катастрофы были вполне ощутимы: в радиусе 30 км воздушной волной были повалены все деревья. Метеорное тело найдено не было и возникла гипотеза, что оно было целиком разрушено, не достигнув Земли. Возможно, это тело было ядром небольшой кометы. Вопрос о происхождении комет изучен недостаточно. Согласно гипотезе голландского ученого Оорта, Солнечная система окружена гигантским облаком кометных ядер, простирающимся на расстояние до 1 пс. Под действием звездных возмущений орбиты некоторых ядер изменяются, и в результате вблизи Солнца появляются кометы.
§ 142. Метеоры
Метеоры (рис. 186) наблюдаются в виде кратковременных вспышек, которые проносятся по небу и исчезают, иногда оставляя на несколько секунд узкий светящийся след. Часто в обиходе их называют падающими звездами. Долгое время астрономы совсем не интересовались метеорами, считая их атмосферным явлением типа молнии. Только в самом конце XVIII в. в
Рис. 186. Фотография метеора. В левой части видно звездной скопление Плеяды.
результате наблюдений одних и тех же метеоров из разных пунктов, были определены впервые их высоты и скорости Оказалось, что метеоры – это космические тела, которые приходят в земную атмосферу извне со скоростями от нескольких км/сек до нескольких десятков км/сек и сгорают в ней на высоте около 80 км. Серьезное исследование метеоров началось только в нашем столетии. Частота появления метеоров и их распределение по небу не всегда являются равномерными. Систематически наблюдаются метеорные потоки, метеоры которых на протяжении определенного промежутка времени (несколько ночей) появляются примерно в одной и той же области неба. Если их следы продолжить назад, то они пересекутся вблизи одной точки, называемой радиантом метеорного потока. Многие метеорные потоки являются периодическими, повторяются из года в год и именуются по названиям созвездий, в которых лежат их радианты. Так, метеорный поток, действующий ежегодно примерно с 20 июля по 20 августа, назван Персеидами, поскольку его радиант лежит в созвездии Персея. От созвездий Лиры и Льва получили соответственно свое название метеорные потоки Лирид (середина апреля) и Леонид (середина ноября). Активность метеорных потоков в разные годы различна. Бывают годы, в которые число метеоров, принадлежащих потоку, очень мало, а в иные годы (повторяющиеся, как правило, с определенным периодом) настолько обильно, что само явление получило название звездного дождя. Последние звездные дожди наблюдались в августе 1961 г. (Персеиды) и в ноябре 1966 г. (Леониды). Меняющаяся активность метеорных потоков объясняется тем, что метеорные частицы в потоках неравномерно разбросаны вдоль эллиптической орбиты, пересекающей земную. Метеоры, не принадлежащие к потокам, называются спорадическими. Статистическое распределение орбит спорадических метеоров точно не исследовано, однако есть основания полагать, что оно похоже на распределение орбит периодических комет. Что же касается метеорных потоков, то у многих из них орбиты близки к орбитам известных комет. Известны случаи, когда комета исчезала, а связанный с ней метеорный поток оставался (комета Биэлы). Все это заставляет думать, что метеорные потоки возникают в результате разрушения комет. За сутки в атмосфере Земли вспыхивает примерно 108 метеоров ярче 5m. Метеоров, имеющих звездную величину m, примерно в 2,5 раза больше, чем (m – 1)-й звездной величины. Яркие метеоры наблюдаются реже, слабые – чаще. Очень яркие метеоры, – болиды, могут наблюдаться и днем. Болиды сопровождаются иногда выпадением
метеоритов (см. § 143). Появление болида может сопровождаться более или менее сильной ударной волной, звуковыми явлениями и образованием дымового хвоста. По происхождению и физическому строению большие тела, наблюдаемые как болиды, по-видимому, сильно отличаются от частиц, вызывающих метеорные явления. Мы вернемся к этому вопросу, когда будем рассматривать метеориты. Как уже указывалось, скорость метеоров вблизи Земли достигает нескольких десятков км/сек. Очень трудно точно оценить, какие величины истинной, гелиоцентрической скорости являются наиболее типичными. Дело в том, что блеск метеора очень сильно зависит от скорости, и поэтому быстрые метеоры могут наблюдаться чаще, чем медленные, хотя их количество и меньше. По-видимому, большинство метеоров движется по орбитам в прямом направлении, с гелиоцентрическими скоростями, не очень сильно отличающимися от скорости Земли. Сейчас для наблюдений метеоров широко применяются фотографическая патрульная служба и радиолокаторы. При фотографическом патрулировании в двух пунктах, разделенных расстоянием в несколько десятков километров, устанавливается достаточное количество широкоугольных фотографических камер так, чтобы они перекрывали значительную часть неба. Камеры периодически открываются и закрываются специальными затворами, например, с помощью вращающегося обтюратора (диск с лопастями), и в результате след метеора выглядит как ряд черточек, по длине которых с хорошей точностью можно определить скорость. Радиолокаторы, работающие на волнах 3-10 м, позволяют получить отраженный радиоимпульс от столба ионизованного воздуха, который остается за метеором после его полета. Наряду с ионизацией в этом столбе происходит возбуждение молекул, свечение которых приводит к образованию следа.
Спектры метеоров (рис. 187) состоят из эмиссионных линий. Когда метеорная частица тормозится в атмосфере, она нагревается, начинает испаряться, и вокруг нее образуется облако из раскаленных газов. Светятся главным образом линии металлов: очень часто, например, наблюдаются линии Н и К ионизованного кальция и линии железа. По-видимому, химический состав метеорных частиц аналогичен составу каменных и железных метеоритов, но механическая структура метеорных тел должна быть совсем иной. На это указывают скорости торможения метеоров; торможение происходит так, как будто плотность их очень мала, порядка 0,1 г/см3. Это означает, что метеорная частица представляет собой пористое тело, состоящее из более мелких частиц. Вероятно, поры были заполнены когда-то летучими веществами, которые впоследствии испарились. Метеорная частица, порождающая метеор 5-й звездной величины, имеет массу около 3 мг и диаметр около 0,3 мм. Эти данные вычислены для быстрого метеора, имеющего геоцентрическую скорость 50-60 км/сек. Большинство же метеоров, порождаемых частицами такой массы, гораздо слабее. Яркие метеоры и болиды, ионизуя воздух, порождают слабо светящиеся следы, видимые на протяжении от нескольких секунд до нескольких минут. Воздушные течения в атмосфере перемещают следы (дрейф следов) и меняют их форму. Поэтому наблюдения дрейфа следов имеют большое значение для изучения воздушных течений в различных слоях земной атмосферы.
§ 143. Метеориты
Метеориты, «небесные камни», известны человечеству очень давно. По-видимому, появление первых железных орудий, сыгравших огромную роль в эволюции доисторических культур, связано с использованием метеоритного железа. Крупные метеориты служили иногда предметом поклонения у древних народов. Официальная наука признала их небесное происхождение лишь в начале XIX в. За исключением образцов лунных пород, доставленных на Землю, метеориты пока представляют собой единственные космические тела, которые можно исследовать в земных лабораториях. Понятно, что сбору и изучению метеоритов придается большое научное значение. В Академии наук СССР имеется Комитет по метеоритам, который организует эту работу в масштабах страны. Метеориты по химическому составу и структуре разделяются на три большие группы: каменные (аэролиты), железо-каменные (сидеролиты) и железные (сидериты). Вопрос об относительном количестве различных типов метеоритов не вполне ясен, так как железные метеориты легче находить, чем каменные, и, кроме того, каменные метеориты сильнее разрушаются при прохождении сквозь атмосферу. Большинство исследователей полагает, что в космическом пространстве преобладают каменные метеориты (80-90% от общего числа), хотя собрано больше железных метеоритов, чем каменных. Так как болиды (рис. 188) – явление редкое, то орбиты метеоритных тел приходится определять по неточным свидетельствам случайных очевидцев, и поэтому надежных данных об орбитах выпавших метеоритов нет. По радиантам болидов, сопровождавшихся выпадением метеоритов, можно заключить, что большинство их двигалось в прямом направлении, и их орбиты характеризуются малым наклоном. Но здесь большую роль может играть наблюдательная селекция, так как вероятность разрушения метеорита при лобовой встрече с Землей (обратное движение) гораздо больше, чем при вторжении догоняющего тела.
Когда метеоритное тело входит в плотные слои атмосферы, его поверхность настолько нагревается, что вещество поверхностного слоя начинает плавиться и испаряться. Воздушные струи сдувают с поверхности железных метеоритов крупные капли расплавленного вещества, причем следы этого сдувания остаются в виде характерных выемок (рис. 189). Каменные метеориты часто дробятся, и тогда на поверхность Земли низвергается целый дождь обломков самых разнообразных размеров. Железные метеориты прочнее, но и они иногда разрушаются на отдельные куски. Один из крупнейших железных метеоритов, Сихотэ-Алинский, упавший 12 февраля 1947 г., был найден в виде большого количества отдельных осколков (см. рис. 189). Общий вес собранных осколков достиг 23 т, причем, конечно, были найдены не все осколки. Наибольший из известных метеоритов, Гоба (Юго-Западная Африка), представляет собой глыбу весом в 60 т (рис. 190).
Большие метеориты, ударяясь о Землю, зарываются на значительную глубину. Однако космическая скорость обычно гасится в атмосфере на некоторой высоте и, затормозившись, метеорит падает по законам свободного падения. Что произойдет, если с Землей столкнется еще большая масса, например 105-108 т? Такой гигантский метеорит прошел бы сквозь атмосферу практически беспрепятственно, при его падении возник бы сильнейший взрыв и образовалась бы воронка (кратер). Если такие катастрофические явления когда-либо происходили, то мы должны находить метеоритные кратеры на земной поверхности. Подобные кратеры действительно существуют. Крупнейший из них – Аризонский кратер (рис. 191), воронка которого имеет диаметр 1200 м и глубину около 200 м. Его возраст по приблизительной оценке составляет около 5000 лет. Недавно был открыт еще целый ряд более древних и разрушенных метеоритных кратеров. Химический состав метеоритов хорошо исследован. Железные метеориты содержат в среднем 91% железа, 8,5% никеля и 0,6% кобальта; каменные метеориты – 36% кислорода, 26% железа, 18% кремния и 14% магния. Каменные метеориты по содержанию кислорода и кремния близки к земной коре, но металлов в них гораздо больше. Содержание радиоактивных элементов в метеоритах меньше, чем в земной коре, причем в железных меньше, чем в каменных. Химические соединения, присутствующие в метеоритах, и их кристаллическая структура по-казывают, что метеоритное вещество сформировалось в условиях высоких давлений, и температур. Это означает, что метеориты входили когда-то в состав крупных тел, имевших большие размеры. По относительному содержанию радиоактивных элементов и продуктов их распада можно определить возраст метеоритов. Для разных образцов он получается различным и колеблется обычно в пределах от нескольких сотен миллионов до нескольких миллиардов лет.
§ 144. Зодиакальный свет и противосияние
Весной и осенью, в месяцы, когда в южных широтах Земли эклиптика после захода Солнца или перед его восходом очень высоко поднимается над горизонтом, в безлунную ночь можно наблюдать зодиакальный свет. Он представляет собой светлый треугольник, вытянутый вдоль эклиптики и расширяющийся в сторону Солнца (рис. 192). Яркость его постепенно падает с увеличением расстояния от Солнца (элонгации). При элонгации в 90-100° зодиакальный свет почти невозможно различить, и только при очень темном небе удается иногда заметить зодиакальную полосу – небольшое увеличение яркости неба вдоль эклиптики. При элонгации в 180°, в области неба, противоположной Солнцу («антисолнечная» область), яркость зодиакальной полосы несколько возрастает, и здесь можно заметить небольшое туманное пятно диаметром около десяти градусов. Оно называется противосиянием.
Зодиакальный свет и противосияние представляют собой эффект рассеяния солнечного излучения межпланетной пылевой материей, подавляющее большинство частиц которой имеет размеры в несколько микрон. Возможно, что эти пылевые частицы возникают в результате разрушения астероидов и комет и постепенного дробления их остатков. Межпланетная пыль образует облако, уплощенное к эклиптике. Некоторые исследователи предполагали еще недавно, что в межпланетном пространстве, кроме пылевой материи, имеется ионизованный газ с концентрацией ионов около 103 см –3 . В этом случае зодиакальный свет можно было бы частично объяснить рассеянием на электронах (как в солнечной короне). При рассеянии на электронах должна быть сильная поляризация, и зодиакальный свет действительно поляризован. Однако прямые эксперименты, проведенные с помощью ионных ловушек, установленных на советских космических ракетах, показали, что концентрация ионизованного газа в межпланетном пространстве не может превышать 100 см –3 по крайней мере в отсутствие сильных корпускулярных потоков. По-видимому, в обычных условиях рассеяние на электронах не дает заметного вклада в зодиакальный свет, и наблюдаемая поляризация возникает при рассеянии на межпланетных пылинках. Отмечалось, однако, что яркость зодиакального света иногда увеличивается после сильных солнечных вспышек. Это увеличение может быть связано с рассеянием солнечного излучения на электронах корпускулярных потоков.
Достарыңызбен бөлісу: |