Слабые туманности и различной мощности источники радиоизлучения обнаружены также в местах вспышек других сверхновых звезд нашей Галактики, подобно Крабовидной туманности являющихся мощными источниками радиоизлучения. До последнего времени оставалось совершенно не ясным, каким образом происходит в Крабовидной туманности постоянный приток новых релятивистских электронов, несмотря на то, что явление вспышки сверхновой давно закончилось. Вопрос начал проясняться только после того как были открыты совершенно новые объекты. Пульсары. В августе 1967 г. в Кембридже (Англия) было зарегистрировано космическое радиоизлучение, исходящее от точечных источников в виде строго следующих друг за другом четких импульсов (рис. 217). Длительность отдельного импульса у таких источников составляет от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и необычайная правильность их повторений позволяют с очень большой точностью определить периоды пульсаций этих объектов,
названных пульсарами. Период одного из пульсаров составляет 1,337301133 сек, в то время как у других периоды заключены в пределах от 0,03 до 4 сек. В настоящее время известно около 200 пульсаров. Все они дают сильно поляризованное радиоизлучение в широком диапазоне длин волн, интенсивность которого круто возрастает с ростом длины волны. Это означает, что излучение имеет нетепловую природу. Удалось определить расстояния до многих пульсаров, оказавшиеся в пределах от сотен до тысяч парсеков. Таким образом, это сравнительно близкие объекты, заведомо принадлежащие нашей Галактике. Наиболее замечательный пульсар, который принято обозначать номером NP 0531, в точности совпадает с одной из звездочек в центре Крабовидной туманности. Специальные наблюдения показали, что оптическое излучение этой звезды также меняется с тем же периодом (см. рис. 217). В импульсе звезда достигает 13m, а между импульсами она не видна (рис. 218). Такие же пульсации у этого источника испытывает и рентгеновское излучение, мощность которого в 100 раз превышает мощность оптического излучения. Совпадение одного из пульсаров с центром такого необычного образования, как Крабовидная туманность, наводит на мысль о том, что они являются как раз теми объектами, в которые после вспышек превращаются сверхновые звезды. Согласно современным представлениям, вспышка сверхновой звезды связана с выделением огромного количества энергии при ее переходе в сверхплотное состояние, после того как в ней исчерпаны все возможные ядерные источники энергии. Для достаточно массивных звезд наиболее устойчивым состоянием оказывается слияние протонов и электронов в нейтроны и образование так называемой нейтронной звезды. Если вспышки сверхновых звезд действительно завершаются образованием таких объектов, то весьма возможно, что пульсары – нейтронные звезды, В этом случае при массе порядка 2M¤ они должны иметь радиусы около 10 км. При сжатии до таких размеров плотность вещества становится выше ядерной, а вращение звезды в силу закона сохранения момента количества движения ускоряется до нескольких десятков оборотов в секунду. По-видимому, промежуток времени между последовательными импульсами равен периоду вращения нейтронной звезды. Тогда пульсация объясняется наличием неоднородностей, своеобразных горячих пятен, на поверхности этих звезд. Здесь уместно говорить о «поверхности», так как при столь высоких плотностях вещество по своим свойствам ближе к твердому телу.
У некоторых пульсаров обнаружено медленное увеличение периодов (с удвоением за 103-107 лет), по-видимому, вызванное тормозящим влиянием магнитного поля, связанного с пульсаром, в результате чего вращательная энергия переходит в излучение. Наряду с этим наблюдались внезапные уменьшения периодов, возможно, отражающие резкую перестройку поверхности звезды, временами происходящую по мере ее остывания. Нейтронные звезды могут служить источниками энергичных частиц, все время поступающих в связанные с ними туманности, подобные Крабовидной.
§ 160. Рентгеновские источники излучения
В 1962 г. наблюдениями с высотных ракет был обнаружен первый (после Солнца) космический источник рентгеновского излучения, который и по сей день остается самым замечательным и загадочным объектом такого типа. Вскоре обнаружились и другие рентгеновские источники, которые стали называть по имени созвездия, в котором они находятся, с добавлением латинской буквы Х (Х-лучи) и номера. Так, упомянутый первый источник получил название «Скорпион Х-1». В настоящее время, главным образом благодаря запущенному в 1970 г. специализированному спутнику «Ухуру», на котором был установлен рентгеновский телескоп, регистрировавший фотоны с энергиями от 2 до 20 кэв, известно уже около 200 источников рентгеновского излучения. Примерно половина их оказалась связанной с другими галактиками и мы скажем о них в гл. XIII. Около 100 источников принадлежит нашей звездной системе. Об одном из них мы уже упоминали: он. является рентгеновским пульсаром, совпадающим с радиопульсаром в Крабовидной туманности. Несколько других рентгеновских источников также отождествлено с молодыми радиопульсарами. Около десятка источников связано с туманностями –
остатками вспышек сверхновых звезд (см. § 159). В этом случае причиной свечения является тепловое излучение газа, нагретого до температуры в несколько миллионов градусов. Основная часть остальных галактических источников рентгеновского излучения принадлежит к особому классу объектов звездной природы, которые часто называют рентгеновскими звездами. Наиболее замечательным типичным их представителем является упоминавшийся источник Скорпион Х-1. Из постоянно излучающих он оказался самым ярким: в диапазоне 1-10 Е поток излучения от него в среднем
составляет 3Ч10-7 эре/см2, т.е. столько же, сколько в оптической области дает звезда 7m. Рентгеновская светимость его достигает 1037 эрг/сек, что в тысячи раз больше болометрической светимости Солнца. Важной особенностью рентгеновских звезд является переменность их излучения. У источника Скорпион Х-1, отождествленного с переменной звездой 12-13m, вариации потока рентгеновского и оптического излучений никак не связаны друг с другом. В течение нескольких дней оба могут испытывать флуктуации в пределах 20%, после чего наступает активная фаза – вспышки, длящиеся по нескольку часов, во время которых потоки меняются в 2-3 раза. При этом существенное изменение уровня излучения порой наблюдается за промежуток времени порядка 10-3 сек, так что размеры источника не могут превосходить 0,001 световой секунды (определяемой по аналогии со световым годом), т.е. 300 км. Это говорит о том, что источниками рентгеновского излучения должны быть необычайно компактные объекты, возможно, типа нейтронных звезд, как в случае пульсаров, с которыми отождествляются некоторые рентгеновские звезды. У ряда рентгеновских звезд, например, у Геркулеса Х-1 и Центавра Х-3, обнаружена строгая периодичность вариаций потока рентгеновского излучения, доказывающая, что источник является компонентом двойной системы. Свыше десятка источников отождествлены со звездами, переменность которых указывает на их принадлежность к тесным двойным системам (см. § 157). Следовательно, рентгеновские звезды, – скорее всего, тесные двойные системы, в которых один из компонентов – оптическая звезда, а другой – компактный объект, находящийся в завершающей стадии своей эволюции. Чаще всего предполагают, что это нейтронная звезда, хотя в некоторых случаях не исключена возможность белого карлика или даже черной дыры (см. § 152). Причиной возникновения мощного рентгеновского излучения должно быть падение на компактный объект (например, нейтронную звезду) облаков и струй газов, перетекающих из оптического компонента тесной двойной системы. В случае чрезвычайной компактности нейтронной звезды скорость падения газов в этом процессе, называемом аккрецией, может достигать 100 000 км/сек, т.е. трети скорости света! При падении на нейтронную звезду кинетическая энергия газов будет превращаться в рентгеновское излучение. Важную роль при этом играют сильные магнитные поля нейтронной звезды. Новоподобные источники рентгеновского излучения. Помимо постоянно наблюдаемых источников рентгеновского излучения ежегодно обнаруживается до десятка
вспыхивающих объектов, по характеру явления напоминающих новые звезды (см. § 159). Светимость таких новоподобных источников рентгеновского излучения быстро возрастает за несколько дней. В течение 1-2 месяцев они могут оказаться самыми яркими участками на «рентгеновском» небе, порой в несколько раз превосходящими по потоку излучения ярчайший постоянный источник Скорпион Х-1. Некоторые из них во время вспышек оказываются рентгеновскими пульсарами, отличающимися очень длинными периодами (до 7 минут). Природа этих объектов, а также возможная их связь с новыми звездами пока не известны.
§ 161. Объекты, принадлежащие нашей Галактике
В ясную безлунную ночь, вдали от городских огней, звездное небо представляет собой очень красивое зрелище. Через все небо тянется широкая светлая полоса Млечного Пути, которая при рассмотрении в телескоп оказывается скоплением огромного количества звезд и ярких туманностей. Все эти звезды (более 100 миллиардов) образуют гигантскую звездную систему – Галактику. Яркие звезды, наблюдаемые невооруженным глазом – просто наиболее близкие к нам объекты Галактики. Многие звезды образуют группы, называемые звездными скоплениями. Хорошо известны такие близкие к нам звездные скопления, как Плеяды, Гиады, шаровое скопление в Геркулесе. Помимо звезд и звездных скоплений в Галактике имеется большое количество разреженного газа с примесью небольших твердых частичек – пылинок. В некоторых областях Млечного Пути плотность этого вещества сильно возрастает, и оно образует множество диффузных газово-пылевых туманностей. Вблизи горячих звезд они светятся (светлые туманности), а вдали от них – остаются темными и выделяются на фоне ярких участков Млечного Пути благодаря вызываемому ими поглощению света (темные пылевые туманности). В Галактике имеется большое количество элементарных частиц, обладающих огромными энергиями и движущихся со скоростями, близкими к скорости света, – космические лучи. Наконец большую роль в Галактике играют магнитные и гравитационные поля и электромагнитное излучение. Солнечная система находится внутри Галактики, но далеко от ее центра. Многие области Галактики удалены от нас на огромные расстояния, вплоть до 25 тыс. пс. Если учесть при этом, что в области Млечного Пути диффузная среда не позволяет наблюдать оптическими методами области дальше 3 килопарсеков (кпс), то станет очевидным, почему так трудно изучать строение Галактики и мы не можем сразу представить себе ее общего вида. В следующей главе мы рассмотрим ряд других подобных объектов (внегалактических туманностей или просто галактик). Они, как и наша звездная система, состоят из огромного числа отдельных звезд и небольшого количества (1-2% по массе) пыли и газа. Изучая эти внегалактические туманности, можно себе представить, как должна выглядеть со стороны и наша Галактика. На рис. 219 изображена одна из самых известных и близких к нам галактик – туманность Андромеды, во многом напоминающая нашу звездную систему.
Рис. 219. Туманность Андромеды. § 162. Определение расстояний до звезд
Чтобы перейти от видимого положения звезд на небе к действительному их распределению в пространстве, необходимо знать расстояния до них. Непосредственным методом определения расстояний до звезд является измерение их
годичных параллаксов (см. §§ 63, 64 и 65). Однако этим способом параллаксы могут быть найдены только для ближайших звезд. Действительно, предельные углы, которые удается измерить астрометрическими методами, составляют около 0»,01. Следовательно, если параллакс звезды в результате наблюдений оказался равным p = 0»,02 ± 0»,01, то расстояние до нее по формуле получится в пределах от 30 до 100 пс, соответствующих возможным ошибкам в определении параллакса. Отсюда видно, что расстояния до сравнительно близких объектов, удаленных от нас не более, чем на несколько парсеков, определяются более или менее надежно. Так, например, расстояние до одной из ближайших звезд (a Центавра), равное 1,33 пс, известно с ошибкой, меньшей 2%. Однако для звезд, удаленных больше чем на 100 пс, ошибка в определении расстояния больше самого расстояния и метод тригонометрических параллаксов оказывается непригодным. В лучшем случае он позволяет сделать вывод, что расстояние превышает несколько сотен парсеков. Всего в настоящее время тригонометрические параллаксы измерены не более чем для 6000 звезд. Расстояния до звезд могут быть найдены в тех случаях, когда каким-нибудь образом известны их светимости, так как разность между видимой и абсолютной звездными величинами равна модулю расстояния, который входит в формулу (11.6) lg r =1 + 0,2 (m – M). Наиболее надежно модуль расстояния удается найти для звезд, принадлежащих
скоплениям, о чем будет сказано в § 164. Однако при этом необходимо учитывать, что получаемые из наблюдений видимые звездные величины, как правило, бывают
искажены влиянием межзвездного поглощения света, о котором речь будет идти в § 167. Особенности спектров, лежащие в основе разделения звезд по классам светимости, могут быть использованы для определения абсолютных звездных величин, а следовательно, и расстояний (метод спектральных параллаксов). Важный метод определения параллаксов совокупности звезд основан на изучении их
собственных движений (см. § 91). Суть этого метода основана на том факте, что чем дальше находятся звезды, тем меньше видимые перемещения, вызываемые их действительными движениями в пространстве. Определенные таким путем параллаксы называются средними. Для определения расстояния до группы звезд удается применить наиболее точный
метод, основанный на том обстоятельстве, что, как и в случае метеоров (§ 142), общая точка пересечения направлений видимых индивидуальных движений, которые вследствие перспективы кажутся различными, а на самом деле в пространстве одинаковы, указывает истинное направление скорости общего движения – апекс. При известной лучевой скорости Vr хотя бы одной из звезд имеется возможность вычислить годичный параллакс всего скопления, называемый групповым параллаксом, по формуле
где m – собственное движение (§ 91), a q – угол между направлением на данную звезду и апекс. С учетом соотношения (3.4) эту формулу легко вывести.
§ 163. Распределение звезд в Галактике
Знание расстояний до звезд позволяет подойти к изучению их распределения в пространстве, а следовательно, и структуры Галактики. Для того чтобы охарактеризовать количество звезд в различных частях Галактики, вводят понятие звездной плотности, аналогичное понятию концентрации молекул. Звездной плотностью называется количество звезд, находящихся в единице объема пространства. За единицу объема обычно принимают 1 кубический парсек. Проще всего звездную плотность найти в непосредственной окрестности Солнца, так как для всех близких к нам звезд известны надежные значения тригонометрических параллаксов. Результаты подсчетов показывают, что в окрестностях Солнца звездная плотность составляет около 0,12 звезды на кубический парсек, иными словами, на каждую звезду в среднем приходится объем свыше 8 пс3; среднее же расстояние между звездами – около 2 пс. Чтобы узнать, как меняется звездная плотность в различных направлениях, подсчитывают число звезд на единице площади (например, на 1 квадратном градусе) в различных участках неба. Первое, что бросается в глаза при таких подсчетах, необычайно сильное увеличение концентрации звезд по мере приближения к полосе Млечного Пути, средняя линия которого образует на небе большой круг. Наоборот, по мере приближения к полюсу этого круга концентрация звезд быстро уменьшается. Этот факт уже в конце XVIII в. позволил В.Гершелю сделать правильный вывод о том, что наша звездная система имеет сплющенную форму, причем Солнце должно находиться недалеко от плоскости симметрии этого образования. Второй важный вывод можно сделать, если производить подсчет не сразу всех звезд, а последовательно до каждого значения видимой звездной величины т, т.е. сначала
найти число звезд, у которых видимая звездная величина т Ј k, затем число звезд N k+1 с т Ј k + 1 и т.д. Тогда обнаруживается, что с увеличением видимой звездной величины число звезд Nm возрастает в геометрической прогрессии. Если бы звездная плотность не менялась с расстоянием и все звезды имели бы одинаковую светимость, то это увеличение числа слабых звезд было бы простым следствием увеличения геометрических размеров областей, которые с больших расстояний проектируются на одну и ту же область неба. Действительно, все звезды с видимой звездной величиной, меньшей или равной т, проектирующиеся на некоторую область неба, находятся внутри шарового сектора, радиус которого определяется по формуле (11.6) lg rm =1 + 0,2 (m ѕ M), так как мы предположили, что абсолютная звездная величина М всех звезд одинакова. Аналогичное выражение получится для радиуса шарового сектора, в котором находятся все звезды с видимой звездной величиной, не превышающей m + 1. Вычитая их друг из друга, получим При постоянной звездной плотности количества звезд должны быть пропорциональны объему пространства, т.е. кубу радиуса. Поэтому (12.1)
или (12.2)
Однако из наблюдений следует, что в действительности количество звезд возрастает с увеличением т не так быстро, а именно, для небольших значений т отношение близко к 3, а с увеличением т оно уменьшается, и для звезд 17m равно, примерно, 2. Если бы светимости всех звезд были одинаковыми, то по наблюдаемому отношению легко было бы определить изменение звездной плотности по мере удаления от Солнца. Действительно, при = 4, с увеличением расстояния в 1,6 раза (что соответствует переходу от звездной величины т к т + 1) звездная плотность была бы постоянна, а при = 3 она убывала бы в отношении 3:4. Наблюдаемое отношение говорит о том, что по мере удаления от Солнца в каждом данном направлении звездная плотность убывает. Если в этом направлении межзвездное поглощение света, о котором мы будем говорить в § 167, несущественно, то можно оценить протяженность нашей звездной системы в этом направлении. В результате оказывается, что Галактика ограничена. Описанный принцип лежит в основе решения значительно более сложной задачи, учитывающей, что в действительности звезды имеют различные светимости, а наблюдения сильно искажены межзвездным поглощением света. Чтобы охарактеризовать, сколько в данной области пространства содержится звезд различных светимостей, вводят функцию светимости j (М), которая показывает, какая доля от общего числа звезд имеет данное значение абсолютной звездной величины, скажем, от M до М + 1. Если бы функция светимости нам была известна, то, несмотря на большую математическую сложность, задача определения звездной плотности на различных расстояниях принципиально ничем не отличалась бы от рассмотренного случая одинаковых светимостей звезд. На практике в звездной астрономии приходится иметь дело с еще большими трудностями и на основании результатов подсчетов звезд находить как функцию светимости, так и зависимость звездной плотности от расстояния в данном направлении. Зная звездную плотность на разных расстояниях и в различных направлениях, можно составить представление о структуре Галактики. На рис. 220 представлена схема общей структуры Галактики. Из него видно, что она действительно является сплюснутой системой, симметричной относительно главной плоскости, называемой плоскостью Галактики. Большой круг, по которому она пересекается с небесной сферой, называется галактическим экватором. Он почти совпадает со средней линией Млечного Пути. Центр этой системы – центр Галактики
– при наблюдении из Солнечной системы проектируется в созвездие Стрельца, в точку с координатами a = 265° и d = –29°. По направлению к центру Галактики, а также по мере приближения к ее плоскости звездная плотность возрастает. Таким образом, распределение звезд в Галактике имеет две ярко выраженные тенденции: во-первых, очень сильно концентрироваться к галактической плоскости; во-вторых, концентрироваться к центру Галактики. Последняя тенденция усиливается по мере приближения к центральной части Галактики, называемой центральным сгущением Галактики или ядром.
Определяя расстояния, на которых происходит существенное падение звездной плотности, получаем представления о размеpax Галактики и о том месте, где примерно находится Солнце. Установлено, что Солнце удалено от центра Галактики на расстояние около 10 000 пс (10 кпс), а ее граница в направлении на антицентр находится на расстоянии 5000 пс от Солнца. Таким образом, диаметр Галактики составляет около 2 (10 000 + 5000) = 30 000 пс или 30 кпс. Точнее указать размеры Галактики нельзя, поскольку по мере удаления от ее центра звездная плотность убывает постепенно и не существует резкой границы. Солнце расположено близ плоскости Галактики и удалено от нее к северу на расстояние около 25 пс. Следующим шагом в изучении Галактики является применение метода подсчета к объектам различного типа с целью найти их распределение в Галактике. Большинство галактических объектов занимает пространство в пределах тонкого плоского слоя. К ним относятся звезды ранних спектральных классов О и В, цефеиды, не принадлежащие шаровым скоплениям, сверхновые звезды второго типа, рассеянные звездные скопления, звездные ассоциации (см. § 164) и темные (пылевые) туманности. О всех этих объектах говорят, что они образуют плоскую подсистему (или составляющую) Галактики (см. рис. 220). К ней концентрируется большинство звезд, образующих звездный диск. Как правило, это все молодые объекты. Однако если из всей Галактики выделить некоторые другие объекты, например, звезды типа RR Лиры, W Девы и m Цефея, сверхновые первого типа, субкарлики и
шаровые звездные скопления (см. § 164), то окажется, что все они занимают объем эллипсоида, для которого галактическая плоскость является диаметральным сечением. Поэтому перечисленные объекты принято относить к сфероидальной (иногда говорят сферической) подсистеме Галактики. Объекты сфероидальной составляющей имеют ярко выраженную тенденцию концентрироваться к центру Галактики. Наконец остальные объекты, например, новые звезды, звезды типа RV Тельца, долгопериодические переменные, белые карлики, звезды спектральных классов С и S, а также планетарные туманности располагаются в пределах более или менее сплюснутых эллипсоидов. Их выделяют в промежуточные подсистемы, так как предельными случаями эллипсоидов их распределения служат обе предыдущие составляющие. Объекты, принадлежащие всем этим подсистемам, различаются также своими кинематическими характеристиками, т.е. средними значениями индивидуальных скоростей. Подобно тому как в более горячей атмосфере газ поднимается на большую высоту, так и в Галактике быстрее движущиеся объекты занимают объем менее сплюснутого эллипсоида. В заключение важно отметить, что некоторые объекты (например, горячие звезды классов О и В) встречаются не всюду в плоскости Галактики, но преимущественно на определенных расстояниях от ее центра, образуя спиральную структуру, подобную структуре туманности Андромеды. Спиральное строение нашей Галактики подтверждается также результатами изучения распределения в ней диффузного вещества и магнитного поля.
§ 164. Звездные скопления
Звездными скоплениями называются группы динамически связанных между собою звезд, содержащие большое количество объектов и отличающиеся своим видом и звездным составом. По внешнему виду звездные скопления делятся на две группы: рассеянные скопления, содержащие несколько десятков и сотен звезд, и шаровые скопления, состоящие из десятков и сотен тысяч звезд. Рассеянные звездные скопления встречаются вблизи галактической плоскости. Всего известно более 800 таких объектов в радиусе нескольких килопарсеков от Солнца. Более далекие рассеянные скопления труднее обнаружить. Учитывая, какую долю объема Галактики занимает область, содержащая известные рассеянные скопления, можно оценить, что всего в нашей звездной системе должно быть несколько десятков тысяч рассеянных звездных скоплений. Наиболее известны рассеянное звездное скопление Плеяды (см. рис. 110), удаленное от нас на расстояние 130 пс, и Гиады, которое находится в сорока парсеках от нас.
Достарыңызбен бөлісу: |