Лекция Введение в науку Геохимия ландшафта как самостоятельное научное направление сформировалась в нашей стране в 40-х годах ХХ века



бет4/6
Дата22.07.2016
өлшемі472 Kb.
#215114
түріЛекция
1   2   3   4   5   6

Биомасса и продукция

Биомасса (Б) – общая масса живого вещества в том или ином ландшафте. Продукция (П) – биомасса, которая продуцируется за год. Обе эти величины измеряются в центнерах сухого вещества на гектар. Биомасса на 98% представляет собой массу растений.

Соотношение ежегодной продукции и биомассы обычно выражается коэффициентом Родина-Базилевич:

.

По значениям этого коэффициента ландшафты разделяются на пять групп:



  1. Лесные ландшафты – характерно накопление большого количества биомассы (тысячи ц/га), Ж = 10n. Наземная фитомасса значительно превышает подземную. Характерны интенсивные прямые водные связи между почвой, корой выветривания, грунтовыми водами, континентальными отложениями и поверхностными водами. Создается фитоклимат. Высока самоорганизация и устойчивость. Ярко выражен водораздельный центр ландшафта.

  2. Степи, луга, саванны – биомасса гораздо меньше (до 300-400 ц/га), ежегодная продукция часто не меньше, чем в лесах, таким образом Ж = n. Запасы гумуса в 10-20 раз превышают биомассу. Основная масса живого вещества сосредоточена под поверхностью почвы. Прямые водные связи менее совершенны, ярко выражена отрицательная обратная биокосная связь почва-растительность. Самоорганизация и устойчивость ниже. Часто бицентрическая система – водораздельный центр ослаблен, есть второй центр в речных долинах.

  3. Пустыни – небольшие значения П и Б. Прямые водные связи сильно ослаблены. Отдельные природные тела почти независимы. Резко выражены прямые воздушные связи. Центр ландшафта выражен слабо. Пустыни характеризуются наименьшим разнообразием, самоорганизацией, устойчивостью.

  4. Тундровые ландшафты – незначительная биомасса (10-100-и ц/га), низкая продукция. По интенсивности прямых водных связей и величине Ж близки к лесам; по размерам биомассы, развитию обратных биокосных связей – к степям и лугам; по разнообразию, самоорганизации, устойчивости, развитию прямых воздушных связей – к пустыням.

  5. Примитивные пустыни (такыры, скалы с лишайниками и др.) – биомасса мала (иногда менее 1 ц/га), величина Ж различна. Очень низкая мощность ландшафта; низкие разнообразие, самоорганизация, устойчивость.

На основе соотношения Б и П выделяются типы и семейства ландшафтов. Соотношение Б и П можно выразить в виде уравнения П = БK или П = klgБ, где К – коэффициент, характеризующий степень однородности типа ландшафта. Одно и то же значение К может быть характерно для ландшафтов с совершенно разными значениями Б и П. В пространстве типам ландшафтов соответствуют ландшафтные зоны.

В пределах типов выделяются семейства. Они характеризуются различными Б и П, но одинаковым или близким отношением между ними, выраженным коэффициентов К (lgП/lgБ). В каждом типе различают обычно северное, среднее и южное семейства (например, северная, средняя и южная тайга). Главная закономерность распределения семейств, как и типов – зональность. Семейства соответствуют подзонам.



Химический состав живого вещества

Живые организмы в основном состоят из элементов, образующих газообразные (воздушные мигранты) и растворимые (водные мигранты) соединения. Поэтому нет прямой пропорциональности между составом живого вещества и земной коры в целом. Содержание кислорода равно 70%, углерода 18%, водорода 10,5%, азота 0,3%.

Кларки концентрации элементов в живом веществе называются биофильностью элементов. Наибольшей биофильностью обладает углерод (7800), менее биофильны азот (160) и водород (70). Содержание кислорода в 1,5 раза больше, чем в земной коре, хлора, серы, фосфора, магния, натрия – примерно одинаково. Наименее биофильны железо и алюминий.

Химический состав конкретного ландшафта может существенно отличаться от среднего химического состава живого вещества Земли. Средний химический состав живого вещества ландшафта является важным систематическим признаком последнего.

Элементы, добавление подвижных форм которых в ландшафт увеличивает ежегодную продукцию П, называются дефицитными (в разных ландшафтах O, N, P, Ca, Mg, Cu, F, Mn); элементы, удаление которых из ландшафта увеличивает П – избыточными (Cl, S, Na, Fe, Cu, F и др.).
Интенсивность биологического поглощения

Интенсивность биологического поглощения характеризуется следующими коэффициентами:



  1. Коэффициент биологического поглощения (Полынов-Перельман) – отношение количества элемента в золе растений и его количества в горной породе или почве:

По значениям этого коэффициента Перельман выделял элементы очень интенсивного накопления (P, S, Cl, I, Br), элементы среднего и интенсивного накопления (B, Ge, Zn, Ca, Mg, K, Na, Sr), элементы среднего накопления и сильного захвата (Mo, Cu, Ag, Mn, Pb, Ba, F и др.) и элементы очень слабого и слабого захвата (Cr, V, Si, Ti, Al, Fe, Cd и др.). При АХ > 1 элементы накапливаются в растениях, а при AX < 1 – только захватываются. Живые организмы сильно различаются по значениям коэффициента биологического поглощения (он зависит от того, сухое или влажное вещество и т. д.).



  1. Биофильность элементов:



  1. Коэффициент биогеохимической подвижности – отношение содержания элемента в сухом веществе к его содержанию в почве в подвижной форме.



  1. Коэффициенты РПК (растительно-почвенный), РВК (растительно-водный) и РГК (растительно-газовый) – отношение содержания элемента в сухом веществе к содержанию в твердой фазе почвы, в водной фазе, в газах почвы. Наиболее сильно поглощение из газовой фазы, наименее – из твердой, поэтому РГК > РВК > РПК (на порядки).


Химический состав отдельных организмов

Химический состав организмов зависит от их природы (систематического положения) и геохимических особенностей ландшафта. Живое вещество, особенно растения, является биогеохимическим барьером, на котором концентрируются воздушные и другие мигранты.



ОСВР – относительное содержание химических элементов в видах, растущих в сопоставимых условиях – отношения содержания в данном виде к содержанию в эталонном для данных условий виде:

ОСВР = Сl/Cт.

По значениям ОСВР выделяют растения-концентраторы (более 2,5) и растения-деконцентраторы (менее 0,4):

25-400 и более – интенсивные концентраторы;

4,0-25,0 – умеренные концентраторы;

2,4-4,0 – слабые концентраторы;

0,4-0,25 – слабые деконцентраторы;

0,25-0,04 – умеренные деконцентраторы;

0,04-0,0025 – интенсивные деконцентраторы.

Химический состав разных органов растений также не одинаков. Например, наиболее высоко содержание металлов в листьях и тонких ветвях, меньше – в корнях и коре, минимальное – в древесине. Параметр ОСОР представляет собой отношение содержания элемента в данном органе к содержанию в эталонном органе (обычно это старые ветви, древесина, корни).



Разложение органических веществ

Наряду с биогенной аккумуляцией в ландшафте протекают процессы разрушения органических веществ, перехода химических элементов из органических соединений в неорганические.

Совокупность процессов разложения органических веществ называется минерализацией. При этом выделяется энергия – в виде тепла и в виде энергии, идущей на совершение химической работы (в основном природными водами).

Количество мертвых органических веществ в ландшафте является важным геохимическим параметром, складывающимся из нескольких показателей:

О – общее количество органических остатков;

О1 – ежегодный растительный опад (от 1 ц/га – в такырах до 250 ц/га во влажных тропиках и 765 ц/га в тугаях);

О2 – зеленая часть опада (10-90% от О1);

О3 – лесная подстилка и степной войлок (от 15 ц/га в сухих степях и 20 ц/га во влажных тропиках до 835 ц/га в кустарничковой тундре);

О4 – гумус (от 1000 ц/га в тайге до 8000 ц/га в луговых черноземных степях).

Об интенсивности разложения органических веществ хорошее представление дает коэффициент Ж3, равный отношению подстилки к зеленой части опада:



В болотах Западной Сибири этот коэффициент равен 5000%, в кустарничновых тундрах 3500%, в южной тайге 1000%, в сухих степях 100%, во влажных тропических лесах 10%.



Техногенная миграция

Техногенная миграция (техногенез) представляет собой наиболее сложный вид миграции, подчиняющийся социальным законам. В результате техногенеза облик земной поверхности сильно изменился, для нее стали характерны новые сложные техногенные системы. Образование этих систем сопровождалось резким ростом информации, проявлением новых ее видов, новых способов хранения, переработки и передачи.

Для ноосферы (техногенно измененной биосферы) характерно резкое увеличение работоспособной энергии и разнообразие ее видов.

Для ноосферы также характерно грандиозное рассеяние элементов, которые концентрировались природой на протяжении всей геологической истории. Распространено металлическое состояние железа, никеля, хрома, ванадия, не характерное для земной коры; изготовлены многие химические соединения, никогда ранее не существовавшие в биосфере.

Весьма велики масштабы добычи многих элементов. Отношение ежегодной добычи химического элемента в тоннах к его кларку называется технофильностью (Перельман). Анализ величины технофильность позволяет прогнозировать использование элементов.
Классификация геохимических ландшафтов по Перельману. Ландшафтно-геохимические карты
Общие принципы геохимической классификации ландшафтов

В основе классификации геохимических ландшафтов лежит миграция атомов, т. к. именно она определяет геохимические особенности ландшафтов. Наибольшее таксономическое значение имеют типоморфные элементы, т. е. элементы, которые энергично мигрируют и накапливаются и имеют высокие кларки.

Даже распространенные элементы в зависимости от условий миграции имеют разное таксономическое значение (например, сера типоморфна в аридных ландшафтах и не типоморфна в тайге). Минимальное содержание элемента в почве, организмах, водах, при котором оно приобретает таксономическое значение, называется критическим.

Географическая распространенность ландшафтов не имеет таксономического значения. В систематике должны быть одинаково представлены типичные, редкие, исчезнувшие ландшафты.

Поскольку в большинстве ландшафтов интенсивность миграции изменяется по временам года, в основу классификации следует положить период наиболее интенсивной миграции (лето в тайге, весну в субтропиках и т. д.).

Также таксономическое значение веществ определяется положением в пространстве относительно центра: чем ближе к центру, тем больше влияние на миграцию атомов, тем больше таксономическое значение.

Помимо систематики геохимических ландшафтов, часто проводят районирование. Районирование – выявление ландшафтных индивидов, характерных для какой-либо территории. Индивид, в отличие от систематической единицы, выделяется на основе индивидуальных, а не систематических признаков.

Классификация элементарных ландшафтов

Наиболее крупными единицами классификации Перельмана являются ряды ландшафтов, выделяемые по виду миграции.



  • абиогенные,

  • биогенные,

  • культурные ландшафты.

Далее рассмотрим классификацию биогенных ландшафтов, основанную на особенностях биологического круговорота в них.

По соотношению важнейших параметров биологического круговорота Б (биомассы) и П (продуктивности) выделяются группы, типы и семейства ландшафтов. Групп ландшафтов всего 5:

– леса;

- степи, луга и саванны;

- пустыни;

- примитивные пустыни;

- тундры и верховые болота.

При выделении типов и семейств ландшафтов важны не только абсолютные величины Б и П, но и отношение их логарифмов lnП/lnБ – коэффициент К. В каждом типе выделяют обычно три семейства. Типы обычно соответствуют зонам, семейства – подзонам.

Следующий таксон – класс ландшафта – выделяется по особенностям водной миграции в горизонте А почв (в соответствии с классами водной миграции).

Классы расчленяются по особенностям миграции на роды ландшафтов. Выделяются три основных рода – элювиальный (автономный), супераквальный и субаквальный ландшафты.

Продукты выветривания и почвообразования элювиального ландшафта поступают с поверхностным и подземным стоком в пониженные элементы рельефа и влияют на формирование надводных (супераквальных) и подводных (аквальных) ландшафтов. Последние называются подчиненными. Ландшафты водоразделов менее зависят от надводных и подводных ландшафтов, т.к. не получают от них химических элементов с жидким и твердым стоком. Поэтому элювиальные ландшафты называются автономными.

Наконец, виды элементарных ландшафтов выделяют на основе подстилающих отложений, горных пород.



Классификация геохимических ландшафтов

Геохимический ландшафт – парагенетическая ассоциация элементарных ландшафтов, соединенных потоком вещества и энергии. В основу классификации геохимических ландшафтов положен характер геохимического сопряжения между автономными и подчиненными геохимическими ландшафтами. Если сопряжение включает автономный, супераквальный и субаквальный ландшафты, то оно называется полным. Полное сопряжение в условиях однородного геологического строения, развития изверженных или метаморфических пород, без реликтов предшествующей стадии называется основным. Основные сопряжения классифицируются по особенностям центра ландшафта, обычно это автономный ландшафт (как и в физико-географической классификации).

Для геохимических ландшафтов выделяются те же таксоны, что и для элементарных. Ряды геохимических ландшафтов соответствуют рядам элементарных. Число групп, типов, семейств и классов гораздо больше, т. к. один и тот же автономный ландшафт может сопрягаться с различными автномными и подчиненными. Геохимическое сопряжение обычно изображают, например, так:

Ca/CaFe

(т. е. автономный ландшафт относится к кальциевому классу, а супераквальный – в Са-Fe).



Роды геохимических ландшафтов выделяются по соотношениям между автономными и подчиненными ландшафтами одного класса, интенсивностью водообмена, а это функция рельефа. Наиболее распространены три рода:

I – плоские равнины с замедленным водоообменом, слабым эрозионным расчленением или без него (приморские низменности, аллювиальные равнины и прочие области тектонических опусканий, вулканические и другие плато);

II – эрозионные возвышенности, расчлененные плато с более энергичным поверхностным и подземным стоком, плоские поверхности чередуются со склонами;

III – сильно холмистый и горный рельеф, бедленд – энергичный водообмен, преобладают склоновые поверхности, плоских участков почти нет.



Виды геохимических ландшафтов выделяются на основе характера подстилающих пород.

Геохимические ландшафты крупных таксонов называются по типологическим терминам – таежные, степные, пустынные и прочие типы ландшафтов; северные, средние, южные семейства; кислые, кальциевые, сернокислые классы; I, II, III роды. Виды называются обычно по какому-нибудь географическому ареалу их распространения, например, каракумские, валдайские и т. д.



Ландшафтно-геохимические карты

Закономерности размещения элементарных и геохимических ландшафтов легче всего выявляется при картировании. Соответствующие карты получили название ландшафтно-геохимических. В зависимости от объекта картирования ландшафтно-геохимические карты можно разделить на типологические карты и карты районирования. Типологические карты делятся на карты элементарных ландшафтов и карты геохимических ландшафтов.

Для выделения геохимических ландшафтов (в легенде карты) обычно составляют матрицу, в которой по вертикали указаны ландшафтные зоны и подзоны (типы и семейства ландшафтов), а по горизонтали – геолого-геоморфологические условия (роды и виды).

На мелкомасштабных картах обычно типы и семейства ландшафтов показывают цветом, классы – штриховкой, роды и виды – значками и символами. Также указывают геохимические формулы вида:






  1. Лесные ландшафты,

  2. Аридные ландшафты,

  3. Степные и луговые ландшафты,

  4. Пустынные ландшафты,

  5. Тундровые ландшафты,

  6. Примитивно-пустынные,

  7. Абиогенные.


Лесные ландшафты

Группа включает десятки типов ландшафтов. Наиболее распространены влажные тропики, ландшафты широколиственных лесов и таежные ландшафты.



Влажные тропики. Распространены на всех материках, кроме Европы, но особенно широко в Ю.Америке и Юго-Восточной Азии.

Для влажных тропиков характерна наивысшая интенсивность биологического круговорота и водной миграции. Здесь изобилие тепла сочетается с изобилием осадков, это обеспечивает возможность интенсивного развития большинства геохимических процессов, появления наиболее сложных форм ландшафта. Миграция атомов происходит с одинаковой интенсивностью в течение круглого года, период геохимического покоя отсутствует.

Биологический круговорот протекает во влажных тропиках с высокой интенсивностью, ежегодно создается огромная биомасса – 325 ц/га (дубрава – 90 ц/га, тайга – 70 ц/га). Разложение органических веществ протекает быстрее, и в ландшафте практически нет лесной подстилки. Поэтому опадо-подстилочный коэффициент – отношение количества подстилки к ежегодному опаду исключительно мал – менее 0,1 (в заболоченной тайге и тундре – более 50). В отличие от лесов умеренного пояса при разложении растительных остатков К, Са, Si быстро выносятся, накапливаются Fe и Mn. По Базилевич, Важнейшими водными мигрантами бика являются – Si и Ca, ко второй группе относятся K, Mg, Al, Fe, к третьей - Mn, S. В листьях тропических деревьев среди водных мигрантов первое место принадлежит Si (у бамбуков до 90 % SiO2 в золе), поэтому влажные тропические леса имеют кремниевый тип химизма бика. Важной особенностью бика является вымывание дождевыми водами из листьев азота, фосфора, калия, кальция, магния, натрия, хлора, серы и других элементов.

Систематика семейств влажных тропиков пока не разработана, но выделяются чрезвычайно резкие различия на уровне классов.



  1. Кислые влажные тропики,

  2. Влажные тропики кислого глеевого класса,

  3. Влажные тропики сернокислого класса,

  4. Влажные тропики кальциевого и переходного классов,

  5. Влажные тропики соленосно-сульфидного класса.

Ландшафты широколиственных лесов. Распространены в умеренном поясе Евразии. В условиях более низких температур разложение растительных остатков протекает медленнее, а общее количество этих остатков в несколько раз меньше, чем в тропиках. Таким образом, если емкость биологического круговорота лишь на немного уступает влажным тропикам (80%), то скорость значительно ниже. Это благоприятствует накоплению в почвах гумуса, содержание в верхних горизонтах может превышать 10 %.

Широколиственные деревья сравнительно богаты зольными элементами, особенно листья. В золе много Са (до 20%), меньше К и Si, еще меньше Mg, Al, P и меньше всего Fe, Mn, Na, Cl. Но ряд биологического поглощения другой:

10n / S,P > n / Ca, K, Mg, Mn > n-0,n / Na > 0,n – 0,0n / Fe, Al, Si

Это предопределяет возможность биогенной аккумуляции в почвах S, P, Ca, K, Mg, Mn, а также редких элементов биогенная аккумуляция которых больше 1 ( B, Ni, Ag, Au, Co, Zn, Cd, Pb и др. Выщелачивание преобладает, и автономный ландшафт с вертикальным и боковым стоком теряет подвижные элементы. Высокое содержание в растениях Са и его энергичное биологическое поглощение определяют кальциевый химизм биологического круговорота. Са – один из типоморфных элементов широколиственных лесов. Менее велико значение Н.

Ежегодный растительный опад в несколько раз меньше, чем во влажных тропиках, и темп его разложения меньше из-за более низких температур зимнего перерыва. Скорость разложения меньше скорости накопления опада, поэтому для зональных бурых лесных и серых лесных почв характерна лесная подстилка (опадо-подстилочный коэффициент равен 3-4). Са и другие катионогенные элементы, образующиеся при разложении растительных остатков, нейтразилуют большую часть органических кислот, поэтому реакция гумусового горизонта почв слабокислая или даже нейтральная, хотя встречаются и кислые среды с рН = 4-5. В поглощенном комплексе часто преобладает Са.

Тип широколиственных лесов включает в себя ряд отделов, своеобразие которых определяется климатом, историей развития, возрастом, геохимическими реликтами. Выделяются 4 отдела: 1) дальневосточный муссонный, 2) кавказский, 3) восточноевропейский, 4) среднеазиатский.

Семейства в отделах подлежат уточнению. Ярко выражены два основных класса:


  1. бескарбонатный (Н+ - Са2+),

  2. кальциевый (Са2+).

В бескарбонатных ландшафтах верхние горизонты бурых и серых лесных почв выщелочены от карбонатов. В теплое и влажное лето в почве и залегающей под ней коре выветривания энергично протекает разложение первичных силикатов с образованием гидрослюд, монтмориллонита и других глинистых минералов, накапливаются бурые гидрослюды Fe. В результате почва, кора выветривания, склоновые и другие континентальные отложения приобретают бурый цвет и тяжелосуглинистый состав.

Кора выветривания менее мощна и менее выщелочена, чем во влажных тропиках. Здесь не образуются гидрослюды Al, не высокий вынос Са, Мg и других катионов. В слабой степени выносится кремнезем.

В ландшафтах кальциевого класса коры выветривания и континентальные отложения содержат СаСО3, в формировании химического состава вод важная роль принадлежит его растворению.

Хорошие климатические условия, плодородные почвы определили важную роль ландшафтов 2 и 1 рода в сельском хозяйстве. Во многих районах леса вырублены и почвы распаханы. Дефицитны N, P, K, местами Co, Cu, Zn, Mn, J, Mo, B и др. Избыточных элементов почти нет.

В широколиственных лесах эффективны все виды геохимических поисков. При литохимических поисках в некоторых районах необходим отбор проб с глубины 0,5 м, т.к. подвижные металлы выносятся из верхних горизонтов почв.

Главная геохимическая особенность ландшафтов широколиственных лесов состоит в ежегодном продуцировании 80-150 ц/га живого вещества и средней скорости его разложения. При разложении органических веществ кислотные продукты распада частично нейтрализуются катионами, реакция почв кислая, слабокислая или близкая к нейтральной, кислое выщелачивание выражено слабо, в почве накапливаются биогенным путем многие элементы. В отличие от влажных тропиков бик улучшает условия существования организмов. Энергичная биогенная аккумуляция – эффективный механизм отрицательной обратной биокосной связи, стабилизирующей состав почв и повышающей их плодородие. В широколиственных лесах прямые водные связи сильнее обратных, т.е. выщелачивание преобладает. Для широколиственных лесов между автономными и подчиненными ландшафтами характерно совершенное геохимические сопряжение.




Достарыңызбен бөлісу:
1   2   3   4   5   6




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет