Математиканы оқыту әдістемесі пәні математиканың ғылым ретінде дамуы 5



бет4/9
Дата02.01.2022
өлшемі1.75 Mb.
#452774
түріСабақ
1   2   3   4   5   6   7   8   9
Курстык жумыс математика 25.01.2021

Индукция әдісі – математиканы баяндауға таңдап алынған аксиоманың негізіне жатады. Аксиомалар математикалық тұжырымдамалардың дұрыстығын анықтауға көмектеседі. Белгілі бір теореманың дұрыстығы ғасырлар бойы қалыптасқан дәстүр бойынша күнделікті тұрмыста кездесетін тәжірибемен көрнекі түсініктердің негізінде дәлелденеді, тек осыдан кейін ғана оған дедуктивтік қорытынды жасалады. Сондықтан индукция әдісіне қарағанда дедукция әдісі күрделірек. Орта мектептердің сыныптарында индукция, ал жоғары сыныптарында дедукция көбірек қолданылады. Ғылыми зерттеу жұмыстарындағы күрделі есептермен орта мектептегі есептерді, әртүрлі мәселелерді шешуге индукция мен дедукция қатар қолданып бірін–бірі толықтырады.

Дедукция теориялық мәселелер формальды сипатталатын білімдер облысында (мысалы, математикада) үлкен роль атқарады.



Дедукция – жалпыдан жалқыға, бүтіннен бөлшекке көшетін пайымдау жолы.

Дедукция – ғылыми–зерттеу әдісі. Дедукция кейбір берілген тұжырымдарға сүйеніп, тікелей логикалық тұрғыда қорытынды жасалатын ойлау формасы.

Мысалы. «Кез келген натурал санның цифрларының қосындысы үшке бөлінсе, онда санның өзі де үшке бөлінеді» деген тұжырым дұрыс.

Дедуктивтік ой қорытудың, мынадай түрлері бар:

1. Неғұрлым жалпы қағидадан жеке қағидаға қарай апаратын ой қорытындылары. Мәселен, НОД (р, q)=1 мысалы осының дәлелі.

2. Жалпы қағидадан жалпы қағидаға апаратын ой қорытындысы.

Мысалы. Барлық жұп сандар 2-ге бөлінеді. Барлық тақ сандар 2-ге бөлінбейді.

3. Жеке қағидадан дербес қағидаға апаратын ой қорытындылары.

Мысалы. 5-жай сан. 5-натурал сан. Кейбір натурал сандар жай сан болады.

Дедукция әдісін ежелгі грек ғалымдары қалыптастырған. Б.э.д. ІІІ ғасырда ертедегі грек геометрі Евклид жазған «Негіздер» кітабы теорияны дедуктивтік түрде құрастырудың ең тамаша үлгісі болды. Осы үлгіде математикалық шығармалар мен қатар философиялық трактаттарда жазылды. Дедукция әдісімен жасалған қорытынды дұрыс болуы үшін әуелгі негізгі мағлұмат дұрыс дәлелденген болуы керек, сонда бұлардан шығатын қорытындылар дұрыс болады. Дедукция ретінде алынатын аксиомалар жүйесін дедукциялық әдіс дейді. Осы әдіспен ХІХ ғасырда геометрияның толық аксиомалар жинағы құрылды.

Неміс математигі Д.Гильбердтің «Геометрияның негіздерінде» негізгі ұғымдарға нүкте, түзу, жазықтық, ал олардың арасында негізгі қатынасқа «жататындығы», «арасында жататындығы», «конгруэнтті» болуы алынады. Қазіргі мектепте нүкте, түзу, жазықтық, арақашықтық сияқты негізгі ұғымдар алынған басқаша аксиомалар жүйесі қолданылады. Геометрия қандай аксиомалар жүйесіне негізделсе де бәрі бір оның қалған сөйлемдері, ұғымдары мен теоремалары таңдап алынған аксиомаларға сүйеніп құрылады. Теореманы дәлелдеуге нақты үшбұрыштардың қабырғаларының ұзындығы мен бұрыштарының шамасын өлшеу нәтижелеріне сүйенуге болмайды. Бұл дәлелдеулер таза логикаға сүйеніп дедуктивті түрде қорытындыланды. Дедуктивтік зерттеу жұмысы барысындағы жалпы қағидалар және заңдар ғылымдардың жаңылыс жолға түсіп кетпеуіне, шындық дүниесінің құбылыстарын дұрыс түсінуге мүмкіндік береді. Бірақ осы негізде дедуктивтік әдістің ғылыми мәнін асыра бағалау да дұрыс болмаған еді. Дедуктивтік ой қорытулар үшін бастапқы білімдер керек болады. Міне осы кезде дедукцияға индукция жәрдемге келеді. Сондықтан индукция және дедукция бірін-бірі толықтырып, өзара тығыз байланыста болады.

Индукция әдісі толымсыз, толық, математикалық болып үшке бөлінеді. Толымсыз индукция деп қарастырылатын жағдайлар өте көп болып, олардың барлығын түгел зерттеу мүмкін болмаған жағдайда, олардың тек кейбіреулерін ғана зерттеп солардан шығатын қорытындыны барлық фактілер үшін жасалатын қорытындыны айтамыз. Мысалы, 1=12, 1+2=32, 1+3+5=32 , 1+3+5+4=42 ,..., теңдіктерін бірден есептеу арқылы олардың дұрыстығына көз жеткіземіз. Осы дербес мағлұматтарға сүйеніп 1+3+5+7+9+…(2k-1) =k2 деген жалпы қорытынды жасаймыз.



Толық индукция деп математикада қарастырылатын жағдайларының саны шектеулі, ол жағдайлардың бәрін түгел қарастырып барып қорытынды жасауға болатын жағдайларды айтады.

Мысалы, кез келген дұрыс көпжақ үшін Т+Қ+Ж=2 (1) қатысы дұрыс болады. Мұндағы Т - көпжақтың төбесінің саны, Қ- қабырға саны, Ж- көпжақтың жақ саны. Тетраэдр, октаэдр, куб, додекаэдр, икосаэдр сияқты бес дұрыс көпжақты қарастырумен шектелеміз. Басқа дұрыс көпжақ болмайды. Кесте бойынша тексерейік:


Кесте 1

Көпжақтың аты

Төбе саны

Қабырға саны

Жақ саны

Тетраэдр

4

6

4

Октаэдр

6

12

8

Куб

8

12

6

Додекаэдр

20

30

12

Икосаэдр

12

30

20

Барлық бес дұрыс көп жақ үшін (1) теңдігі дұрыс орындалады. Сонымен барлық жағдайды толық қарастырып барып жасалатын әдіс толық индукция деп аталады.





Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет