необходимых материалов и отгрузки готовых автомобилей. Ей пришлось, затем определять
последовательность сборки многих тысяч деталей модели «Рэббит», выяснять, какие детали завод мог бы
производить сам, а какие покупать, устанавливать необходимые уровни запасов каждой детали. Ясно, что
фирма не могла решить эти проблемы, построив в порядке эксперимента в каждом возможном месте по заводу,
да еще и по нескольким проектам.
ОРИЕНТАЦИЯ УПРАВЛЕНИЯ НА БУДУЩЕЕ.
Невозможно наблюдать явление, которое еще не
существует и может быть никогда не состоится, как и проводить прямые эксперименты. Однако многие
руководители стремятся рассматривать только реальное и осязаемое, и это, в конечном счете, должно
выразиться в их повороте к чему-то видимому. Моделирование — единственный к
настоящему времени
систематизированный способ увидеть варианты будущего и определить потенциальные последствия
альтернативных решений, что позволяет их объективно сравнивать. Как указывает Дэвид Б. Херц:
«Руководитель должен выбрать лучшую из имеющихся альтернатив, чтобы распределить свои
ресурсы, установить для себя и других последовательность действий, привлечь новых люден и материальные
ресурсы. Для этого ему нужно довериться некоторым описаниям особенностей и стабильности среды, в
которой проявятся последствия решений как в краткой, так и долгосрочной перспективе. Он должен
представлять всю неопределенность такой среды, которая является одновременно неизбежной и
непредсказуемой».
Модели науки управления в наибольшей мере приспособлены к этим целям и как мощное аналитическое средство
позволяют преодолевать множество проблем, связанных с принятием решений в сложных ситуациях.
Рис. 8.2. Аналоговая модель (график, являющийся аналоговой моделью, показывает зависимость между
количеством произведенной краски и издержками в расчете на 1 галлон).
Т
Т
и
и
п
п
ы
ы
м
м
о
о
д
д
е
е
л
л
е
е
й
й
Прежде чем рассматривать широко используемые современными организациями модели и задачи, для
решения которых они наиболее пригодны, необходимо вкратце описать три базовых типа моделей. Речь идет о
физических, аналоговых и математических моделях.
ФИЗИЧЕСКАЯ МОДЕЛЬ.
Физическая модель представляет то, что исследуется, с помощью
увеличенного или уменьшенного описания объекта или системы. Как указывает Шеннон: «Отличительная
характеристика физической (называемой иногда «портретной») модели состоит в том, что в некотором смысле
она выглядит как моделируемая целостность».
Примеры физической модели — синька чертежа завода, его
уменьшенная фактическая модель,
уменьшенный в определенном масштабе чертеж проектировщика. Такая физическая модель упрощает
визуальное восприятие и помогает установить, сможет ли конкретное оборудование физически разместиться в
пределах отведенного для него места, а также разрешить сопряженные проблемы, например, размещение
дверей, ускоряющее движение людей и материалов. Автомобильные и авиационные предприятия всегда
изготавливают физические уменьшенные копии новых средств передвижения, чтобы проверить определенные
характеристики типа аэродинамического сопротивления.
Будучи точной копией, модель должна вести себя
аналогично разрабатываемому новому автомобилю или самолету, но при этом стоит она много меньше
настоящего. Подобным образом строительная компания всегда строит миниатюрную модель, прежде чем
начать строительство производственного или административного корпуса или склада.
АНАЛОГОВАЯ МОДЕЛЬ.
Аналоговая модель представляет исследуемый объект аналогом,
который
ведет себя как реальный объект, но не выглядит как таковой. График, иллюстрирующий соотношения между
объемом производства и издержками (рис. 8.2.), является аналоговой моделью. График показывает, как влияет
уровень производства на издержки.
Другой пример аналоговой модели — организационная схема. Выстраивая ее, руководство в состоянии
легко представить себе цепи прохождения команд и формальную зависимость между индивидами и
деятельностью. Такая аналоговая модель явно более простой и эффективный способ восприятия и проявления
сложных взаимосвязей структуры крупной организации, чем, скажем, составление перечня взаимосвязей всех
работников.
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ.
В математической модели, называемой также символической,
используются символы для описания свойств или характеристик объекта или события. Пример математической
модели и аналитической ее силы как средства, помогающего нам понимать исключительно сложные проблемы,
— известная формула Эйнштейна Е = mс
2
. Если бы Эйнштейн не смог построить эту математическую модель, в
которой символы заменяют реальность, маловероятно, чтобы у физиков появилась даже отдаленная идея о
взаимосвязи материи и энергии.
Вероятно, математические модели
относятся к типу моделей, чаще всего используемых при принятии
организационных решений. Рис. 8.2. иллюстрирует зависимость между объемом производства и издержками,
описываемую с помощью модели: С = PV(0,1) + 2500. Согласно этой модели, издержки (С) равны объему
производства (PV), умноженному на 0,1, плюс 2500. Ниже в данной главе мы рассмотрим некоторые
распространенные математические модели. Сначала же исследуем основные этапы построения модели.
Достарыңызбен бөлісу: