Научное обоснование и разработка технологии обогащения платинометальных руд зональных базит-ультрабазитовых комплексов в особых экологических условиях камчатки



бет3/4
Дата04.07.2016
өлшемі1.18 Mb.
#177609
түріАвтореферат диссертации
1   2   3   4

Систематизация, типизация и оценка факторов, определяющих возможное негативное воздействие продуктов обогащения платинометальных руд зональных базит-ультрабазитовых комплексов на экосистемы лососевых нерестово-нагульных рек Камчатки

Обогащение платинометальных руд гравитационными методами предусматривает в технологической схеме значительный расход воды (около 3 м3 на тонну руды), что определяет необходимость строительства и эксплуатации в бассейнах прилегающих водотоков масштабных гидротехнических сооружений для её накопления и очистки. Важное рыбохозяйственное значение расположенных в зоне предполагаемого воздействия водных объектов оценивается суммарным потенциалом производства рыбопродукции в 1820 тонн биомассы ежегодно, что определяет необходимость проведения научно-обоснованного прогноза характера и масштаба изменения состояния экосистемы прилегающих лососевых нерестово-нагульных рек при организации масштабной переработки руд.

Основу проведения систематизации, типизации и оценки факторов возможного негативного воздействия продуктов переработки платинометальных руд представляют результаты многолетнего комплексного эколого-рыбохозяйственного мониторинга эксплуатации россыпных месторождений платины Сейнав-Гальмоэнанского горного узла. Правомерность применения принципа аналогии в данном случае определяется следующим: 1) разработка россыпей и рудного месторождения проводится в одинаковых условиях, на общей территории и в бассейнах тех же водотоков; 2) масштабы ведения горно-добычных работ сопоставимы по объему перерабатываемой горной массы (россыпи – до 2 млн.м3 песков; руды – 5 млн.т руды в год); 3) технология обогащения платиносодержащих песков и платинометальных руд основана на гравитационных методах обогащения, исключающих использование химических реагентов и требующих создания значительных технологических запасов воды.

На начало разработки россыпных месторождений ихтиофауна водных объектов горного узла включала в себя 11 видов рыб, среди которых наиболее массовыми являлись тихоокеанские лососи (горбуша, кета, нерка, кижуч и чавыча). Для оценки динамики техногенного изменения структурных особенностей естественных биомов в зоне действия горнодобывающего предприятия изучены семь полных возвратов лососей испытавших на пресноводном этапе жизненного цикла масштабное воздействие горно-добычных работ. Исследованиями установлено, что в последние годы разработки россыпных месторождений, несмотря на общее увеличение захода лососей в основной бассейн территории, численность подхода производителей на нерест в отдельные водотоки горного узла резко сократилась. Значительно уменьшилась плотность заполнения нерестилищ среднего и верхнего течения водотоков, расположенных непосредственно в зоне техногенного воздействия, что вызвало увеличение нагрузки и переполнение нерестилищ на приустьевых площадках. Зафиксировано отчетливое снижение численности и обеднение видового состава лососевой молоди и жилых рыб, а также изменение физиологического состояния большей части рыбного сообщества в зоне техногенного воздействия, в первую очередь, в связи с различными механическими повреждениями жабр. Значительные трансформации в водотоках горного узла претерпели структура и численность сообществ донных организмов, что определило активную миграцию рыбного населения в связи с обеднением кормовой базы. В целом, результаты многолетнего мониторинга свидетельствует о проявлении признаков деградации существующего водного сообщества, которые вызваны техногенной трансформацией среды обитания гидробионтов в зоне действия горнодобывающего предприятия.

Гидрологические наблюдения за изменением состояния прилегающих водных объектов при освоении крупных россыпных месторождений позволяют выделить три основные группы факторов, определяющих основное негативное воздействие добычных работ с применением гравитационных методов обогащения на экосистемы лососевых нерестово-нагульных рек.

Первая группа факторов представлена прямыми техногенными изменениями руслового режима рыбохозяйственных водных объектов и связана с деформациями или переносом естественного русла в процессе строительства и эксплуатации очистных сооружений.

Помимо полного уничтожения участков рек и ручьев в зоне их переноса, спрямление естественных русловых меандров сопровождается активизацией горизонтальных и вертикальных русловых деформаций, активной эрозией рыхлых отложений и коренных пород, увеличением уклона поверхности водного потока и ростом его транспортирующей способности. На основе изучения динамики изменения продольного профиля в пределах руслоотводов выделено три участка, характеризующихся различным режимом выноса и аккумуляции твердого обломочного материала. От верхней границы руслоотвода вплоть до выхода водного потока на толщу коренных пород наблюдается активная эрозия ложа и стенок с выносом значительных объемов обломочного материала вниз по течению. Непосредственно на коренных породах русло представляет собой водослив, который имеет порожисто-водопадную форму, характеризуется замедленной эрозией и практически полным отсутствием рыхлых отложений. В развитии нижнего участка выделяется два периода, когда первоначально здесь происходит активное врезание с выносом рыхлых отложений, а после выхода профиля на базис эрозии идет направленная аккумуляция обломочного материала с верхней части руслоотвода.

Основные негативные последствия данной группы факторов определяются безвозвратной утратой для нереста лососевых рыб участков естественного русла в зоне его переноса. Водопады и пороги, формирующиеся при выработке продольного профиля искусственного русла в коренных породах, создают дополнительные, в некоторых случаях непроходимые, препятствия для подхода лососей-производителей к нерестилищам в верхней части водотоков. Отсутствие укрытий и изменение кормовой базы в руслоотводах провоцирует миграцию молоди лососей для нагула на другие участки водной акватории. Значительный объем рыхлого материала, который выносится из руслоотводов, ведет к изменению морфологии естественного русла и гранулометрического состава русловых отложений в нижней части водных объектов и негативно сказывается на размере площадей пригодных для нереста лососевых рыб. Оценивая долю участия данной группы факторов в общем воздействии горно-добычных работ на водные экосистемы, следует отметить их локальное распространение, которое практически не выходит за пределы установленного горного отвода.

Вторая группа факторов представлена техногенными изменениями водного режима рыбохозяйственных водотоков и вызвана фильтрацией поверхностных и грунтовых вод в карьеры очистных сооружений.

Результаты проведенных наблюдений свидетельствуют о значительном уменьшении водности нерестово-нагульных рек в зоне действия горнодобывающего предприятия с формированием устойчивой обратной гидравлической связи, когда поверхностные воды водотоков питают грунтовые горизонты. Для расположенных в зоне ведения горно-добычных работ относительно крупных водных объектов с удельным расходом воды более 10 м3/с, уменьшение водности в низкую межень обычно не превышает 20%, что находится в пределах естественных колебаний. На малых реках и ручьях техногенное уменьшение водного потока может достигать 55% и сопровождаться значительным изменением морфодинамического типа русла.

Основные негативные последствия изменения водного режима малых нерестово-нагульных рек и ручьев определяются сокращением количества рукавов, являющихся местами нереста лососей и удобными стациями для нагула их молоди. В маловодные годы активный дренаж руслового потока в отдельных случаях ведет к пересыханию естественного русла и полному уничтожению нерестовых площадок в верхней части водотоков. Следует отметить, что воздействие данной группы факторов на водные экосистемы также имеет локальное распространение и отражается исключительно на средних и верхних участках малых нерестовых рек и ручьев.

Третья группа факторов представлена техногенным изменением мутности водных потоков, увеличением количества взвешенных наносов и заилением русловых отложений рыбохозяйственных водных объектов и определяется поступлением с площади ведения горно-добычных работ значительного объема взвешенных веществ.

Гидрологическими наблюдениями установлено, что если в естественных условиях при отсутствии атмосферных осадков содержание взвеси в водных потоках нерестово-нагульных рек территории, как правило, не превышает 1-3 мг/л, то в водотоках расположенных в зоне воздействия она составляла не менее 10 мг/л, достигая в отдельных случаях 1,5 г/л. Изучение гранулометрического состава взвешенных веществ показало, что увеличение содержания взвеси сопровождается существенным уменьшением крупности частиц. Если в естественных условиях средняя крупность взвеси составляет от 24 до 55 мкм, то в водотоках расположенных в зоне действия горнодобывающего предприятия её размер уменьшается до 3 - 16 мкм (рис.10).



Рис.10. Зависимость средней крупности взвешенных частиц (dср) от содержания взвеси в водном потоке (S)

Техногенный характер процесса определяется поступлением высокодисперсных взвешенных веществ со сточными водами, в которых средний размер взвешенных частиц составляет 4 мкм, а подавляющее их количество имеет размер менее 2 мкм (рис.11).





Рис.11. Гранулометрический состав взвеси в водных объектах горного узла

В связи с малым весом высокодисперсных частиц, увеличение составляющей тонких фракций ведет к росту транспортирующей способности водного потока и позволяет переносить значительные объемы твердого материала на значительное расстояние от источника загрязнения. Перенасыщение водного потока взвесями определяет формирование значительных объемов взвешенных наносов, что проявляется в характере изменения мутности воды по простиранию водотоков, когда на мелких плесах с медленным течением происходит кратковременное оседание взвешенных частиц с их повторным взмывом на перекатах. Увеличение содержания тонких фракций в водном потоке существенно изменяет гранулометрический состав верхнего слоя русловых отложений нерестовых рек. Проведенные исследования показали, что содержание илистых фракций в составе русловых отложений нерестовых рек находящихся в зоне техногенного воздействия за время ведения горно-добычных работ выросло в среднем в два раза.

Негативный эффект техногенного увеличения мутности воды и заиления русловых отложений на первый взгляд малозаметен, но именно это продолжительное по времени изменение среды обитания гидробионтов представляет наибольшую опасность при ведении горно-добычных работ, так как широкомасштабно действует на всю нижележащую водную акваторию. Снижение продуктивности рыбохозяйственных водотоков в данном случае может проявиться через несколько лет, но будет иметь устойчивый и необратимый характер, так как негативное воздействие отразится на всех элементах водной экосистемы. Локализация третьей группы факторов является определяющим для сохранения важного рыбохозяйственного значения лососевых нерестово-нагульных рек территории при освоении платинометальных руд.

Для проведения объективной количественной оценки уровня загрязнения рыбохозяйственных водных объектов взвешенными веществами предлагается ввести показатель (КТЗ), который представлен отношением суммарного объема стока взвешенных веществ с площади водного бассейна с учетом ведения горно-добычных работ(WТС) к объему стока в естественных условиях (WЕС):








(3)

Определить объемы стока взвешенных веществ в условиях малоосвоенных территорий Крайнего Севера и Дальнего Востока, где отсутствует постоянная сеть гидрометрических наблюдений, позволяют существующие в современной гидрологии индикационные эмпирико-аналитические методы оценки, основу которых составляют эпизодические наблюдения за параметрами стока взвешенных веществ в водотоках, расположенных в зоне техногенного воздействия. Общий объем техногенного стока с площади ведения горно-добычных работ определяется при этом путем прямого сложения индивидуальных расчетов по каждому источнику загрязнения: 1) поверхностных смыв работ (Wсмыв); 2) вынос твердого материала из руслоотводов (Wрусл); 3) организованный сброс сточных вод (Wсбр) и 4) аварийные сбросы технологических вод (Wавар).




WТС = Wсмыв + Wрусл + Wсбр + Wавар

(4)

Проведенные расчеты годового объема стока взвешенных веществ для эталонного объекта - Сейнав-Гальмоэнанского горного узла позволяют сделать вывод, что воздействие разработки россыпных месторождений платины на экосистемы главной водной артерии территории – крупной нерестовой реки Вывенка, определяется показателем КТЗ =1,14. Установлено, что основную роль в формировании техногенного стока взвешенных веществ (68%) играет сброс сточных вод с повышенным содержанием высокодисперсных взвесей. Это определяет основной задачей обеспечения экологической безопасности рыбохозяйственных водных объектов при освоении платинометальных руд - проведение глубокой очистки подготовленных к сбросу в водоприемники сточных вод от высокодисперсных взвешенных частиц.

Теоретическое обоснование и экспериментальное изучение возможности применения акустического воздействия для очистки сточных вод от высокодисперсных взвешенных частиц

Воздействие консервативных химических со­единений на экосистемы нерестовых рек мало изучено, поэтому применение химических реагентов (коагулянтов), как традиционного высокоэффективного метода глубокой очистки воды, в заданных экологических условиях невозможно, так как может вызвать частичную деградацию или полное уничтожение рыбного сообщества. Хорошие результаты очистки воды от высокодисперсных взвесей могут быть получены при использовании различных типов фильтров, гидроциклонов и центрифуг, однако высокая себестоимость очистки и малая производительность промышленных аппаратов, при значительных объемах промышленных сточных вод определяют их применение затратным и экономически нецелесообразным.

Учитывая простоту конструкции и низкий уровень затрат на строительство и эксплуатацию, широкое применение на горнодобывающих предприятиях Крайнего Севера и Дальнего Востока находят горизонтальные типы отстойников. Механическое отстаивание является эффективным для взвешенных частиц крупного (более 50мкм) и среднего (5-50 мкм) размеров, а для осаждения высокодисперсных и коллоидных частиц в таких очистных сооружениях необходимо проведение их предварительное агрегирование, которое в заданных экологических условиях может быть выполнено исключительно методами физического воздействия.

Скорость осаждения высокодисперсных взвесей, включая коллоидные системы, незначительна, что объясняется малой массой частиц и отсутствием самопроизвольной коагуляции в связи с наличием на их поверхности одноименных электрических зарядов. Заряженные частицы отталкиваются друг от друга, но если вследствие броуновского движения расстояние между ними становится меньше критического, то они могут соединяться и коагулироваться. Одним из физических методов ускорения движения высокодисперсных взвешенных частиц в воде могут являться акустические воздействия в низком звуковом и звуковом диапазоне частот, которые характеризуется объемным распространением и относительной экологической безопасностью для окружающей среды.

В основу разработанного комплексного метода очистки сточных вод от взвешенных веществ положены следующие механизмы физической коагуляции частиц различной дисперсности под воздействием акустических волн: 1) коагуляция подвижных высокодисперсных частиц за счет увеличения количества их столкновений с более крупными малоподвижными частицами в бегущих гидроакустических волнах большой интенсивности; 2) коагуляция частиц различной дисперсности, за счет увеличения количества их столкновений при перемещении в области сжатия стоячих гидроакустических волн; 3) принудительное осаждение частиц различной дисперсности, в том числе и вновь образованных агрегатов, из верхнего слоя воды под воздействием избыточного акустического давления, возникающего при распространении звуковых волн из воздуха в водную среду.

Процесс очистки сточных вод от высокодисперсных взвешенных веществ сводится к последовательному увеличению крупности взвешенных частиц в процессе акустического воздействия и ускоренному осаждению в каскаде горизонтальных отстойников за счет роста массы новообразованных агрегатов и состоит из трех основных этапов.

На первом этапе осуществляется агрегирование самой представительной группы взвесей с размером частиц от 1 до 5 мкм, для чего в центральной части отстойников верхних порядков устанавливаются гидроакустические излучатели низкого звукового и звукового диапазона частот. Коагуляция взвесей достигается под воздействием бегущих гидроакустических волн высокой интенсивности, когда подвижные высокодисперсные частицы «прибиваются» к крупным и менее подвижным.

На втором этапе осуществляется агрегирование высокодисперсных частиц крупностью менее 1 мкм, для чего в местах слива воды между горизонтальными отстойниками нижних порядков устанавливаются излучатели электромагнитных волн, а в бортовых частях отстойников гидроакустические излучатели звукового диапазона частот, направленные на встречу друг другу и работающие в синхронном режиме. Под воздействием электромагнитных волн осуществляется компенсация поверхностных зарядов высокодисперсных частиц, а эффект коагуляции достигается за счет их перемещения в области «сжатия» стоячих гидроакустических волн, где барьерное расстояние между частицами преодолевается под воздействием интенсивного акустического давления.

На третьем этапе осуществляется осветление верхнего приграничного слоя воды, для чего на водоупорных дамбах горизонтальных отстойников устанавливаются направленные акустические излучатели. Принудительное осаждение исходных и агрегированных взвешенных частиц из верхнего слоя воды происходит за счет непрерывного воздействия на частицы различной дисперсности избыточного акустического давления, вектор которого направлен навстречу и вниз по отношению к движущемуся потоку воды.

Первые эксперименты по определению эффективности очистки сточных вод комплексным методом с акустическим воздействием были проведены при разработке россыпных месторождений платины Сейнав-Гальмоэнанского горного узла на смежных горизонтальных отстойниках с небольшими линейными размерами 80х60х3м и объемом 14400 м3 каждый. В центре отстойников были установлены гидроакустические излучатели звукового диапазона частот и по два акустических излучателя располагались на водоупорных дамбах. Анализ работы блока отстойников в штатном режиме показал, что при содержании взвешенных веществ на уровне 95 мг/л, эффективность осаждения взвесей составляла в нем не более 37%. Реализация комплексного метода с использованием акустического воздействия позволила повысить эффективность очистки до 74% и получить на выходе из блока очистных сооружений сточные воды с содержанием взвешенных веществ на уровне 25 мг/л.

Масштабные эксперименты по апробации метода, которые можно сопоставить с промышленными испытаниями, были поставлены на трех смежных горизонтальных отстойниках большого размера (140х100х8м и объем 112000м3). Необходимо отметить, что проведение экспериментов проводилось в условиях высокого содержания взвешенных веществ в воде на входе в очистные сооружения (1,04 - 1,96 г/л). Работа среднего отстойника в штатном режиме была неэффективна в связи с избыточным поступлением загрязненных вод из верхнего отстойника и интенсивным водообменном нижних и средних слоев воды. На первом этапе испытаний гидроакустические излучатели низкого звукового и звукового диапазона частот были установлены в верхнем и среднем горизонтальных отстойниках, а четыре акустических излучателя размещались на водоупорной дамбе между ними. Общая эффективность работы каскада горизонтальных отстойников при использовании акустического воздействия выросла на 34% и составила в целом 51%. На втором этапе эксперимента гидроакустические излучатели низкого звукового и звукового диапазона частот были перенесены в средний и нижний горизонтальные отстойники, а акустические излучатели размещены на водоупорной дамбе между ними. В штатном режиме, при содержании взвесей в загрязненной воде 1,45 г/л, эффективность работы каскада составляла 14 %, а осаждения взвесей в среднем отстойнике не происходило по-прежнему. В процессе реализации комплексного метода с акустическим воздействием, при более загрязненной воде 1,8 г/л, общая эффективность работы данного блока очистных сооружений составила 38%. Следует отметить, что при использовании комплексного метода начал работать средний отстойник, эффективность осаждения взвесей в котором составила 12%.

Для оценки времени, необходимого для осаждения взвешенных веществ из сточных вод испытавших акустическое воздействие были проведены эксперименты по отстаиванию воды из приповерхностных горизонтов нижнего отстойника. Результаты экспериментов показали, что значительная часть исходных и агрегированных взвешенных частиц может быть осаждена в процессе отстаивания сточных вод с эффективностью 10-11% общего количества взвесей за сутки.

При проектной мощности горно-обогатительного предприятия 5 млн. тонн руды в год, объем очистки технологических и сточных вод от взвешенных веществ составит около 20 млн.м3. При прогнозируемом содержании взвешенных веществ в промышленных водах 200 мг/л, на выходе из очистных сооружений планируется получать сточные воды с содержанием взвеси на уровне 20-25 мг/л (эффективность очистки 90%). В соответствии с технологической схемой комплексного метода очистки сточных вод для очистных сооружений обогатительной фабрики определены основные этапы, оптимальные режимы акустического воздействия и произведен выбор основного акустического оборудования (Табл.1).

Таблица 1. Основные этапы, оптимальные режимы и оборудование для реализации комплексного метода очистки сточных вод с акустическим воздействием при переработке платинометальных руд

Этапы воздействия

Типы излучателей

Диапазон рабочих частот, Гц

Акустическая мощность, Па

Режим работы, часы

Марка оборудования

1. Бегущие гидроакустические волны

Гидроакустический, ненаправленный (круговой)

300 – 3 000

1 000 – 10 000

«4-1»: 4 часа -излучение, 1 час – пауза

Излучатели: ЦГИ-снч, ЦГИ-1

Генераторы: Г3-33, Г-10

Усилители: УМ-снч, УМ-10


2. Стоячие гидроакустические волны

Гидроакустический, направленный (60-80 град.)

5 000 – 15 000

10 000 –100 000

«4-1»: 4 часа – излучение, 1 час – пауза

Излучатели: ПИ-1, СГИ-зд

Генераторы:Г3-110, Г-10

Усилители: УМ-зд, УМ-10


3. Бегущие акустические волны

Акустический, направленный (40-60 град)

1 000 – 5 000

1 000 – 10 000

«24-0»: 24 часа излучение, 0 ч - пауза

Излучатели:HD-6045, HD-1122

Генераторы: Г3-110, Г-10

Усилители:HP-1122, HP-3045

Расчетная себестоимость очистки 1 тыс. м3 промышленных и сточных вод от высокодисперсных взвешенных частиц с применением акустического воздействия составит 115,43 рубля, что определяет всего 0,12% затрат (или 0,59 рубля) в себестоимости производства 1 грамма платины.




Достарыңызбен бөлісу:
1   2   3   4




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет