МОРФОГРАФИЯ И МОРФОМЕТРИЯ РЕЛЬЕФА
Планетарные, а также мега- и макроформы рельефа могут рыть охарактеризованы площадью, которую они занимают. Безусловно, такая характеристика будет недостаточна для описания более мелких форм. Да и для форм высшего порядка наряду с площадью необходимы другие характеристики. Первая из них — это высота или глубина относительно уровня моря (так называемые абсолютные высоты или глубины). Наиболее общую характеристику (высот и глубин земной поверхности в целом дает гипсографическая
10 20 30 40 50 60 70 80 90 100%
Рис. I. Гипсографическая кривая (А) и обобщенный профиль дна океана (Б)
кривая1 (рис. 1). На этой кривой четко выделяется два основных гипсометрических уровня земной поверхности: материковый уровень и уровень, соответствующий ложу океана. Средняя высота поверхности Земли равна —2450 м, из чего следует, что для Земли в целом более характерны отрицательные гипсометрические характеристики. Ниже приведены средние высоты материков и глубины океанов.
Материки
|
Средняя высота, м
|
Океаны
|
Средняя глубина, м
|
Евразия
|
840
|
Тихий
|
4280
|
Африка
|
750
|
Атлантический
|
3940
|
Северная Америка
|
720
|
Индийский
|
3960
|
Южная Америка
|
600
|
Северный Ледовитый
|
1200
|
Австралия
|
320
|
|
1200
|
Антарктида
|
2100
|
|
|
Для характеристики рельефа Земли в целом, а также отдельных регионов важное значение имеют не только средние, но и экстремальные отметки рельефа. Наивысшая точка Земли — вершина
горы Джомолунгма (в Гималаях) — имеет отметку 8880 м, самая большая глубина относится к Марианскому глубоководному желобу (Тихий океан) и равна 11034 м. Следовательно, максимальный размах высот на поверхности земного шара достигает почти 20 км.
Гипсометрическая характеристика — одна из важнейших характеристик рельефа. По степени возвышения поверхности суши над уровнем океана выделяют низменный (0—200 м) и возвышенный рельеф. Последний по характеру расчлененности подразделяется на высокие равнины, возвышенности, плоскогорья и горный рельеф. Горный рельеф по гипсометрии подразделяют на низкогорный (до 1000 м), среднегорный (1000—3000 м) и высокогорный (>3000 м) рельеф.
1 Для отдельных материков строятся гипсографические кривые поверхности материков, для океанов и морей — батиграфические кривые.
Гипсометрию дна морей и океанов называют батиметрией (от «батос» — глубина). По батиметрическим различиям выделяют неритовую зону морского дна (0—200 м глубины), батиальную (200—3000 м), абиссальную (3000—6000 м) и гипабиссальную (глубина более 6 тыс. м).
Описание планетарных форм, а также мега- и макроформ рельефа ведется обычно по обобщающим материалам — картам, сводкам или обработанным данным по геофизическому и геологическому строению. В полевых условиях геоморфологу чаще всего приходится заниматься описанием форм рельефа низших порядков. При таком описании фиксируется общий облик рельефа и внешний облик составляющих его форм, отмечаются их площади и линейные размеры (ширина, длина), абсолютные высоты и размах высот между соседними положительными и отрицательными формами рельефа (относительные высоты), описываются составляющие эти формы элементы — склоны и субгоризонтальные поверхности. Замеряются углы наклона этих поверхностей и указывается характер границ как между элементами в пределах одной формы, так и между соседними формами рельефа. Дается также характеристика плановых очертаний форм, их ориентировка, отмечается, какими породами сложены формы и как залегают эти породы, Морфографическая (качественная) и морфометрическая (количественная) характеристики рельефа не заканчиваются полевыми наблюдениями. В камеральных условиях на основе полевых материалов, а также топографических карт, аэро- и космических снимков может быть составлена целая серия так называемых морфометрических карт:
1. Карты густоты горизонтального расчленения. Наиболее простой способ построения такой карты сводится к определению длины эрозионной сети L на единицу площади Р—L/P. Показатели интенсивности расчленения подписываются на карте внутри квадратов, по которым велся подсчет длины эрозионной сети, и затем в соответствии с выбранной шкалой квадраты закрашиваются или заштриховываются. Обычно придерживаются правила: чем интенсивнее расчленение, тем темнее окраска или гуще штриховка (рис. 2). Можно также интенсивность расчленения показывать
Рис. 2. Картограмма густоты долинно-балочной сети (в километрах на 1 км2, по А. И. Спиридонову)
изолиниями, соединяющими отметки с одинаковыми показателями густоты расчленения. Другой способ определения густоты эрозионного расчленения основан на измерении расстояний между линиями водоразделов и днищами (тальвегами) ближайших эрозионных форм.
2 Карты глубины расчленения. Один из способов составления подобного рода карт заключается в том, что на топографической основе проводят границы элементарных бассейнов, а затем в каждом из них определяют амплитуду между самой высокой и самой низкой точками. Согласно полученным цифровым показателям и шкале условных знаков, площади бассейнов закрашиваются или заштриховываются, обычно, по правилу: чем больше глубина расчленения, тем темнее окраска или гуще штриховка.
Для определения глубины расчленения может быть использован и такой прием: по изучаемому профилю определяется разница между наиболее низкими и наиболее высокими точками профиля.
-
Карта общего показателя расчленения рельефа. Составление такой карты основано на подсчете по условным квадратам сумм длин горизонталей. Затем через центры квадратов, имеющих
одинаковую сумму длин горизонталей, проводятся соответствующие изолинии.
-
Карты крутизны земной поверхности. Показателями крутизны земной поверхности могут быть угол наклона и отвлеченная величина — уклон i, равный tga. Построение карты углов наклона
заключается в следующем. В соответствии с выработанной легендой и шкалой заложения на топографической карте проводят границы участков с соответствующими углами наклона земной поверхности. После выполнения этой работы карта раскрашивается или заштриховывается по указанному выше правилу. Если нужно найти уклон по профилю, находят тангенс угла a — отношение превышения верхней точки над нижней к горизонтальной проекции, расстояния
между этими точками.
Существуют и другие типы морфометрических карт, как и другие способы составления перечисленных выше карт.
По получаемым морфометрическим показателям выделяются следующие категории рельефа.
1. По густоте горизонтального расчленения (удаленности линий водоразделов от тальвегов эрозионных форм).
1000 м — слаборасчлененный рельеф
500—1000 м — среднерасчлененный рельеф
100—500 м — значительно расчлененный рельеф
50—100 м — сильнорасчлененный рельеф
<50 м — очень сильно расчлененный рельеф
2. По глубине вертикального расчленения.
Для плоских равнин
<2,5 м — нерасчлененный или мелкорасчлененный
2—5 м — среднерасчлененный
5—10 м — значительно расчлененный
Для холмистых равнин
10—25 м — мелкорасчлененный
25—50 м — среднерасчлененный
50—100 м — глубокорасчлененный
Для горных территорий
100—250 м — мелкорасчлененный
250—500 м —
00—1000 м — глубокорасчлененный
>1000 м — очень глубоко расчлененный
3. По крутизне земной поверхности.
Tg a
|
градусы
|
0-0,01
|
0,5
|
0,01-0,02
|
0,5—1
|
0,02-0,07
|
1—4
|
0,07-0,12
|
4—7
|
0,12-0,4
|
7—24
|
0,4-0,7
|
>24
|
Равнинный плоский
Равнинный волнистый
Равнинно-холмистый
Холмистый
Гористый
Горный
Выделенные морфометрические категории не являются абсолютными, в особенности, если учитывать только какой-либо один показатель. Например, встречаются наклонные равнины, средний угол наклона поверхности которых может достигать 5°, но вместе с тем они не расчленены, поэтому их нельзя отнести к холмистым равнинам.
Морфографическая и морфометрическая характеристики рельефа имеют большое прикладное значение, так как без знания этих характеристик немыслимо строительство зданий и возведение сооружений, прокладка трасс железных и шоссейных дорог, проведение разного рода мелиоративных мероприятий и т. д.
Тщательное изучение морфографии и морфометрии рельефа имеет значительный научный интерес. Разнообразие морфографических и морфометрических показателей заставляет искать причину их различий, которая может заключаться в неоднородности геологического строения изучаемой территории, в характере и интенсивности новейших тектонических движений и современных экзогенных рельефообразующих процессов. В связи с научно-прикладной значимостью морфографические и морфометрические показатели являются важнейшей составной частью легенд и содержания общих геоморфологических карт.
Однако характеристика рельефа только по морфографическим и морфометрическим показателям недостаточна. При классификации рельефа по этим показателям в одной категории могут оказаться формы, имеющие сходный внешний облик, но различные по происхождению (например, моренный холм и эоловый бугор) и, напротив, близкие по генезису, но разные по внешнему облику формы окажутся разобщенными (например, овраг и конус выноса этого оврага).
ГЕНЕЗИС РЕЛЬЕФА
Главное исходное положение современной геоморфологии — представление о том, что рельеф формируется в результате взаимодействие эндогенных и экзогенных процессов. Этот тезис является одновременно наиболее общим определением генезиса рельефа Земли вообще, но он, безусловно, остается слишком общим и должен быть детализирован при рассмотрении конкретных форм или комплексов форм рельефа.
Как уже говорилось выше, наиболее крупные формы рельефа — планетарные, мега- и макроформы, а в некоторых случаях и мезоформы — имеют эндогенное происхождение. Своим образованием они обязаны особенностям структуры земной коры.
Эндогенные и экзогенные процессы формирования рельефа взаимосвязаны. Экзогенные процессы в ходе своей деятельности либо усложняют, либо упрощают рельеф эндогенного происхождения. В одних случаях экзогенные агенты вырабатывают более мелкие мезо- и микроформы, в других — срезают неровности коренного рельефа, в-третьих — происходит погребение или усложнение эндогенного рельефа за счет образования различных аккумулятивных форм. Характер воздействия экзогенных агентов на рельеф эндогенного происхождения в значительной мере определяется тенденцией развития рельефа, т. е. тем, являются ли господствующими восходящие (положительные) движения земной коры или же преобладают нисходящие (отрицательные) движения.
По существующим представлениям основным источником энергии эндогенных рельефообразующих процессов является тепловая энергия, продуцируемая главным образом гравитационной дифференциацией и радиоактивным распадом вещества недр Земли.
Гравитация и радиоактивность, разогрев и последующее охлаждение недр Земли неизбежно ведут к изменениям объема масс веществ, слагающих мантию и земную кору. Расширение земного вещества в ходе нагревания приводит к возникновению восходящих вертикальных движений как в мантии, так и в земной коре. Земная кора реагирует на них либо деформациями без разрыва пластов (образованием складчатых нарушений, или пликативных дислокаций), либо разрывами и перемещением ограниченных разрывами блоков (дизъюнктивные дислокации) земной коры. Складчатые дислокации образуются также и в тех случаях, когда движение блоков влечет за собой вспучивание или сползание по склонам поднимающихся блоков пород, находящихся в пластичном или полупластичном состоянии.
Разрывы могут проникать в толщу коры, проходить сквозь нее и достигать очагов расплавления пород. Тогда гигантские трещины превращаются в каналы, по которым расплавленное вещество — магма - устремляется вверх. Если магма не достигает поверхности земли и застывает в толще земной коры, образуются интрузивные тела. Образование крупных интрузий — батолитов, штоков — неизбежно ведет к механическому перемещению вверх толщ перекрывающих их пород, т. е. также способствует образованию, пликативных или дизъюнктивных дислокаций. Не менее важно при этом динамическое (давление), термическое и химическое воздействие внедряющихся магматических пород на осадочные породы, которые превращаются в результате такого воздействия в метаморфические породы.
Излияние расплавленного материала на поверхность, сопровождаемое выбросами паров воды и газов, получило название эффузивного магматизма, или вулканизма.
Образование разломов в земной коре, мгновенные перемещения масс в недрах Земли сопровождаются резкими толчками, которые на поверхности Земли проявляются в виде землетрясений. Землетрясения— это одно из наиболее заметных простому наблюдателю проявлений современных тектонических процессов, протекающих в недрах Земли.
Итак, вертикальные колебательные движения земной коры, сопровождающиеся образованием разломов, перемещением блоков коры и складчатостью, глубинный магматизм, вулканизм и землетрясения — вот те рельефообразующие процессы, источником энергии которых являются внутренние силы Земли. Однако создаваемые этими процессами формы рельефа в нетронутом виде в природе встречаются редко, так как уже с момента своего зарождения они подвергаются воздействию экзогенных процессов, преобразуются ими.
Главный источник энергии экзогенных процессов — энергия Солнца, трансформируемая на земной поверхности в энергию движения воды, воздуха, материала литосферы. Во всех этих процессах принимает участие гравитационная энергия, и поэтому названные процессы не являются чисто экзогенными. К числу экзогенных процессов относятся рельефообразующая деятельность поверхностных текучих вод и водных масс океанов, морей, озер, растворяющая деятельность поверхностных и подземных вод, а также деятельность ветра и льда.
Существует также целая группа процессов, протекающих на склонах и получивших наименование склоновых. Наконец, есть еще две группы процессов, которые также можно отнести к экзогенным геоморфологическим процессам: рельефообразующая деятельность организмов, а также хозяйственная деятельность человека, роль которой как фактора рельефообразования по мере развития науки и техники становится все более значительной.
Перечисленные рельефообразующие процессы лишь в редких случаях протекают обособленно.
Довольно редко мы можем сказать, что та или иная форма рельефа образовалась и развивается в настоящее время под действием лишь одного какого-либо процесса. Поэтому при определении генезиса рельефа геоморфолог всегда или почти всегда сталкивается с вопросом, какому геоморфологическому процессу следует отдать предпочтение, какой из них следует считать ведущим и в наибольшей степени определяющим генезис рельефа. Трудности генетического анализа могут быть систематизированы в виде следующего перечня:
-
Рельеф Земли, как было отмечено выше, есть результат взаимодействия эндогенных и экзогенных процессов. Однако такой ответ слишком общ и нуждается в конкретизации в каждом отдельном случае. На первом этапе такой конкретизации необходимо выяснить, какая же из этих групп процессов в данном случае превалирует. Это уже нелегкая задача, потому что, как показывают наблюдения, интенсивность тектонических и экзогенных процессов в целом соизмерима. Так, если средняя скорость тектонических процессов выражается миллиметрами или десятыми долями миллиметра в год, то и средняя скорость денудации земной поверхности
или аккумуляции продуктов денудации измеряется величинами того же порядка.
-
Нередко можно наблюдать, что рельеф, созданный в недавнем прошлом под воздействием одних агентов, в настоящее время подвержен воздействию других.
-
Часто встречаются случаи, когда рельеф формируется за счет совокупного влияния нескольких процессов, действующих примерно с одинаковой степенью интенсивности и дающих примерно равноценные результаты.
-
При выявлении генезиса форм рельефа разного порядка нередко приходится сталкиваться с таким явлением, когда крупная форма в целом обусловлена деятельностью эндогенных процессов,
а мелкие формы на ее склонах представляют результат деятельности экзогенных процессов. В этом случае, очевидно, вопрос о генезисе рельефа может решаться различно в зависимости от то
го, с крупной или мелкой формой рельефа мы имеем дело.
Перечисленные трудности в большинстве случаев преодолимы. Прежде всего, если решается вопрос о планетарных или мегаформах рельефа, то, несомненно, они в своих крупных чертах связаны с эндогенными процессами. Это можно сказать (с некоторыми исключениями) и о макрорельефе.
Из мезоформ лишь в отдельных, довольно редких случаях можно выделить такие формы, морфология которых целиком определена тектоническим процессом и не изменена экзогенными агентами. Мезоформы и более мелкие формы рельефа в подавляющем большинстве случаев оказываются связанными с экзогенными процессами, хотя проявление их в той или иной геологической обстановке может быть существенно различным. При этом в качестве ведущего процесса выделяется тот, который придал основные черты данной форме или данному комплексу форм рельефа, даже если в настоящий момент этот процесс перестал действовать. Для примера можно привести ледниково-аккумулятивный рельеф областей недавнего (позднеплейстоценового) оледенения, четвертичные морские или аллювиальные террасы. В настоящий момент эти образования подвержены воздействию других процессов, но, будучи ледниковыми, прибрежно-морскими или флювиальными формами, они еще в достаточной мере сохранили те морфологические черты, которые им придали недавно действовавшие процессы.
В тех случаях, когда в образовании той или иной формы или группы (комплекса) форм одновременно участвуют не один, а два или несколько факторов, вполне соизмеримых по своему морфологическому значению, следует говорить о сложном, комплексном происхождении рельефа.
Генезис рельефа определяется преимущественно в ходе полевых наблюдений, на основе которых устанавливаются характерные черты, свойственные различным генетическим типам рельефа, признаки выработанных или аккумулятивных форм рельефа. Кроме того, для выяснения генезиса аккумулятивных форм рельефа важное значение имеет всестороннее изучение слагающих их отложений. Аллювиальные, пролювиальные, морские отложения и т. д. обладают в большинстве случаев достаточно специфическим комплексом литологических и морфологических свойств, позволяющих судить о генезисе слагаемых ими аккумулятивных форм. Эти признаки будут более ясны из последующего рассмотрения различных генетических групп рельефа.
ВОЗРАСТ РЕЛЬЕФА
Важной задачей геоморфологии наряду с изучением морфографии, морфометрии и установлением генезиса является выяснение возраста рельефа. Как известно, в геологии возраст пород представляет одну из важнейших геологических характеристик, и показ возраста, по существу, составляет основное содержание общих геологических карт.
Определение геологического возраста пород основывается на применении хорошо разработанных стратиграфического, палеонтологического и петрографического методов, которые в последнее время все чаще подкрепляются методами абсолютной геохронологии. В геоморфологии определение возраста — задача более сложная, так как геологические методы применимы лишь для аккумулятивных форм рельефа и не могут быть использованы непосредственно для определения возраста форм выработанного, или денудационного, рельефа.
В геоморфологии, как и в геологии, обычно используют понятия «относительный» и «абсолютный» возраст рельефа.
Относительный возраст рельефа. Понятие «относительный возраст рельефа» в геоморфологии имеет несколько аспектов.
А. Развитие рельефа какой-либо территории или какой-либо отдельно взятой формы, как это показал В. Девис, является стадийным процессом. Поэтому под относительным возрастом рельефа можно понимать определение стадии его развития. В качестве примера можно проследить развитие рельефа морских берегов или речных долин. Из истории четвертичного периода известно, что во время последнего оледенения (примерно 20 тыс. лет назад) уровень океанов и морей был ниже современного приблизительно на 100 метров. По мере таяния материковых ледниковых покровов и возвращения воды в кругооборот уровень Мирового океана постепенно повышался: 4000—5000 лет назад он достиг отметки, близкой к современной. Воды океанов и морей затопили понижения прибрежной суши. Возникли исходные береговые линии, характеризующиеся сильной изрезанностью. Образование изрезанных берегов, называемых ингрессионными, может рассматриваться как начальная стадия развития современного берега. В дальнейшем абразионные процессы способствовали образованию уступов в высоких склонах мысов и постепенному их срезанию разрушительной работой волн. Одновременно в вершинах заливов возникают первые береговые аккумулятивные формы. Это стадия юности развития берега. Позднее мысы срезаются, а бухты (заливы) полностью отчленяются от моря аккумулятивными образованиями, берег становится выровненным. Выравнивание береговой линии знаменует стадию зрелости берега. Дальнейшее развитие ведет к затуханию абразионного процесса. У мысов начинается аккумуляция. Сокращение поступления обломочного материала может привести к частичному размыву аккумулятивных форм, образовавшихся ранее в устьях бухт. Это стадия дряхлости, или старости.
Рассмотрим другой пример — формирование речной долины на поверхности, недавно освободившейся из-под ледникового покрова. На первых порах река имеет невыработанное русло, слабо врезанное в подстилающие породы. В процессе развития русло постепенно врезается в подстилающие породы, но в его продольном профиле еще остаются многочисленные неровности. Это стадия юности речной долины. Дальнейшее врезание ведет к выработке закономерного вогнутого продольного профиля, врезание русла по вертикали сменяется размывом бортов долины. Наряду с руслом формируется пойма. Речная долина вступает в стадию зрелости. В дальнейшем боковая эрозия приводит к расширению поймы, река блуждает в пределах этой поверхности, течение ее становится замедленным, а русло чрезвычайно извилистым. Наступает стадия старости речной долины.
Следовательно, один из аспектов определения относительного возраста рельефа — это определение стадии его развития по комплексу характерных морфологических и динамических признаков.
Б. Понятие «относительный возраст рельефа» применяется также при изучении взаимоотношений одних форм с другими. В общем случае любая форма является более древней по отношению к тем, которые осложняют ее поверхность и сформировались в более позднее время. Так, в пределах Прикаспийской низменности широким распространением пользуется позднечетвертичная (хвалынская) морская равнина, которая после регрессии хвалынского моря в одних местах подверглась расчленению эрозионными процессами, в других — ее поверхность оказалась переработанной эоловыми процессами, сформировавшими разнообразные типы эолового рельефа. Следовательно, эрозионные (выработанные) и эоловые (аккумулятивные) формы рельефа являются вторичными (более молодыми) по отношению к первичной (в данном случае хвалынской) морской равнине.
В. Определение относительного геологического возраста рельефа означает установление того геологического отрезка времени, когда рельеф приобрел черты, в основном аналогичные его современному облику. Если речь идет об аккумулятивных формах рельефа, то вопрос сводится к определению обычными геологическими методами возраста слагающих эту форму отложений. Так, например, аллювиальные террасы, сложенные среднечетвертичными отложениями, имеют среднечетвертичный возраст; древние дюны, сложенные эоловыми плиоценовыми отложениями, имеют плиоценовый возраст и т. д.
Рис. 3. Определение возраста выработанной формы рельефа (речной долины) методом возрастных рубежей:
1 — морские отложения неогенового возраста; 2 — ледниковые отложения раннечетвертичного возраста; 3 — современные аллювиальные отложения
Сложнее с определением возраста выработанных форм рельефа. К. К. Марков рекомендует следующие способы:
-
Определение возраста по коррелятным отложениям. При образовании какой-либо выработанной формы рельефа, например оврага, в его устье накапливаются продукты разрушения пород,
в которые врезается данный овраг, в виде аккумулятивной формы рельефа — конуса выноса. Определение геологическими методами возраста осадков, слагающих конус выноса, дает ключ и к определению возраста выработанной формы, в данном случае — оврага.
-
Метод возрастных рубежей. Его суть заключается в определении возраста двух горизонтов отложений, фиксирующих нижний верхний рубежи образования данной выработанной формы рельефа. Поясним на примере (рис. 3).
Долина реки врезана в поверхность, сложенную осадками неогенового возраста. На дне долины под современным аллювием залегают ледниковые осадки раннечетвертичного возраста. Следовательно, рассматриваемая долина сформировалась на границе неогена и раннечетвертичного времени: она арезана в неогеновые отложения, т. е. моложе их, и выполнена нижнечетвертичными ледниковыми образованиями, т. е. старше их. Этот метод применим для определения относительного геологического возраста и аккумулятивного рельефа.
3. Определение времени «фиксации» выработанного (денудационного) рельефа. В ряде случаев выработанные (денудационные) поверхности бывают перекрыты (фиксированы) корой выветривания. Определение палеонтологическими, палеоботаническими или другими методами возраста коры выветривания дает тем самым ответ на вопрос о возрасте денудационной поверхности.
4. Определение относительного геологического возраста рельефа путем прослеживания фациальных переходов. Этот метод может быть применен при решении задачи о возрасте тех аккумулятивных форм, которые сложены осадками, не содержащими палеонтологических остатков. Прослеживая в пространстве данную пачку отложений до фациальной смены ее отложениями, содержащими палеонтологические остатки, устанавливают одновозрастность обеих пачек осадков и, следовательно, одновозрастность образуемых ими форм рельефа. Так, например, можно установить возраст аллювиальной террасы, если ее удается проследить до перехода в прибрежноморские отложения, возраст которых определяется палеонтологическим методом. Таким же образом можно в ряде случаев определить возраст некоторых выработанных форм, например, путем прослеживания абразионной морской террасы до ее сопряжения с аккумулятизной.
Абсолютный возраст рельефа. В последние десятилетия благодаря развитию радиоизотопных методов исследования широко применяется определение возраста отложений и форм рельефа в абсолютных единицах — в годах. Зная период полураспада того или иного радиоизотопа и определяя соотношение его количества с его производным, получают достаточно надежный способ определения абсолютного возраста. В настоящее время широко используются для определения абсолютного возраста такие методы, как радиоуглеродный, калий-аргоновый, фторовый, метод неравновесного урана и др., каждый из которых имеет свои пределы применимости. Абсолютный возраст древних отложений и форм рельефа определяется также с помощью палеомагнитного метода.
Итак, морфографическая и морфометрическая характеристика рельефа, установление его генезиса, возраста и истории развития — такова совокупность основных задач геоморфологического исследования. Методы решения этих задач, разумеется, не исчерпываются только теми, которые были кратко рассмотрены в этом разделе. В ходе дальнейшего изложения материала будут рассмотрены и более конкретные методы и приемы изучения рельефа.
ГЛАВА 4. ФАКТОРЫ РЕЛЬЕФООБРАЗОВАНИЯ
Как указывалось выше, исходным положением современной геоморфологии является представление о том, что рельеф формируется в результате взаимодействия эндогенных и экзогенных процессов. Существует, кроме того, ряд факторов, которые непосредственно не участвуют в формировании рельефа, но влияют на его образование, определяя «набор» рельефообразующих процессов, лень интенсивности и пространственную локализацию воздействия тех или иных процессов. К числу таких факторов относятся вещественный состав пород, слагающих земную кору, геологические структуры, созданные тектоническими движениями прежних геологических эпох, климатические условия и в определенной степени сам рельеф. Рассмотрим эти факторы несколько подробнее.
СВОЙСТВА ГОРНЫХ ПОРОД И ИХ РОЛЬ В РЕЛЬЕФООБРАЗОВАНИИ
Известно, что земная кора сложена горными породами разного генезиса и разнообразного химического и минералогического состава. Эти различия находят отражение в свойствах пород и, как следствие этого, в их устойчивости по отношению, к воздействию внешних сил. Различают породы более стойкие и менее стойкие, более податливые и менее податливые. В первом случае обычно имеют в виду стойкость пород по отношению к процессам выветривания, во втором — к воздействию на них текучих вод, ветра и других экзогенных сил.
Различные генетические группы горных пород по-разному реагируют на воздействие внешних сил. Так, осадочные горные породы являются довольно стойкими по отношению к выветриванию, но многие из них весьма податливы к разрушительной работе текучих вод и ветра (лёсс, пески, суглинки, глины, мергели, галечники и т. д.), а магматические и метаморфические породы оказываются стойкими или довольно стойкими по отношению к размыву текучими водами, но сравнительно легко разрушаются под воздействием процессов выветривания. Объясняется это тем, что магматические и метаморфические породы образовались в глубине земли, в определенной термодинамической обстановке и при определенном соотношении химических элементов. Оказавшись на поверхности Земли, они попадают в новые условия, становятся неустойчивыми в этих условиях и под воздействием различных процессов (окисления, гидратации, растворения, гидролиза и др.) начинают разрушаться. Интенсивность разрушения определяется как физико-химическими свойствами пород, так и конкретными физико-географическими (в первую очередь, климатическими) условиями, поскольку в разных климатических зонах характер процессов выветривания и сноса продуктов выветривания имеет свои специфические особенности.
Из числа кристаллических пород более стойки по отношению, например, к физическому выветриванию породы мономинеральные, мелко- и равномернозернистые, светлоокрашенные, с массивной текстурой. Так, гранит — порода полиминеральная, разрушается быстрее, чем кварцит — порода мономинеральная. Крупно- и неравномернозернистые граниты с более темной окраской в сходных условиях менее устойчивы, чем светлоокрашенные мелко- и равномернозернистые граниты. Гнейс — порода, сходная по структуре и минералогическому составу с гранитом, но имеющая иную структуру (параллельно-сланцеватую или тонкополосчатую), подвержена более быстрому разрушительному воздействию выветривания, чем гранит, характеризующийся массивной текстурой.
Основные и ультраосновные магматические породы при прочих равных условиях под воздействием выветривания разрушаются быстрее, чем породы кислые и средние.
Существенное влияние на интенсивность процессов физического выветривания оказывают такие свойства горных пород, как теплоемкость и теплопроводность. Так, чем меньше теплопроводность, тем большие температурные различия возникают на соседних участках породы при ее нагревании и охлаждении и, как следствие этого, большие внутренние напряжения, которые и способствуют более быстрому ее разрушению.
Большое морфологическое значение имеет степень проницаемости горных пород для Дождевых и талых вод. Легко проницаемые породы, поглощая воду, способствуют быстрому переводу поверхностного стока в подземный. В результате участки, сложенные легко проницаемыми породами, характеризуются слабым развитием эрозионных форм, а склоны этих форм вследствие незначительного смыва долгое время могут сохранять большую крутизну. На участках, сложенных слабопроницаемыми породами, создаются благоприятные условия для возникновения и развития эрозионных форм, для выполаживания их склонов. Залегание водоупорных пластов в основаниях крутых склонов долин рек, берегов озер и морей способствует развитию оползневых процессов и специфического рельефа, свойственного районам развития оползней. Проницаемость горных пород может быть обусловлена либо их строением (рыхлым — пески, галечники; пористым — известняки-ракушечники, различные туфы, пемза), либо их трещиноватостью (известняки, доломиты, магматические и метаморфические породы). Следует подчеркнуть, что трещиноватость горных пород, способствуя заложению и развитию эрозионных форм, часто определяет рисунок гидрографической сети в плане.
Громадное морфологическое значение имеет такое свойство горных пород, как растворимость. К числу легко или относительно легкорастворимых пород относятся каменная соль, гипс, известняки, доломиты. В местах широкого развития этих пород формируются особые морфологические комплексы, обусловленные так называемыми карстовыми процессами.
Находит отражение в рельефе и такое свойство горных пород, как просадочность. Этим свойством, выражающимся в уменьшении объема породы при ее намокании, обладают лёссы и лёссовидные суглинки. В результате просадки в областях распространения этих пород обычно образуются неглубокие отрицательные формы рельефа.
Существует целый ряд других свойств, определяющих морфологическое значение пород и степень их устойчивости к воздействию внешних сил. В конечном счете совокупность физических и химических свойств горных пород приводит к тому, что породы более стойкие образуют, как правило, положительные формы рельефа, менее стойкие — отрицательные. Следует еще раз подчеркнуть, что относительная стойкость породы зависит не только от ее свойств, обусловленных химическим и минералогическим составом. В значительной мере она определяется условиями окружающей среды: одна и та же горная порода в одних условиях может выступать как стойкая, в других — как податливая. Поэтому, как справедливо отмечает И. С. Щукин, если мы хотим учесть морфологическое значение тех или других пород в формировании рельефа исследуемой территории, необходимо взвесить каждое из свойств и совокупное их выражение в условиях конкретной физико-географической обстановки.
РЕЛЬЕФ И ГЕОЛОГИЧЕСКИЕ СТРУКТУРЫ
Горные породы с характерными для них свойствами находятся в земной коре в самых разнообразных условиях залегания и в различных соотношениях друг с другом, определяя геологическую структуру того или иного участка литосферы. Благодаря избирательной (селективной) денудации, обусловленной свойствами горных пород, под воздействием экзогенных процессов происходит препарировка геологических структур. В результате возникают формы рельефа, облик которых в значительной мере предопределен структурами, поэтому такие формы рельефа называются структурными. Таким образом, свойства горных пород, их различная устойчивость по отношению к воздействию внешних сил находят отражение в рельефе через геологические структуры. В этом и заключается роль геологических структур как одного из важнейших факторов формирования рельефа.
Различные структуры обусловливают различные типы структурно-денудационного рельефа, возникающего на месте их развития. Различия проявляются даже в том случае, когда структуры подвергаются воздействию одного и того же комплекса внешних сил. Однако облик структурно-денудационного рельефа, размеры отдельных структурных форм зависят не только от типа геологической структуры, но также от характера и интенсивности воздействия внешних сил, от степени устойчивости слагающих структуру пластов, от мощности и, как следствие этого, частоты чередования пластов, сложенных породами различной стойкости. В случае лито-логической однородности толщ, слагающих структуры, последние находят слабое отражение в рельефе.
Рассмотрим некоторые типы геологических структур с точки зрения влияния их на облик структурно-денудационного рельефа.
Широким распространением пользуется горизонтальная структура, свойственная верхнему структурному этажу платформ (платформенному чехлу), сложенному осадочными, реже вулканическими породами. Горизонтальным структурам в рельефе соответствуют плоские равнины и плато (плато Устюрт) или так называемые столовые страны (Тургайская столовая страна). При эрозионном расчленении столовых структур, в строении которых принимают участие стойкие породы, возникает плоскогорный тип рельефа. Такой рельеф характеризуется плоскими междуречьями (бронированными стойкими пластами), которые резко переходят в крутые склоны речных долин и других эрозионных форм рельефа. Примером этого типа рельефа может служить центральная часть Ставропольской возвышенности. В условиях тектонического покоя и длительного воздействия эрозионно-денудационных процессов плоскогорный рельеф может превратиться в рельеф островных столово-останцовых возвышенностей, в котором отрицательные
Рис. 4. Рельеф островных столово-останцовых возвышенностей
формы рельефа занимают значительно большие площади, чем положительные (рис. 4). Рельеф столово-останцовых возвышенностей широко развит в Африке, а на территории СССР в ряде мест — по периферии плато Устюрт, по правобережью реки Амударьи, севернее г. Чарджоу.
В случае чередования (по вертикали) стойких и податливых пород, залегающих горизонтально, возникает пластово-ступенчатый рельеф. На склонах эрозионных форм при этих условиях образуются так называемые структурные террасы (рис. 5).
При моноклинальном залегании чередующихся стойких и податливых пластов под воздействием избирательной денудации вырабатывается своеобразный структурно-денудационный рельеф, получивший название куэстового. Куэста — грядообразная возвышенность с асимметричными склонами: пологим, совпадающим с углом падения стойкого пласта (структурный склон), и крутым, срезающим головы пластов (аструктурный склон, рис. 6).
Размеры куэстовых гряд могут сильно варьировать в зависимости от абсолютной высоты местности и глубины эрозионного расчленения, мощности стойких и податливых пластов и углов их падения. В одних случаях - это высокие горные хребты (Скалистый хребет северного склона Большого Кавказа), в других — небольшие гряды с относительными превышениями 10—20 м.
Весьма своеобразен рисунок и характер эрозионной сети в условиях куэстового рельефа. В зависимости от соотношения речных долин с элементами куэстового рельефа и элементами залегания пластов горных пород различают долины консеквентные и субсеквентные. Консеквентные долины совпадают с общим наклоном топографической поверхности и с направлением падения пластов.
Субсеквентными называют долины рек, направление которых совпадает с простиранием моноклинально залегающих пластов. Вследствие этого они перпендикулярны консеквентным
Рис. 5 Структурные террасы на склонах речной долины:
1-податливые породы
2-пласты стойких пород
|
Рис. 6. Блок –диаграмма моноклинально-грядового (Куэстового) рельефа (по С.В. Лютцау):
1-пласты податливых пород
2- стойкие породы: К – консеквентная долина; С – субсеквентные долины; З – ресеквентные долины
|
долинам. Вырабатывая продольные долины вдоль выхода пластов податливых пород и как бы соскальзывая при врезании по кровле более стойких пластов, субсеквентные долины характеризуются четко выраженным асимметричным поперечным профилем. На склонах долин субсеквентных рек могут возникать притоки. Долины притоков, стекающих по более длинным и пологим (структурным) склонам куэст, получили название ресеквентных; долины противоположно направленных притоков, стекающих с коротких и крутых аструктурных склонов куэст,— обсеквентных. Сочетание всех названных типов долин образует в плане четко выраженный дважды перистый рисунок речной сети, весьма характерный для куэстовых областей.
При больших углах наклона, частом чередовании стойких и податливых пластов и значительном эрозионном расчленении территории отпрепарированные моноклинальные гряды распадаются на отдельные массивчики, принимающие в плане треугольную форму и накладывающиеся друг на друга в виде черепицы. Такой рельеф И. С. Щукин называет шатровым или чешуйчатым.
Моноклинальное залегание пластов свойственно крыльям и периклиналям крупных антиклинальных складок. И если в их строении участвуют породы различной стойкости, то в результате избирательной денудации возникают куэсты или моноклинальные гряды, пространственное положение которых дает возможность судить о форме складок в плане. Своими крутыми склонами куэсты всегда обращены к ядрам антиклиналей. Сходная картина образования куэст может наблюдаться по периферии соляных куполов и в осадочном чехле лакколитов. Долинная сеть, возникающая в таких условиях, в плане имеет кольцевидный или «вилообразный» рисунок.
В случае очень крутого падения пластов или вертикального их залегания образуются (в отличие от типичных куэст) симметричные гряды, вытянутые по простиранию стойких пластов. Между грядами по простиранию податливых пластов закладывается параллельная эрозионная сеть.
Рис 7_ Складчатая структура и ее во многом определяется также отражение во вторичном рельефе:
1 — пласты податливых пород; 2 — пласты стойких пород
| Более сложный рельеф возникает на месте складчатых структур, для которых характерны частые изменения направления и угла падения пластов в зависимости от формы складок в профиле и плане и от их размеров.
Характер рельефа складчатых областей во многом также определяется составом пород, смятых в складки, глубиной расчленения и длительностью воздействия экзогенных сил. При этом могут возникать самые разнообразные соотношения между формами рельефа и складчатыми структурами, на которых эти формы образуются. В одних случаях наблюдается соответствие между типом геологической структуры и формой рельефа, т. е. антиклиналям (положительным геологическим структурам) соответствуют возвышенности или хребты, а синклиналям (отрицательным геологическим структурам) - понижения в рельефе. Такой рельеф получил название прямого. Однако такие формы рельефа на суше встречаются довольно редко. На территории СССР примером таких форм являются небольшие возвышенности, соответствующие брахиантиклинальным складкам на Керченском, Таманском и (реже) Апшеронском полуостровах. Встречаются такие формы рельефа в пределах молодых складчатых гор.
Значительно чаще в складчатых областях развит так называемый обращенный или инверсионный рельеф, характеризующийся обратным соотношением между топографической поверхностью и геологической структурой. На месте положительных геологических структур образуются отрицательные формы рельефа, и наоборот (Рис. 7). Объясняется это тем, что ядра антиклиналей начинают разрушаться под действием процессов денудации раньше, чем осевые части синклиналей. Кроме того, вследствие повышенной раздробленности пород, возникающей в ядрах антиклиналей при изгибе пластов, разрушение их под действием внешних сил происходи интенсивнее.
Описанные выше структуры могут быть осложнены разломами, по которым блоки земной коры смещаются относительно друг друга в вертикальном или горизонтальном направлениях, оказывая существенное влияние на формирование и облик возникающего при этом рельефа. Структуры земной коры становятся еще боле сложными под воздействием интрузивного и эффузивного магматизма, приводящего к возникновению самых разнообразных взаимоотношений между пластами осадочных пород и магматическим телами, непосредственно отражающимися в рельефе, или под воздействием последующих денудационных процессов (см. главу 6).
Влияние геологических структур на формирование рельефа и отражение в рельефе от места к месту не остается одинаковым зависит как от соотношения взаимодействия эндогенных и экзогенных процессов, так и от конкретных физико-географических условий. Наиболее четко структурность рельефа проявляется на территориях, испытывающих тектонические поднятия (где превалируют процессы денудации), особенно в условиях засушливого климата.
Понимание взаимосвязей, существующих между рельефом геологическими структурами, имеет большое научное и практическое значение. Зная, какое влияние оказывают на облик рельеф те или иные геологические структуры в сочетании с тектоническим движениями, можно воспользоваться методом от противного: по характеру рельефа судить о геологических структурах, направлении интенсивности тектонических движений отдельных участков земной коры. Выявление глубинного строения земной коры геоморфологическими методами в последнее время получило широко! развитие в практике геолого-съемочных и геолого-поисковых работ. Особенно перспективными геоморфологические методы оказались при поисках нефтегазоносных структур, поэтому не случайно примерно 15—20 лет назад возникло новое научное направление в геоморфологии — структурная геоморфология.
Понимание взаимосвязей между геологическими структурами и рельефом позволяет не только объяснить особенности морфологи современного рельефа тех или иных участков земной поверхности, но и определить дальнейшее направление его развития, т. е. дает возможность для геоморфологического прогноза.
Взаимосвязь рельефа со структурами земной коры позволяет при геоморфологическом анализе учесть влияние не только существующих геологических структур, но и тех, которые были уничтожены действием внешних сил и которые когда-то были присущи более высоким горизонтам земной коры. Так, в природе встречаются случаи, когда, например, современные долины рек находятся в видимом противоречии с геологическими структурами, пересекай их, а не следуют направлениям простирания пластов или линия разломов. В таких случаях невольно возникает предположение не является ли гидрографическая сеть унаследованной от прошлой заложившейся в условиях иной структуры, существовавшей ранее на данной территории, т. е. не является ли она спроектированной, наложенной сверху на более глубокие горизонты земной коры с иной структурой или иной ориентировкой структурных линий. Подобные речные долины называются эпигенетическими. Благоприятными участками для эпигенетического заложения речных долин являются, например, участки платформ с тонким чехлом осадочных пород, испытывающие медленные, но устойчивые тектонические поднятия. В таких условиях реки, первоначально сформировавшие свои долины в осадочном чехле горизонтально залегающих пород, после удаления чехла в результате денудации оказываются врезанными в кристаллические породы фундамента. При этом направление течения рек может не совпадать с простиранием осей складок или линий разлома фундамента. Примером эпигенетических долин могут служить долины рек Гвианского нагорья в Южной Америке.
РЕЛЬЕФ И КЛИМАТ
Климат — один из важнейших факторов рельефообразования. Взаимоотношения между климатом и рельефом весьма разнообразны. Климат обусловливает характер и интенсивность процессов выветривания, он же определяет в значительной мере характер денудации, так как от него зависят «набор» и степень интенсивности действующих экзогенных сил. Как указывалось выше, в разных климатических условиях не остается постоянным и такое свойство горных пород, как их устойчивость по отношению к воздействию внешних сил. Поэтому в разных климатических условиях возникают разные, часто весьма специфичные формы рельефа (см. ч. III). Различия в формах наблюдаются даже в том случае, когда внешние силы воздействуют на однородные геологические структуры, сложенные литологически сходными горными породами.
Климат влияет на процессы рельефообразования как непосредственно, так и опосредствованно, через другие компоненты природной среды: гидросферу, почвенно-растительный покров и др.
Так, возникновение прибрежных пустынь Намиб (Юго-Западная Африка) и Атакамы (Южная Америка) обусловлено проходящими здесь холодными морскими течениями, существование которых у западных берегов Африки и Южной Америки является следствием общей циркуляции атмосферы. Здесь, таким образом, климат влияет на рельеф через гидросферу.
Существенное влияние на процессы рельефообразования оказывает растительный покров, который, кстати, сам является функцией климата. Так, поверхностный сток в условиях сомкнутого Растительного покрова при наличии хорошо развитой дернины или лесной подстилки резко ослабевает или гасится совсем даже на крутых склонах. Поверхности с разреженным растительным покровом или лишенные его становятся легко уязвимыми для эрозионных процессов, а в случае сухости рыхлых продуктов выветривания— и для деятельности ветра.
Прямые и опосредствованные связи между климатом и рельефом являются причиной подчинения экзогенного рельефа в определенной степени климатической зональности. Этим он отличается от эндогенного рельефа, формирование которого не подчиняется зональности. Поэтому рельеф эндогенного происхождения называют азональным.
В начале нашего века немецкий ученый А. Пенк предпринял попытку классифицировать климаты по их рельефообразующей роли. Он выделил три основных типа климатов: 1) нивальный (лат. nivalis — снежный), 2) гумидный (богатый осадками, выпадающими в жидком виде) и 3) аридный (сухой и жаркий). Впоследствии эта классификация была дополнена и детализирована. Ниже приводится сокращенная классификация климатов по их роли в рельефообразовании по И. С. Щукину, который различает нивальный, полярный, гумидный и аридный типы климатов.
Нивальный климат. Во все сезоны года характерны осадки в твердом виде и в количестве большем, чем их может растаять и испариться в течение короткого и холодного лета. Накопление снега приводит к образованию снежников и ледников. Основными рельефообразующими факторами в условиях нивального климата являются снег и лед в виде движущихся ледников. В местах, не покрытых снегом или льдом, интенсивно развиваются процессы физического (главным образом морозного) выветривания. Существенное влияние на рельефообразование оказывает вечная мерзлота. Нивальные климаты свойственны высоким широтам (Антарктида, Гренландия, острова Северного Ледовитого океана) и вершинным частям гор, поднимающимся выше снеговой границы.
Полярный климат, или климат областей распространения многолетнемерзлых грунтов. Для этого типа климата типичны длинная и суровая зима, короткое и прохладное лето, значительная облачность, малое количество осадков, малая интенсивность солнечной радиации. Все эти условия благоприятствуют возникновению или сохранению образовавшейся ранее (при еще более суровых климатических условиях) вечной мерзлоты. Наличие последней обусловливает ряд процессов, свойственных полярному климату и создающих ряд специфических форм мезо- и микрорельефа, описанных в гл. 17.
Одним из важнейших факторов денудации в областях распространения вечной мерзлоты является солифлюкция (лат. solum — почва, грунт; fluxus — течь) - медленное течение протаивающих переувлажненных почв и дисперсных грунтов по поверхности мерзлого основания. При низких температурах в условиях полярного климата даже летом преобладает физическое, преимущественно морозное выветривание. Полярный климат свойствен в основном зоне тундры. В континентальных условиях распространяется и на более южные ландшафтные зоны (Восточная Сибирь и др.).
Гумидный климат. В областях с гумидным климатом количество выпадающих в течение года осадков больше, чем может испариться и просочиться в почву. Избыток атмосферной воды стекает или в виде мелких струек по всей поверхности склонов, вызывая плоскостную денудацию, или в виде постоянных или временных линейных водотоков (ручьев, рек), в результате деятельности которых образуются разнообразные эрозионные формы рельефа — долины, балки, овраги и др. Эрозионные формы являются доминирующими в условиях гумидного климата. Благодаря большому количеству тепла и влаги в областях с гумидным климатом интенсивно протекают процессы химического выветривания. При наличии растворимых горных пород развиваются карстовые процессы.
На земном шаре выделяются три зоны гумидного климата: две из них располагаются в умеренных широтах Северного и Южного полушарий, третья тяготеет к экваториальному поясу.
Аридный климат. Характеризуется малым количеством осадков, большой сухостью воздуха, интенсивной испаряемостью, превышающей во много раз годовую сумму осадков, малой облачностью. Растительный покров в этих условиях оказывается сильно разреженным или отсутствует совсем, интенсивно идет физическое, преимущественно температурное выветривание.
Эрозионная деятельность в аридном климате ослаблена, и главным рельефообразующим агентом становится ветер. Сухость продуктов выветривания способствует их быстрому удалению не только с открытых поверхностей, но и из трещин горных пород. В результате происходит препарировка более стойких пород, и, как следствие этого, в аридном климате наблюдается наиболее четкое отражение геологических структур в рельефе.
Области с аридным климатом располагаются на материках преимущественно между 20 и 30° северной и южной широты. Аридные климаты наблюдаются и за пределами названных широт, где их формирование связано с размерами и орографическими особенностями материков. Так, в пределах Восточной Азии аридная зона в Северном полушарии проникает почти до 50° с. ш.
Следует отметить, что переход от одного морфологического типа климата к другому осуществляется постепенно, вследствие чего и смена доминирующих процессов экзогенного рельефообразования происходит также постепенно.
На границе двух климатов образуются формы рельефа, характерные для обоих типов и приобретающие к тому же ряд специфических особенностей. Такие переходные зоны выделяют в особые морфологические подтипы климатов. Существованию переходных зон способствует и непостоянство границ между климатическими зонами в течение года: следуя за движением солнца, они смещаются то в сторону полюсов, то в сторону экватора.
Изучение пространственного размещения генетических типов Рельефа экзогенного происхождения и сопоставление их с современными климатическими условиями соответствующих регионов показывает, что охарактеризованная выше взаимосвязь между климатом и рельефом в ряде мест нарушается. Так, в северной половине Европы широко распространены формы рельефа, созданные деятельностью ледника, хотя в настоящее время никаких ледников здесь нет, и располагается этот регион в зоне гумидного климата умеренных широт. Объясняется это «несоответствие» тем, что в недавнем прошлом (в эпохи оледенений) значительная часть Севера Европы была покрыта льдом и, следовательно, располагалась в зоне нивального климата. Здесь и сформировался сохранившийся до наших дней, но оказавшийся в несвойственных ему теперь климатических условиях рельеф ледникового происхождения. Такой рельеф получил название реликтового (лат. relictus — оставленный). Изучение этого рельефа представляет большой научный интерес. Реликтовые формы рельефа наряду с осадочными горными породами и заключенными в них остатками растительных и животных организмов дают возможность судить о палеоклиматах отдельных регионов и о положении климатических зон в те или иные этапы истории развития Земли. Сохранность реликтовых форм обусловлена тем, что рельеф меняет свой облик в связи с изменением климата значительно медленнее, чем это свойственно почвенному покрову и особенно растительному и животному миру.
Следовательно, облик экзогенного рельефа ряда регионов земной поверхности определяется не только особенностями современного климата, но и климата прошлых геологических эпох.
50>
Достарыңызбен бөлісу: |