Геоморфологические процессы и формы рельефа областей плейстоценового оледенения
Общие представления
В геологической истории Земли крупные покровные ледники образовывались неоднократно. Например, в пермо-карбоне оледенение охватывало значительную часть материка Гондваны. Следы ледниковой деятельности в виде деформированной морены (тиллиты), отшлифованных ледником скал и бараньих лбов сохранились в Южной Африке и Австралии.
Наиболее изучено антропогеновое, плейстоценовое оледенение, так как мощные моренные и водно-ледниковые отложения, а также специфические формы рельефа покрывают значительную часть Европы, Азии, Северной Америки. Комплекс изменений природной среды, вызванных оледенениями, настолько велик, что ими занимаются самостоятельные науки — четвертичная геология, геоморфология и палеогеография плейстоцена. Необходимость изучать ледниковые отложения и формы рельефа, с ними связанные, вызвана в первую очередь тем, что появление и жизнь древнего человека совпали с оледенениями. К тому же современный человек, занимаясь хозяйственной деятельностью, использует породы, созданные ледником. Почвообразующими породами на огромном пространстве материков служат отложения ледника и его талых вод. Кроме того, формирование климата, а вслед за ним природных зон также тесно связано с эпохами оледенений.
Несмотря на то, что созданные ледником отложения лежат на поверхности, изучены они далеко недостаточно. В отличие от осадочных пород морского происхождения, ледниковые осадки, как правило, не содержат руководящих остатков фауны и флоры. Моренные отложения отличаются пестрым литологическим составом, который меняется на небольшом протяжении.
К числу основных методов, используемых в четвертичной геологии (геологии антропогена), относится литолого-стратиграфический. Он построен на изучении соотношения моренных (ледниковых) и межморенных (межледниковых) отложений. Последние представлены озерными глинами, сапропелями, лессами, торфом, почвами, образованными на данной территории и погребенными между слоями морен, принесенных ледником. Изучение межледниковых осадков спорово-пыльцевым (палинологическим), диатомовым, карпологическим, остракодовым и другими палеонтологическими методами позволяет определить общий характер природной среды в теплые межледниковые эпохи. В четвертичной геологии большое применение находит геоморфологический метод, так как формы рельефа на территории, испытавшей оледенение, отличаются четкой закономерностью происхождения и распространения.
Существуют два основных взгляда на причину возникновения оледенений на Земле. Один из них рассматривает это явление как результат тектонических (горообразование) этапов на планете. Наиболее значительный альпийский орогенез предшествовал плейстоценовому оледенению. Возникновение высочайших горных систем вызвало коренные нарушения природной среды в целом: сокращение океанов, увеличение высоты суши, изменение климата в сторону похолодания и иссушения, формирование новой системы океанических течений и т.д. Согласно расчетным данным, для начала ледниковой эпохи достаточно понижения среднегодовой температуры на севере Европы на 3 - 5°, что могло произойти в связи с указанными процессами.
Вторая точка зрения объясняет причину образования материковых ледников теллурическими причинами — периодическим уменьшением солнечной радиации.
Установлены четыре эпохи оледенения, выделенные в Альпах еще А. Пенком и Е. Брюкнером. Аналоги горных ледниковых эпох обнаружены на равнинах Европы и Северной Америки. Альпийские названия перенесены на равнины, но в разных регионах и странах существуют свои названия ледниковых эпох. Наиболее древнее гюнцское (gunz — G) сменилось миндельским (тindel — М), затем рисским (riss— R) и последним— вюрмским (wurm— W). Соответствующие межледниковые эпохи названы гюнц-миндельской (GМ), миндель-рисской (МR), рисс-вюрмской (RW).
В отечественной геологической и геоморфологической литературе для ледниковых эпох утвердились следующие названия: окская (миндельская), днепровская, московская, валдайская; для межледниковых: лихвинская, одинцовская (рославльская), микулинская (муравинская). В Беларуси также существуют свои названия ледниковых и межледниковых эпох (см. главу 19).
Максимальным оледенением в Восточной Европе является днепровское (рисское). Его южная граница проходила у северного подножия Средне-Европейских гор и Волыно-Подольской возвышенности, затем спускалась на юг по долине Днепра вплоть до 48"30' северной широты, образуя днепровский язык. Обогнув с севера Среднерусскую возвышенность, край ледника спускался по долине Дона до впадения реки Медведицы (донской язык), а затем поднимался на северо-восток в обход Приволжской возвышенности и к Уралу около 59° северной широты.
Последующие ледниковые эпохи занимали значительно меньшую площадь. Граница московского оледенения проводится от западной границы Беларуси (Беловежская гряда) и далее на Ганцевичи, Солигорск, Бобруйск, Климовичи, Рославль к Москве, далее к Коломне, Владимиру, Галичу на Волге, огибая Северные Увалы и спускаясь по среднему течению реки Юг.
Наиболее молодое валдайское оледенение распространялось лишь на севере западе Европы по линии: Берлин-Варшава, далее Гродно-Вильнюс-Свирь-Лепель-Орша, отсюда вдоль восточной окраины Валдайской возвышенности на северо-восток к устью Мезени (рис. 43).
Территория Беларуси является одним из эталонов геологии и геоморфологии антропогена, так как на ней экспонированы осадки и формы рельефа трех последних ледниковых эпох и представлен комплекс типичных гляциальных и водно-гляциальных комплексов.
Условия формирования рельефа
плейстоценового материкового
оледенения
Древние ледники покровного типа, подобно горным, при своем движении производили эрозию (экзарацию) и аккумуляцию. Большую роль в формировании рельефа северных равнин играли также ледниковые воды, которые распространялись далеко на юг за пределы ледникового покрова.
Типы и формы ледникового рельефа располагаются согласно определенной закономерности, которая при продвижении с севера на юг носит характер геоморфологической зональности. Северная зона накопления и формирования ледника отличается преобладанием экзарации. Южнее находится обширная зона ледниковой аккумуляции, включающая территорию до южной границы максимального оледенения. Третья зона— зандровая связана с деятельностью водно-ледниковых (флювиогляциальных) потоков. Последняя зона, внеледниковая, охватывает участки территории, непосредственно не затронутые деятельностью ледника и его талых вод.
Генезис типов и форм рельефа на территории древнего оледенения и их сохранность зависят от ряда причин, из которых главную роль играет возраст, т.е. принадлежность их к древней или молодой эпохе оледенения.
Рельеф в зоне ледниковой экзарации
Закономерность размещения форм и генезис гляциальной геоморфологии рассмотрим на примере конкретной территории. Наиболее типичной может служить Восточно-Европейская равнина, на которой сформировался ледниковый комплекс, включающий названные геоморфологические зоны.
Зона ледниковой экзарации в этом регионе представлена крупным Скандинавским, или Балтийским, центром оледенения, который служил областью питания для всех материковых оледенений Европы. Центры меньших размеров размещались на Полярном Урале, островах Новая Земля, а в Азии — на полуостровах Таймыр и Чукотка. Крупным центром оледенения Северной Америки является Канадский (Северо-Американский).
Скандинавская питающая область занимала примерно территорию Балтийского щита, внутренние части Скандинавских гор, впадину Балтийского моря. Большая мощность (свыше 2 тысяч метров) ледника, распространение твердых, но трещиноватых кристаллических пород способствовали разрушительной деятельности ледника. Она выражалась в выпахивании, механическом отрыве крупных глыб (отторженцев), шлифовке и полировке поверхности кристаллических пород. В результате выступы коренного ложа приобретали форму бараньих лбов и курчавых скал, а понижения переуглублялись, получая очертания трогов. Типичный пример — сельговые гряды, невысокие, отполированные повышения, вытянутые вдоль движения ледника. Они сложены однородными жильными кварцитами и разделены выпаханными ледником понижениями, занятыми озерами, болотами, небольшими речками.
В зоне центра оледенения связь с тектоническими структура ми проявляется также в образовании озерных котловин и речных долин, совпадающих с линиями молодых разломов. Таковы многочисленные озера Финляндии, Карелии, Кольского полуострова, Швеции, Канады, вытянутые в направлении движения ледника в троговых долинах (рис. 44).
Ледниковая экзарация выразилась и в формировании специфических типов берегов. К ним относятся фиордовые берега, отражающие в своем строении этапы развития зоны ледниковой экзарации. Типичные фиорды представляют собой узкие, глубокие, крутосклонные заливы, глубоко вдающиеся в сушу под большим углом к берегу. В верхней части в фиорд обычно впадает река с признаками невыработанного профиля.
В доледниковое время на месте фиордов располагались речные долины, которые в условиях общего тектонического поднятия имели форму каньонов. В эпоху оледенения долины заполнялись льдом и приобретали форму трогов. Под влиянием ледниковой нагрузки Балтийский щит испытал изостатическое погружение, поэтому в период таяния ледника троговые долины заполнились водой и превратились в заливы. Троговое происхождение подтверждается не только формой заливов, но и наличием ригеля на границе фиорда и моря. В условиях современного изостатического поднятия суши фиорды теоретически должны быть осушены и превратиться в речные долины, однако для этого требуется длительное время.
Фиордовые берега получили широкое распространение как в Арктической, так и в Антарктической областях (в Скандинавии, на острове Исландия, в Гренландии, на северо-западе Северной Америки, в Патогонии, на Огненной Земле, в Южно-Американском секторе Антарктиды). Фиордовое происхождение имеют проливы Маточкин шар и Магелланов В целом этот тип берегов благоприятен для судоходства, а в некоторых странах с холодным климатом фиорды служат наиболее удобным местом поселений человека.
Связь с ледниковой деятельностью обнаруживает и шхерный тип берегов, распространенный в Балтийском и Северном морях. Шхеры — это скопление многочисленных скалистых островков и мелей, имеющих форму бараньих лбов. Процессу экзарации выступы кристаллических пород были подвергнуты в эпоху оледенения. При таянии ледника и образовании морского бассейна они превратились в шхеры, затрудняющие прибрежное судоходство.
Многочисленные формы ледниковой денудации возникли в зоне ледникового центра недавно, в эпоху последнего оледенения — около 35 - 40 тысяч лет назад. Во время таяния ледника на этой территории формировались еще более молодые (менее 20 тысяч лет) формы ледниковой аккумуляции. К ним относятся цепи конечных морен Сальпауселькя, вытянутые на юге Швеции, Финляндии и Карелии. Сальпауселькя имеет большое гидрологическое и геоморфологическое значение, являясь подпрудой для многочисленных озер, расположенных севернее. О молодости аккумулятивного рельефа свидетельствуют также многочисленные озовые гряды, пересекающие озера, заболоченные низины, вытянутые вдоль движения ледника.
Эрозионная сеть зоны экзарации оформилась после отступания ледника, около 12-10 тысяч лет назад. Молодые речные долины отличаются невыработанным продольным профилем, в котором озеровидные расширения или живые озера чередуются с выпуклыми порожистыми участками. В местах пересечения моренных гряд или выступов кристаллических пород образуются небольшие водопады (Кивач).
Рельеф в зоне ледниковой аккумуляции
Зона ледниковой аккумуляции протягивается от центра оледенения до максимальной границы его распространения. Однако рассматривать рельеф этой зоны в целом не представляется возможным, так как он заметно различается как по генезису, так и по возрасту.
Наиболее типичен рельеф ледниковой аккумуляции в границах последнего оледенения. Его граница проходит по линии: Берлин — Варшава в Западней Европе, а на территории Беларуси севернее Гродно — на Вильнюс — севернее Молодечно — на Лепель — Оршу и далее севернее Смоленска— к Клину— Дмитрову — на Вышний Волочек — Череповец. На северо-востоке Восточно-Европейской равнины граница резко сворачивает к устью реки Мезень. Рельеф этой территории отличается молодостью и хорошей сохранностью. Вместе с формами подвижного (активного) льда значительную роль на ней играли процессы, связанные с неподвижным (мертвым) льдом и деятельностью талых вод. Широкое распространение живых озер в ледниковых котловинах послужило основанием называть подобные территории Поозерьями.
Накопление моренных отложений и образование специфических форм рельефа — основной итог деятельности ледника валдайского возраста. Мощность моренных и флювиогляциальных осадков достигает 100 - 150 метров. Гранулометрический и литологический состав морен заметно отличается от осадков зоны экзарации. Наряду с грубым валунным, много валунно-глинистого, песчаного материала. Вместе с кристаллическими породами большую роль играют осадочные (доломиты, мергели), попавшие в состав морены по мере продвижения ледника к югу за пределы кристаллического щита. Морены различаются и по цвету. На Восточно-Европейской равнине преобладает красно-коричневый цвет, соответствующий силикатному составу, в Западной Европе цвет приближается к палевому и выражает повышенную карбонатность.
В зоне ледниковой аккумуляции питание ледника резко сокращалось, большое значение имели процессы таяния и южный край его приобретал неровный, волнистый характер, так как в понижениях рельефа возникали потоки, лопасти и языки, уходившие далеко на юг, возвышенности же коренного или более древнего ледникового рельефа служили препятствием продвижению ледника, заставляли его останавливаться. Этапы движения и остановок ледника носили пульсирующий характер в связи с изменением климата, интенсивности питания. В зависимости от расположения лопастей и языков формируются и размещаются различные по генезису типы и формы рельефа.
К числу распространенного рельефа ледниковой аккумуляции в границах последнего оледенения относится холмисто-моренно-озерный, или холмисто-моренно-котловинный. Он представлен сочетанием разбросанных в неопределенном положении моренных холмов и понижений между ними, занятых озерами или болотами (рис. 45).
Бросается в глаза сложность строения поверхности в сочетании с мозаичностью почвенно-растительного покрова, направленностью и интенсивностью склоновых процессов. Такой рельеф с относительными превышениями 20 - 60 метров отличается живописностью, но, вместе с тем, и рядом неудобств при сельскохозяйственном использовании. Пригодные для распашки склоны составляют небольшие площади, вершины заняты лесом или суходольным лугом, а подножия — заболоченными ландшафтами.
Образование холмисто-моренно-озерного рельефа, по-видимому, связано с участками распространения малоподвижного, или мертвого, перегруженного мореной льда в языковой области. Каменный материал в его теле опускался на поверхность ложа при таянии ледника и образовал описанный тип рельефа, широко распространенный на территории Балтийских Поозерий.
Рельеф ледниковых языков характеризуется также полого-волнистыми донно-моренными равнинами. В отличие от холмисто-моренного рельефа эти равнины сложены тяжелыми моренными суглинками и при условии мелиорации удобны для сельскохозяйственного использования. Небольшие повышения и группы холмов на их поверхности чаще всего представлены камами.
Заметное место в границах последнего оледенения занимает рельеф озерно-ледниковых низин. Это полого-вогнутые равнинные пространства, сложенные отсортированными песками и ленточными (шоколадными) глинами, накопившимися в холодных приледниковых водоемах. Последние занимали обширные пространства в эпоху таяния ледника, заполняли гляциодепрессии между конечно-моренными возвышенностями. Плоская поверхность низин разнообразится группами моренных холмов — бывшими островами озера. На окраинах обнаруживаются древние береговые линии и террасовые уровни. Озерно-ледниковые низины обычно облесены и заболочены.
Среди болот сохранились остаточные озера. Существование приледниковых водоемов в эпоху таяния ледника поддерживалось его талыми водами. Формирование вытока из них сопровождалось образованием сквозной речной долины и спуском озера. Классическим примером могут служить озерно-ледниковые низины в верхнем отрезке течения Западной Двины (Лучосская, Суражская, Полоцкая), Приильменская низина, впадина древнего озера Агассица в Северной Америке и др.
Особый сложный рельеф в зоне ледниковой аккумуляции создают конечные, или краевые возвышенности и гряды. Они означают границу распространения льда самостоятельной ледниковой эпохи, а также южный край продвижения ледниковых языков в отдельные стадии, или фазы, т.е. этапы длительных остановок и таяния ледника в условиях временного потепления климата. Установить возраст и генезис краевых образований довольно трудно, для этого требуются комплексные исследования.
Конечные морены представлены холмистыми возвышенностями или системой гряд, вытянутых в субширотном направлении перпендикулярно к расположению ледниковых языков. По высоте они занимают господствующее положение, являясь водоразделами между речными системами. Для конечных морен характерны значительные относительные превышения, создаваемые глубокими озерными котловинами В таких местах крупные куполовидные холмы с крутизной склонов более 25° перемежаются с глубокими округлыми впадинами.
По происхождению конечно-моренные возвышенности и гряды могут быть аккумулятивные (насыпные) и напорные. Первые формируются при длительном стационарном положении края ледникового языка и постепенном вытаивании моренного материала. В результате образуются пологие возвышенности с небольшими относительными превышениями поверхности.
Напорные конечные морены — это итог активного наступания ледникового языка, который передвигает перед собой моренные отложения, придавая им вид невысокой горной гряды. Проксимальный склон такой гряды, обращенный на север, к леднику, обычно более пологий, а дистальный (задний) — более крутой. Для напорных морен характерны крупные отторженцы. Они представлены глыбами кристаллических или осадочных пород, перенесенных на далекое расстояние. Отторженцы мергелей, доломитов, известняков, захваченные ледником из Южной Швеции, Северной Эстонии,— важный источник добычи карбонатных полезных ископаемых.
Напорные морены нередко обнаруживают признаки складок — гляциодислокаций. Система надвигов, антиклиналей, синклиналей, наклоненных складок создает видимость горообразовательных процессов. Пример — дислоцированные меловые отторженцы, надвинутые на краевые морены на севере острова Рюген (Германия), где они образуют высокие белые морские обрывы с разнообразной фауной мелового моря.
Наиболее высокие конечно-моренные возвышенности образуются на стыке двух ледниковых языков или лопастей называются угловыми массивами. В тех случаях, когда ледниковые языки обтекают моренную возвышенность более древнего возраста, последняя именуется островной.
На Восточно-Европейской равнине можно указать классические конечные морены в зоне последнего оледенения. К их числу относится Балтийская гряда, вытянутая почти на 500 километров, не менее крупная система конечных морен Валдайской возвышенности. Разнообразный и сложный комплекс конечных морен образует Мекленбургское моренное плато на севере Германии. В Беларуси типичными краевыми образованиями на территории Поозерья являются Свенцянская возвышенность, Браславские гряды, а Витебская и Городокская относятся к числу островных возвышенностей.
На территории Восточно-Европейской равнины конечные морены образуют несколько параллельных полос деградации (отступания), фиксирующих максимальное положение валдайского ледника и его стадии. Граница максимального распространения ледяного покрова получила название бологовской стадии, которая сопоставляется с бранденбургской стадией максимального продвижения ледника в Западной Европе. Севернее ее расположены конечные морены едровской стадии — франкфуртской в Западной Европе. Следующая, вепсовская стадия известна в Западной Европе под названием померанской. Все три стадии распространены в Беларуси. Самая северная стадия — Сальпауселькя на территории Финляндии отмечена одноименными конечно-моренными грядами, имеющими возраст около 12 - 13 тысяч лет.
Описанные типы ледникового рельефа в зоне валдайского оледенения разнообразятся своеобразными формами рельефа, могущими служить индикаторами возраста и происхождения ледникового комплекса на конкретном участке.
Озы внешне представляют собой длинные гряды, вытянутые по движению ледника. Сверху бросается в глаза их наложенность и независимость расположения от подстилающего рельефа. Озы Балтийских Поозерий, особенно Финляндии, Польши, Швеции, тянутся на несколько километров, пересекая озера, болота, взбираясь на холмы. В заболоченных низинах они используются как удобная трасса железных и шоссейных дорог. Сложены озы слоистым песчаным материалом с прослойками ленточных глин и мелкого гравия. С поверхности во многих случаях образуется слой моренного суглинка с крупными валунами. Высота озовых гряд над местным базисом эрозии достигает 30 — 40 метров, а угол наклона склонов превышает 25° (рис. 46).
Песчаный озовый материал скатывался в русло наледниковых потоков, а при таянии ледника проектировался на поверхность его ложа. Подобный процесс мог происходить в подледниковых и внутриледниковых тоннелях, длинных пустотах, а также продольных трещинах. Вытаивание озового материала сопровождалось наложением на его вершину поверхностной морены. Наиболее характерные по форме гряды образовались во внутриледниковых тоннелях и называются выдавленными. Вероятно, формирование озов происходило в условиях малоподвижного или мертвого льда.
Камы — одиночные или групповые холмы, характерные для краевых возвышенностей и моренных равнин. Они отличаются куполовидной формой и как бы насажены на моренный рельеф. На местности камы выделяются крутыми склонами, распространением естественной лесной или луговой растительности. Плотный тонкослоистый песчаный материал с прослойками глин или гравия отражает способы их формирования. Образуются камы подобно озам, только не в линейно вытянутых пустотах, а в замкнутых озеровидных понижениях. На поверхности ледника они наполняются тонким песчаным материалом, принесенным летом поверхностными водами. Спроектированный при таянии ледника на поверхность такой "слепок" наледникового озера преобразуется в камовый холм. Типичные камы с моренной покрышкой образуются в подледных пустотах вблизи края ледникового языка. Отложенные на дневную поверхность в процессе таяния ледника, такие камы часто оказываются в прибрежной зоне приледниковых озер. В этом случае они носят название лимнокамов.
Друмлины — ледниковые формы рельефа, характерные для ледниковых языков. Это холмы высотой 20-40 метров ярко выраженной асимметричной формы, вытянутые по направлению движения ледника на 50 - 200 метров. Крутой проксимальный и пологий дистальный склоны внешне напоминают бараньи лбы, повернутые в обратную сторону. Сложены друмлины плотными моренными суглинками, ядро их нередко включает выступ коренных пород — глинистых, карбонатных и др. Наиболее типичны в США друмлины в штате Висконсин (рис.47); на северо-западе Восточно-Европейской равнины известны друмлинные поля на территории Эстонии, Карелии.
В процессе образования друмлинов ледник движется по неровной поверхности коренных пород, что служит причиной накопления вблизи выступов моренного материала. После краткого периода таяния ледник наступает вторично и при этом придает созданным ранее неровностям форму друмлинов.
Формы рельефа описываемой зоны представлены не только положительными, но и отрицательными образованиями, в основном озерными котловинами. Они являются гидрологическими и геоморфологическими индикаторами последнего оледенения (рис. 48).
Озерные котловины различны по размерам, глубинам, строению и происхождению. Коротко охарактеризуем их основные типы. Подпрудные озера, котловины которых занимают положения (гляциодепрессии) к северу от конечной морены или между краевыми образованиями. Обычно они округлые в плане, неглубокие, с асимметричным поперечным профилем. Примером могут служить озера Снярвды в Польше, Мюриц в Германии, Нарочь и Освейское в Беларуси и др.
В области ледниковых языков в их проксимальной части большое распространение получили ложбинные озера (ринны, гляциогенные рытвины), расположенные в глубоких крутых котловинах, вытянутых по движению ледника. К этому типу следует отнести самое глубокое озеро Беларуси Долгое (более 50 метров), многочисленные ринновые озера Литвы, Латвии, Польши, Германии.
Существует две точки зрения на происхождение ложбинных котловин. Они могли образовываться под влиянием эрозионной деятельности подледниковых талых вод в условиях высокого гидростатического давления. Согласно второй точке зрения, гляциогенные рытвины есть результат выпахивающей деятельности ледника. Об этом свидетельствует трогообразная форма поперечного профиля, значительная переуглубленность котловин в сравнении с соединяющими их протоками.
Типичны для конечных морен и холмисто-моренного рельефа котловины эворзионного происхождения в виде небольших, но глубоких котлов, выбитых в ложе ледника вертикально падающими в трещины талыми водами.
Широко распространены в разных частях бывших ледниковых языков термокарстовые озера, образованные на месте вытаявших ледяных глыб и протаявшего мерзлого грунта. Такие котловины округлых очертаний, плоские, с небольшими глубинами.
Наиболее разнообразно строение сложных котловин типа озера Селигер на Валдайской возвышенности, озер Кривое и Отолово в Белорусском Поозерье. Они представляют сочетание многочисленных заливов и плесов, длинных мысов и полуостровов в виде озовых гряд. Образование таких котловин связано с толщей неподвижного льда, разбитого трещинами. В период таяния участки монолитного льда превращаются в плесы озера, а трещины, заполненные рыхлым слоистым материалом, становятся мысами, разделяющими эти плесы.
В процессе таяния ледника образованные его деятельностью котловины заполнялись глыбами льда и мерзлыми моренными и флювиогляциальными осадками, оказавшими длительное консервирующее влияние на котловины. Их расконсервация (термокарст) закончилась после отступания ледника в начале голоцена 9-10 тысяч лет назад. Этим объясняется хорошая геоморфологическая сохранность (внешняя молодость) котловин в зоне валдайского оледенения.
Высокая озерность территории зоны последнего оледенения сочетается со слабым развитием речной сети. Исключение составляют древние крупные долины (Западная Двина, Печора, Неман), оформленные одновременно с отступающим ледником. Долины рек и ручьев, соединяющих озера на моренных возвышенностях, отличаются невыработанным продольным профилем, неглубоким врезом и другими признаками молодости. От интенсивности развития профиля равновесия этих рек зависит продолжительность существования озер, которые по мере углубления долин будут спущены (рис. 49).
Рельеф ледниковой аккумуляции
к югу от границ валдайского оледенения
К югу от границ последнего оледенения в рельефе выделяется обширная зона московского и днепровского оледенений, наложенная на геологические структуры Русской платформы.
В отличие от свежего холмисто-моренно-озерного ледникового рельефа валдайского оледенения на территории, занятой ледником московского возраста, преобладает холмисто-увалистый рельеф, заметно переработанный процессами денудации и эрозии, что отражает его относительную древность.
Самостоятельность московского оледенения признается большинством исследователей плейстоцена. Его границы в пределах Восточно-Европейской равнины проводятся приблизительно по линии: Каменец (Беловежская гряда) — Ганцевичи — Солигорск — Славгород— Рославль— Калуга— Москва— Кострома — Владимир — Галич и далее на восток к Северным Увалам, по среднему течению реки Юг.
Несмотря на значительную переработанность рельефа, ледниковые образования сохранились еще достаточно четко и образуют водораздельные участки территории. Это касается, в первую очередь, конечно-моренных возвышенностей, имеющих характер крупных холмистых поднятий или грядообразных возвышенностей, в строении которых принимают участие крупные отторженцы и гляциодислокации, а иногда камы и озы.
Особенно четко выделяются угловые моренные возвышенности с насаженными на них куполовидными камами. Темнохвойная лесная растительность дополняет впечатление низкогорного рельефа. Мощность морены на таких участках превышает 150 - 200 метров, в разрезе она носит характер морен напора. Относительные высоты, достигающие 30 - 70 метров, обязаны глубокому эрозионному врезу речных долин. Приречные участки наиболее крутосклонные, на плакорах же нередко наблюдаются значительные плосковолнистые поверхности. Кроме краевых образований, в зоне московского оледенения сохранились участки холмисто-моренного и равнинного донно-моренного рельефа, отличающегося от более молодого валдайского. Между моренными холмами и камами располагаются многочисленные сухие или заболоченные западины или котловины спущенных озер. Они соединяются широкими плоскодонными ложбинами талых вод и далее выходят за пределы холмистого участка. Поверхность моренных равнин чаще всего прикрыта более молодыми песчаными отложениями валдайского возраста. Это служит основанием называть их вторичными моренными равнинами.
Отличительной чертой зоны московского оледенения следует считать распространение на склонах возвышенностей покровных делювиальных отложений и лессовидных супесчаных и суглинистых пород мощностью до 5 - 6 метров. Их рельефообразующая роль выражается в нивелировании первичной поверхности ледниковой аккумуляции, формировании плавных склонов и пологих водоразделов. Вместе с тем, распространение лессовидных пород служит одной из причин проявления овражной эрозии. Овражно-балочный тип рельефа приурочен к глубоким, хорошо разработанным речным долинам и их надпойменным террасам.
Пример типичного моренного рельефа московского возраста — Белорусская гряда, включающая сложную серию угловых и грядовых морен, которые создают один из основных водоразделов Восточно-Европейской равнины. Ее продолжением является Смоленско-Московская возвышенность.
Южнее границы московского оледенения получил распространение рельеф максимального днепровского (рисского) оледенения, формы которого носят реликтовый характер. Ледниковые моренные образования днепровской эпохи сильно денудированы длительной деятельностью талых вод более молодых ледниковых эпох, эрозионными и склоновыми процессами. Сохранившиеся в рельефе возвышенности чаще всего "просвечивают" из-под покрова зандровых, делювиальных и лессовых пород. Конечные морены днепровского возраста образуют разрозненные повышения или увалистые грядообразные поднятия, в строении которых большую роль играют гляциодислокации и отторженцы. Характерны в этом отношении Каневские гляциодислокации на правом берегу Днепра у города Канева. Наряду с конечными моренами в зоне днепровского оледенения определенную рельефообразующую роль играют камовые образования, сильно разрушенные склоновыми процессами. Деятельность последних вместе с эрозионно-аккумулятивными процессами имеет основное значение в формировании современного рельефа.
Рельеф перигляциальной зоны
Под названием "перигляциальная зона" понимается территория к югу от границ оледенений (или стадий ледниковых эпох), рельеф которой в значительной степени создавался позднеледниковыми потоками и специфическими флювиогляциальными (зандровыми) отложениями. Общее для образований подобного типа — равнинность поверхности и песчаный тип осадков. В ледниковые эпохи отложения зандров находились в мерзлом состоянии. Поэтому они разбиты мерзлотными трещинами и клиньями, которые при таянии явились местами развития термокарстовых западин.
На Восточно-Европейской равнине широко распространены пологоволнистые зандровые равнины, представляющие собой слившиеся пологие конусы выноса водно-ледниковых потоков к югу от конечных морен. Типичны в этом отношении север Полесской низменности, Центральноберезинская равнина, низины верхней Волги, Мещера. В составе флювиогляциальных отложений наблюдается определенная дифференциация. Ближе к краю ледника они представлены грубым песчаным и песчано-галечниковым материалом, который в направлении к югу становится мелкозернистым, глинистым.
Покров отложений зандровых равнин маломощный, поэтому геологические структуры выступают на поверхности и выражаются в особенностях рисунка гидросети, форме поперечного профиля речных долин, а на участках близкого залегания карбонатных пород — в виде глубоких карстовых воронок, занятых озерами. Основу современного рельефа зандровых равнин создают широкие речные долины с системой террас, преобладанием аккумуляции, боковой эрозии и плоские заболоченные водоразделы. В долинах типично представлен процесс меандрирования и образования стариц, на плакорах и надпойменных террасах распространены обширные мелководные озера полесского типа (озера-разливы).
Для рельефа зандровых равнин характерны песчаные положительные формы, среди которых наибольшей известностью пользуются параболические дюны, в плане напоминающие серповидные барханы с асимметричными склонами. Еще в XIX веке эти дюны считались полесскими "барханами", возникшими из песка вблизи края ледника под влиянием постоянных ветров, дующих с ледникового щита.
В наше время происхождение параболических (полесских) дюн рассматривается также в связи с золовой деятельностью. Под влиянием постоянных западных ветров или дневных бризов в прибрежной зоне приледниковых полесских озер летом возможно было передвижение сухого песка на выпуклых элементах поверхности. В периферических частях таких первичных дюн, где субстрат был маломощным и более влажным, песок задерживался и даже зарастал, центральная же часть с большей массой сухого песка продолжала под действием ветра двигаться вперед. Таким образом возникала дуга с пологим внутренним и крутым внешним склоном. Длина параболических дюн или их цепочек достигает нескольких километров, а высота превышает 5-10 метров. В заболоченных районах Полесий параболические дюны представляли наиболее сухие возвышенные участки, пригодные для строительства населенных пунктов. При широком освоении Полесий и вырубке лесов параболические дюны разрушаются и подвергаются вторичному ветровому развеванию.
К перигляциальным образованиям относятся долинные зандры и ложбины стока талых ледниковых вод, которые могут быть шириной в несколько десятков или сотен метров. Особенно широкое распространение они получили в зоне ледниковой аккумуляции южнее границ валдайского оледенения и имеют направление с севера на юг, перпендикулярное к краю ледника. Нередко ложбины стока предопределяют положение речных долин, в частности, их сквозных участков.
К ложбинам стока талых вод относятся и крупные песчаные понижения длиной в сотни и шириной до нескольких десятков километров, представленные на равнинах Северной Польши и Германии, где получили название маргинальных прадолин или гляциосубсеквентных долин. Они образуют несколько параллельных друг другу перегляциальных полос, вытянутых в направлении с запада на восток и разделенных краевыми образованиями. Субширотные отрезки крупных рек Западной Европы: Вислы, Одера, Эльбы, Шпрее и некоторых их притоков занимают прадолины, образуя широкие зандрово-аллювиальные равнины. В них расположены города Берлин, Торунь и др. Примером могут служить средний и нижний участки долины Немана.
В эпоху дегляциации ледниковых языков талые воды не находили стока на юг и двигались медленными широкими потоками вдоль их окраин. После таяния ледника формировался нижний отрезок речных долин, имеющий субмеридиональное направление в сторону Балтийского и Северного морей. Прадолины, как и зандры, осложнены старицами рек и дюнно-бугристыми всхолмлениями.
Участки маргинальных долин в Прибалтике и Беларуси заняты участками речных долин, вытянутых параллельно краевым моренным возвышенностям.
ГЛАВА 13.
Геоморфологические процессы
и формы рельефа в областях
распространения многолетнемерзлых
горных пород (вечной мерзлоты)
Общие представления
В геологической и геоморфологической литературе издавна утвердилось понятие "вечная мерзлота", или криолитозона (гр. kryos — холод, лед; lithos — камень), в которой получили распространение многолетнемерзлые горные породы. В отличие от сезонной мерзлоты, типичной для умеренных и высоких широт, многолетняя мерзлота имеет большую мощность, которая колеблется от десятков до сотен метров. Она занимает огромные пространства Сибири и Северней Америки и существует десятки тысяч лет на протяжении всего плейстоцена. Общая площадь вечной мерзлоты на земном шаре составляет около 25% суши, на территории СНГ — почти 50%.
Согласно современным представлениям, многолетнемерзлые грунты относятся не только к реликтовым явлениям — они образуются и в современный период при благоприятных условиях климата и рельефа. Это обстоятельство послужило основой возникновения такого понятия, как "современное подземное оледенение".
Природные условия криолитозоны весьма своеобразны, а деятельность человека в ней сопряжена с рядом трудностей. Изучение этих проблем способствовало развитию самостоятельной науки — мерзлотоведения, или геокриологии, основателями которой являются М.И. Сумгин и В.А. Обручев. В Якутске находится крупнейший в мире Институт мерзлотоведения Сибирского отделения АН России (РАН).
Южная граница распространения многолетнемерзлых грунтов России начинается на Кольском полуострове на широте северного полярного круга. Примерно на этой же широте ее граница доходит до Урала, отсюда опускается на юг, пересекая Уральские горы и Западную Сибирь в районе 60 — 62° северной широты. Далее она резко поворачивает к югу по правобережью Енисея и, огибая Алтай, уходит на юг до широты Улан-Батора. Снова появляется на территории России на юго-востоке, где проходит по левому берегу Амура. Полуостров Камчатка лишен многолетнемерзлых горных пород только на юге.
В криолитозоне основное распространение имеет лед — цемент, связывающий замерзшие влажные горные породы. При низких температурах они обладают монолитностью и твердостью скальных пород, а при повышении температуры тают сравнительно равномерно на большой площади. Широко распространены также жильные льды, характерные для трещиноватых пород, и глыбы льда, погребенные под рыхлыми осадками, кроме того, повторные жильные льды, возникающие в морозобойных трещинах при многократном оттаивании заполняющего их льда и последующем его замерзании.
Зона вечной мерзлоты разделяется на несколько подзон по мерзлотно-температурному признаку: вдоль южной границы тянется полоса островных многолетнемерзлых горных пород мощностью до 25 метров. Севернее протянулась полоса (подзона) несплошного развития вечной мерзлоты мощностью до 100 метров; ее сменяет полоса почти сплошной мерзлоты мощностью до 200 метров. "Та лики" встречаются лишь под озерами и руслами крупных рек. Северная подзона со сплошной постоянной мерзлотой имеет мощность до 500 метров и более.
Для природных процессов, свойственных зоне многолетнемерзлых грунтов, велико значение подземных вод. Они подразделяются на надмерзлотные, межмерзлотные и подмерзлотные. Первые связаны с верхним деятельным слоем и отличаются атмосферным питанием и опресненностью. Межмерзлотные воды характерны для районов островной мерзлоты, пронизанной многочисленными "сквозными таликами". Что касается подмерзлотных вод, то, располагаясь глубже постоянно мерзлого слоя, они обладают напором. Наряду с низкоминерализованными, встречаются соленые и минеральные воды разной температуры.
Рельеф и геоморфологические процессы криолитозоны
Специфические процессы и формы рельефа в зоне вечной мерзлоты связаны с проявлением некоторых физических свойств пресной воды, в частности, увеличением ее объема при замерзании и сокращением при таянии. Это служит одной из причин сезонности развития многих геоморфологических процессов и связанных с ними форм.
Процессы солифлюкции (гр. solum — почва, fluctio — истечение) представляют медленное течение верхнего слоя почвы или горных пород, перенасыщенных влагой, по пологим склонам. Летом, благодаря водоупорным свойствам постоянно мерзлых грунтов и слабому испарению, в верхнем оттаявшем слое почвы накапливается много влаги В результате насыщение водой грунтов увеличивается и под влиянием силы тяжести они начинают медленно сползать по склонам. Образуются вытянутые языками солифлюкционные террасы, натечные валы, потоки. Явление солифлюкции может наблюдаться и при отсутствии вечной мерзлоты ранней весной в глинистых грунтах. Насыщенный водой оттаявший горизонт образует легко подвижный слой на подстилающей водоупорной глине, еще не успевшей оттаять. Многие авторы считают солифлюкционными образованиями напорные террасы, каменные потоки, курумы, формирующиеся в горах выше границы леса.
Процесс термокарста относится к числу важных рельефообразующих факторов. Он связан с вытаиванием подземного погребенного жильного льда, заключенного в мерзлом грунте, и последующим проседанием верхнего слоя почвы или рыхлой горной породы. Образуются округлые плоские термокарстовые западины, блюдца протаивания, в них формируются мелководные термокарстовые озера. В других случаях, когда льдистые горные породы при таянии расплываются, возникают обширные округлые западины — аласы глубиной от 2 - 3 до 10 метров. Отдельные аласы, а также котловины термокарстовых озер в условиях дальнейшего развития процесса объединяются, в результате появляются крупные аласовые понижения, в которых под травянистой растительностью образуются хорошо увлажненные почвы, удобные для сельскохозяйственного освоения. В центре аласов и термокарстовых понижений, как правило, возвышается холм — булгуннях, возникающий в процессе выпучивания. Наиболее крупные термокарстовые формы образуются при вытаивании мощных клиновидно-жильных льдов, создающих полигональную решетку. При значительной длительности этого процесса возникают понижения, разделенные земляными конусами — байджерахами.
Процесс выпучивания (вспучивания) грунтов широко проявляется в условиях сезонной смены таяния и замерзания верхнего деятельного слоя. Осенью при замерзании вода, заключенная между ним и горизонтом вечной мерзлоты, превращаясь в лед, приподнимает поверхностный слой горных пород, выталкивает снизу вверх валуны и крупные части рыхлого грунта. Так образуются бугристый рельеф, торфяные бугры, скопления валунного и обломочного материала, вытолкнутого на поверхность.
С процессом выпучивания связаны и разнообразные наледи, т.е. крупные ледяные или земляные бугры с ледяным ядром. Выделяют наледи подземные, речные, наземные. Последние возникают при наличии осенью незамерзшего слоя между нижним и верхним мерзлыми горизонтами. В результате напряжения снизу, выпучивания и растрескивания верхнего слоя вода изливается на поверхность.
Многоразовое повторение этого процесса приводит к образованию крупных наземных наледей. Например, Кыра-Никоранская наледь имеет площадь 26 квадратных километров, Момская достигает 100 квадратных километров и существует круглый год.
Речные наледи связаны с промерзанием реки, расположенной в многолетнемерзлых грунтах. Осенью при образовании поверхностного льда живое селение русла сокращается, создается гидростатический напор, оставшаяся вода взрывает верхний слой льда и, разливаясь, замерзает, образуя плоскую ледяную возвышенность. На некоторых реках северо-востока Сибири слой льда в наледях настолько велик, что сохраняется летом, снова увеличивается зимой и таким образом формируются многолетние речные наледи.
Подземные наледи представлены крупными многолетними буграми с ледяным ядром. Это булгунняхи, или гидролакколиты. Они возникают в процессе замерзания термокарстовых озер или аласов и таликов под ними. При этом в центре сохраняется вода в окружении мерзлоты. Дальнейшее замерзание приводит к выжиманию вверх насыщенного водой слоя и появлению бугра высотой до 8 - 13 метров.
Области распространения многолетнемерзлых пород отличаются развитием особых полигональных (структурных) образований на поверхности глинистых или песчано-каменистых грунтов, занимающих площадь в десятки квадратных километров (рис. 50).
Каменные кольца (полигоны, многоугольники) представляют собой слабовыпуклые, округлые или многоугольные площадки, 1 - 2 метра в поперечнике, сложенные мелкоземистым однородным материалом, оконтуренные каменным венком из грубых валунно-галечниковых пород. На пологих склонах каменные кольца сменяются вытянутыми параллельными полосами мелкозема и каменистого материала. Формирование таких поверхностей объясняется процессом многократного замерзания и оттаивания частичек некогда разнородного грунта. При этом происходит "вымораживание" из общей массы крупных обломков и отодвигание их в стороны. Дифференциация частиц по крупности вызывается также раздвигающим действием замерзающей воды, вытекающей из трещин.
Другой характер приобретают полигональные формы в однородных глинистых грунтах. Последние в процессе замерзания покрываются системой трещин, через которые вытекает глина, насыщенная водой, как из миниатюрных грязевых вулканов. В результате образуется скопление голых выпуклых глинистых полигонов до 1 метра в диаметре в обрамлении полос тундровой растительности, которая находит в трещинах благоприятные экологические условия. Такие пространства на севере называют пятнистой или медальонной тундрой.
Наряду с ней в зоне вечной мерзлоты формируются полигоналыю-валиковые структурные формы, достигающие 25-33 метров и более. В этом случае образуется система довольно правильных пяти и шестиугольников диаметром до нескольких метров, ограниченных валиком торфяно-минерального грунта высотой до 0,5 - 1 метра. Подобные микро- и мезоформы появляются в тех случаях, когда глубокие морозобойные трещины не успевают растаять летом, увеличиваются вглубь и вширь, разбивая мерзлую породу на отдельные блоки. При этом слагающая порода выжимается в стороны и вверх, образуя валики.
Термоэрозионные процессы проявляются как механическое, термическое, химическое воздействие поверхностных текучих вод на вечную мерзлоту. В результате возникают типичные эрозионные формы — ложбины, овраги, долины. Они могут закладываться по трещинам полигональных грунтов или вдоль термокарстовых понижений. Постоянные реки в условиях многолетнемерзлых горных пород летом многоводны в связи с таянием льда и слабой фильтрацией воды в грунт. Значительная живая сила реки выражается в боковой эрозии, меандрировании. Характерно также явление блуждания рек, вызванное накоплением отложений перед промерзающими участками или наледями. Склоны речных долин подвергаются процессам солифлюкции. Это хорошо выражено на широтных отрезках долин с разной экспозицией. В таких местах поперечный профиль долин приобретает асимметричный рисунок. Зимой малые и средние реки промерзают до дна.
Зона верной мерзлоты отличается своеобразными типами морских берегов и широко развитыми механическим и термическим процессами термоабразии. Берега арктических морей, как правило, характеризуются развитием высоких обрывов и термоабразионных клифов. Мерзлые грунты, обнажаясь на обрывах, интенсивно тают, что сопровождается солифлюкцией, оползнями, оплывинами. У подножия клифов и обрывов скапливается большое количество обломочного материала, насыщенного водой, который иногда называется псевдомореной.
Подобную картину можно наблюдать и в руслах крупных сибирских рек, долины которых глубоко врезают в толщу мерзлых грунтов; солифлюкционные потоки сбрасываются в большом количестве грязевой материал, загрязняя и засоряя русло, мешая судоходству.
Хозяйственная деятельность человека в условиях постоянно мерзлых грунтов затруднена рядом объективных факторов. Строительство дорог, промышленных и жилых зданий требует предохранительных мероприятий. Выпучивание, термокарст, образование наледей, растрескивание мерзлых грунтов нередко приурочиваются к населенным районам и городам, где таяние верхнего слоя мерзлоты многократно усиливается за счет добавочного тепла, производимого человеком. Это вызывает осадку зданий, разрушение полотна железных дорог, мостовых, растрескивание асфальтового покрытия и т.д. Однако современная техника дает возможность избегать неблагоприятных природных явлений, строить крупные города и промышленные предприятия на Крайнем Севере. Следует отметить, что вечная мерзлота обладает и положительными качествами. Она содержит и хранит большое количество воды; в мерзлых грунтах хорошо сохраняются многочисленные остатки и целые экземпляры животных и растений ледниковой эпохи.
ГЛАВА 14.
Достарыңызбен бөлісу: |