СПИСОК ЛИТЕРАТУРЫ
1. Глазко Т.Т., Архипов Н.П., Глазко В.И. (2008) Популяционно-генетические последствия
экологических катастроф на примере чернобыльской аварии, ФГОУ ВПО РГАУ—МСХА им.
К.А. Тимирязева, М., 556 с.
2. Нягу А.И., Логановский К.Н. (1998) Нейропсихиатрические эффекты ионизирующих излу-
чений, Киев, 360 с.
3. Нягу А.И., Логановский К.Н. (1997) Журнал невропатологии и психиатрии им. С.С. Корса-
кова, 97(2), 62-70.
4. Шмальгаузен И.И. (1968) Факторы эволюции. Теория стабилизирующего отбора. Наука,
М., 458 с.
5.
Aliyu
A.S.,
Ramli
A.T.
(2015)
Radiation
Measurements,
73,
51-59
(http://www.researchgate.net/publication/270704634).
6. Asgari S. (2014) Adv. Genet., 86, 253-276 (doi: 10.1016/B978-0-12-800222-3.00010-3).
7. Braga L.L., Mello M.F., Fiks J.P. (2012) BMC Psychiatry, 12, 134 (doi: 10.1186/1471-244X-12-
134).
8. Ben- Ezra M., Palgi Y. , Soffer Y., Shrira A. (2012) World Psychiatry, 11(2), 133 (doi:
10.1016/j.wpsyc.2012.05.011).
9. Brown A.S., Susser E.S. (2008) Schizophrenia Bulletin, 34(6.), 1054–1063
(doi:10.1093/schbul/sbn096).
10. B ro m e t E.J., Lu f t B.J. (2015) Social Psychiatry and Psychiatric Epidemiology, 50(11), 1761-
1763 (doi: 10.1007/s00127-015-1124-0).
11. Baulch J.E., Craver B.M., Tran K.K., Yu L.,Chmielewski N., Allen B.D., Limoli C.L. (2015) Re-
dox Biology, 5, 24-32 (doi: 10.1016/j.redox.2015.03.001).
12. Bale T.L. (2014) Dialogues Clin. Neurosci., 16(3), 297-305 (www.dialogues-cns.org).
13. Bordenstein S.R., Theis K.R. (2015) PLoS Biol., 13(8), e1002226 (doi:
10.1371/journal.pbio.1002226).
14. Brieño - Enríquez M.A., García- López J., Cárdenas D.B., Guibert S., Cleroux E., Děd L., de
Dios Hourcade J., Pěknicová J., Weber M., del Mazo J. (2015) PLoS ONE, 10(4), e0124296 (doi:
10.1371/journal.pone.0124296).
15. Casas E., Vavouri T. (2014) Front. Genet., 5, 330 (doi: 10.3389/fgene.2014.00330).
16. Contis G., Foley T.P. J. (2015) Clin. Med. Res., 7(5), 332-338 (doi: 10.14740/jocmr2018w).
17. Dalgaard N.T., Todd B.K., Daniel S.I., Montgomery E. (2016) Attach. Hum. Dev., 18(1), 69-89
(doi: 10.1080/14616734.2015.1113305).
18. Dalgaard N.T., Montgomery E. (2015) Transcultural Psychiatry, 52(5), 579-593 (doi:
10.1177/1363461514568442).
19. Glazko V.I., Glazko T.T. (2013) Acta Naturae, 5(1), 47-62.
20. Grandjean Ph., Barouki P., Bellinger D.C., Casteleyn L., Chadwick L.H., Cordier S., Etzel R.A.,
Gray K.A., Ha E.-H., Junien C., Karagas M. et al. (2015) Endocrinology, 156(10), 3408-3415 (doi:
10.1210/EN.2015-1350).
21. Gapp K., Jawaid A., Sarkies P., Bohacek J., Pelczar P., Prados J., Farinelli L., Miska E., Man-
suy I.M. (2014) Nat. Neurosci., 17, 667-669 (doi: 10.1038/nn.3695).
22. Kulka U., Ainsbury L., Atkinson M., Barnard S., Smith R. et al. (2015) Radiation Protection Do-
simetry, 164(1-2), 42-45 (doi: 10.1093/rpd/ncu266).
23. Kamiya K., Ozasa K., Akiba S., Niwa O., Kodama K., Takamura N., Zaharieva E.K., Kimura Y.,
Wakeford R. (2015) Lancet, 386(9992), 469-478 (doi: 10.1016/S0140-6736(15)61167-9).
24. Laidra K., Rahu K., Tekkel M., Aluoja A., Leinsalu M. (2015) Social Psychiatry and Psychiatric
Epidemiology, 50(11), 1753-1760 (doi: 10.1007/s00127-0151102-6).
25. Little M.P., Goodhead D.T., Bridges B.A., Bouffler S.D. (2013) Mutat. Res. 753(1), 50-67 (doi:
10.1016/j.mrrev.2013.04.001).
26. Little M.P. (2015) J. Radiol. Prot., 35, E1-E4 (doi: 10.1088/0952-4746/35/1/E1).
27. Møller A.P., Moussea T.A. (2013) Biol. Rev., 88(1), 226-254 (doi: 10.1111/j.1469-
185X.2012.00249.x).
28. Neugebauer R. (2005) JAMA, 294, 621–623.
29. Pernot E., Hall J., Baatout S., Benotmane M.A., Blanchardon E., Bouffler S., ElSaghire H.,
Gomolka M., Guertler A., Harms - Ringdahl M., Jeggo P., Kreuzer M., Laurier D., Lindholm C.,
Mkacher R., Quintens R., Rothkamm K., Sabatier L., Tapio S., de VathaireF.,Cardis E. (2012), Mu-
tat. Res., 751: 258286 (doi: 10.1016/j.mrrev.2012.05.003).
30. Perumal V., Sekaran T.S.G., Raavi V., Basheerudeen S.A.S., Kanagaraj K., Chowdhury A.R.,
Paul S.F.D. (2015) World J. Radiol., 7(9), 266-278 (doi: 10.4329/wjr.v7.i9.266).
31. Parihar V.K., Allen B.D., Tran K.K., Chmielewski N.N., Craver B.M., Martirosian V., Morganti
J.M., Rosi S., Vlkolinsky R. et al. (2014) Antioxidants & Redox Signaling, 22(1), 78-91 (doi:
10.1089/ars.2014.5929).
32. Painter A, Roseboom T, Bleker O. (2005) Reprod Toxicol, 20, 345–352.
33. Pembrey M, Saffery R, Bygren L.O. (2014) J. Med. Genet., 51, 563–572
(doi:10.1136/jmedgenet-2014-102577).
34. Richardson D., Sugiyama H., Nishi N., Sakata R., Shimizu Y., Grant E.J., Soda M., Hsu W.L.,
Suyama A., Kodama K., Kasagi F. (2009) Radiat. Res., 172, 368-382 (doi: 10.1667/RR1801.1).
35. Rodgers A.B., Bale T.L. (2015) Biological Psychiatry, 78(5), 307-314 (doi:
10.1016/j.biopsych.2015.03.018).
36. Rodgers A.B., Morgan C.P., Leu N.A., Bale T.L. (2015) PNAS USA, 112(44), 13699-13704
(doi: 10.1073/pnas.1508347112).
37. Selten JP, van der Graaf Y, van Duursen R, Gispen-de Wied CC, Kahn RS. (1999) Schizophr
Res. 35, 243–245.
38. Susser E, Hoek HW, Brown A. (1998) Am J Epidemiol., 147, 213–216.
39. Smil V. (1999) British Medical Journal,
319, 1619–1621.
40. St. Clair D, Xu M, Wang P, et al. (2005) JAMA, 294, 557–562.
41. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. (2014) Front. Cell. Infect. Microbiol., 4,
147 (doi: 10.3389/fcimb.2014.00147).
42. Sugimoto T., Shinozaki T., Miyamoto Y. (2013) Interact. J. Med. Res., 2(2), e31 (doi:
10.2196/ijmr.2585).
43. Trerotola M., Relli V., Simeone P., Alberti S. (2015) Human Genomics, 9, 17 (doi:
10.1186/s40246-015-0041-3).
44. Tanaka R. (2015) Prehosp. Disaster. Med., 30(4), 425-430 (doi: 10.1017/S1049023X15004926).
45. Hasegawa A., Tanigawa K., Ohtsuru A., Yabe H., Maeda M., Shigemura J., Ohira T., Tominaga
T., Akashi M., Hirohashi N., Ishikawa T., Kamiya K., Shibuya K., Yamashita S., Chhem R.K. (2015)
Lancet, 386(9992), 479-488 (doi: 10.1016/S0140-6736(15)61106-0).
46. Hsu W.-L., Preston D.L., Soda M., Sugiyama H., Funamoto S., Kodama K., Kimura A., Kamada
N., Dohy H., Tomonaga M., Iwanaga M., Miyazaki Y., Cullings H.M., Suyama A., Ozasa K., Shore
R.E., Mabuchi K. (2013) Radiat. Res., 179, 361-382 (doi: 10.1667/RR2892.1).
47. Heiervang K.S., Mednick S., Sundet K., Rund B.R. (2010) Scand. J. Psychol., 51(3), 210-215.
48. Virant - Klun I., Stеhlberg A., Kubista M., Skutella T. (2016) Stem Cells International, Article
ID 3984937, 17 p. (doi: 10.1155/2016/3984937).
49. Wu H., Hauser R., Krawetz S.A., Pilsner J.R. (2015) Curr. Envir. Health Rpt., 2, 356-366 (doi:
10.1007/s40572-015-0067-7).
The own and literature data on population-genetic consequences of the reproduction of different
mammalian species under conditions of high levels of ionizing radiation as a result of the accident
at Chernobyl and Fukushima NPP were discussed. Such conditions contributed to genomic instabil-
ity of the parent population directly by increased doses of ionizing radiation, and to preferred repro-
duction of offspring with a relatively more stable of the chromosomal apparatus. We could expect
that the relative reproductive success of carriers of increased genomic stability under conditions of
90
91
environmental changes could be used as an integral indicator of resistance to selective action of en-
vironmental stress factors. The importance of transgenerational transmission of symptoms of post-
traumatic syndrome and its mechanisms, including the microRNA transfer via spermatozoa, chang-
es in the microbiota of the parents and children, as well as cultural inheritance, to explain the com-
plexity observed radiobiological effects and their transmission into generations were discussed. It
was concluded that the frequent man-made accidents (like Chernobyl and Fukushima) and econom-
ic crises carry the risk of biosocial consequences in the structure of society, based on epigenetic in-
heritance, and cultural micro and macro biotic changes.
УДК 550.4
Достарыңызбен бөлісу: |