Приказ №98 от29. 08 2015г. Основная образовательная программа основного общего образования муниципального бюджетного общеобразовательного учреждения



бет24/38
Дата19.07.2016
өлшемі2.31 Mb.
#210533
түріОбразовательная программа
1   ...   20   21   22   23   24   25   26   27   ...   38

Рациональные числа

Положительные и отрицательные числа. Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.Появление нуля и отрицательных чисел в математике древности.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Почему ?

Решение текстовых задач

Задачи на все арифметические действия. Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки. Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты. Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи. Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса. Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур. Решение практических задач с применением простейших свойств фигур.
7 класс

Алгебра.

Тождественные преобразования

Числовые и буквенные выражения. Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения. Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.



Уравнения и неравенства

Равенства. Числовое равенство. Свойства числовых равенств. Равенство с переменной

Уравнения. Понятие уравнения и корня уравнения.

Линейное уравнение и его корни. Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Функции

Понятие функции. Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке.

Линейная функция. Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Решение текстовых задач

Задачи на все арифметические действия. Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки. Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты. Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Статистика и теория вероятностей

Статистика. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.



Логические задачи. Решение логических задач. Решение логических задач с помощью графов, таблиц

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Геометрия

Геометрические фигуры

Фигуры в геометрии и в окружающем мире. Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура». Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольник, круг.

Многоугольники. Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Отношения

Равенство фигур. Свойства равных треугольников. Признаки равенства треугольников.

Параллельно­сть прямых. Признаки и свойства параллельных прямых. Аксиома параллельности Евклида.

Перпендикулярные прямые. Прямой угол. Перпендикуляр к прямой. Наклонная, проекция.

Измерения и вычисления

Величины. Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла. Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Расстояния. Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения. Геометрические построения для иллюстрации свойств геометрических фигур. Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному. Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

История математики. Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки. Бесконечность множества простых чисел. Числа и длины отрезков.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат. Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.
8 класс

Алгебра

Числа.

Рациональные числа. Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа. Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Дробно-рациональные выражения. Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Функции

Обратная пропорциональность

Свойства функции . Гипербола.



Тождественные преобразования

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.



Уравнение и неравенства

Квадратное уравнение и его корни. Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений :использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Неравенства. Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Систем неравенств. Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейной. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Решение текстовых задач

Задачи на все арифметические действия. Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки. Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты. Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Статистика и теория вероятностей

Случайные события. Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Случайные величины. Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия

Многоугольники. Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата. Теорема Фалеса. Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.



Окружность, круг. Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Отношения

Перпендикулярные прямые. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Подобие . Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления. Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины ок­ружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора.

Геометрические преобразования

Преобразования. Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения. Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

История математики. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель.



Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
9 класс

Алгебра

Уравнения. Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной). Квадратный трехчлен, разложение квадратного трехчлена на множители

Дробно-рациональные уравнения. Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида .Уравнения в целых числах.

Системы уравнений. Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.



Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства. Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.
Функции

Понятие функции. Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции

Квадратичная функция. Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Графики функций. Преобразование графика функции для построения графиков функций вида .

Графики функций , ,, .
Последовательности и прогрессии. Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Логические задачи. Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Геометрия

Окружность, круг. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Геометрические фигуры в пространстве (объемные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах

Отношения

Величины. Представление об объеме и его свойствах. Измерение объема.Единицы измерения объема.

Измерения и вычисления. Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины ок­ружности и площади круга. Теорема синусов. Теорема косинусов

Векторы и координаты на плоскости

Векторы. Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

Координаты. Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

История математики

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров. Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров. Построение правильных многоугольников. Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.
Информатика.
При реализации программы учебного предмета «Информатика» у учащихся формируется информационная и алгоритмическая культура; умение формализации и структурирования информации, учащиеся овладевают способами представления данных в соответствии с поставленной задачей - таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных; у учащихся формируется представление о компьютере как универсальном устройстве обработки информации; представление об основных изучаемых понятиях: информация, алгоритм, модель - и их свойствах; развивается алгоритмическое мышление, необходимое для профессиональной деятельности в современном обществе; формируются представления о том, как понятия и конструкции информатики применяются в реальном мире, о роли информационных технологий и роботизированных устройств в жизни людей, промышленности и научных исследованиях; вырабатываются навык и умение безопасного и целесообразного поведения при работе с компьютерными программами и в сети Интернет, умение соблюдать нормы информационной этики и права.
7 класс.
Информация и информационные процессы

Данные. Виды данных. Анализ данных.



Компьютер – универсальное устройство обработки данных

Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).

История и тенденции развития компьютеров, улучшение характеристик компьютеров. Суперкомпьютеры.

Физические ограничения на значения характеристик компьютеров.

Параллельные вычисления.

Использование программных систем и сервисов. Файловая система

Поиск в файловой системе.



Математические основы информатики. Тексты и кодирование

Подход А.Н. Колмогорова к определению количества информации.

Зависимость количества кодовых комбинаций от разрядности кода. Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode. Таблицы кодировки с алфавитом, отличным от двоичного.

Искажение информации при передаче. Коды, исправляющие ошибки. Возможность однозначного декодирования для кодов с различной длиной кодовых слов.




Достарыңызбен бөлісу:
1   ...   20   21   22   23   24   25   26   27   ...   38




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет