Решение проблемы происхождения и развития отдельных тел и образуемых ими систем



бет4/6
Дата27.05.2016
өлшемі1.33 Mb.
#96379
1   2   3   4   5   6

Класс В (t " 10 000—30 000 К). Для спектров звёзд этого класса характерно наличие в них линий нейтрального гелия и ионизованных кислорода и азота. Линии водорода хорошо заметны, начиная с В0, и значительно усиливаются при переходе к классу В9. Наоборот, линии гелия к классу В9 ослабляются. Начиная со спектров В5, хорошо заметны линии ионизованного кальция (линия К) и магния (с длиной волны l 4481 ). Цвет звезды - бело-голубые.

Класс А (t " 7500—10 000 K). В спектрах преобладают водородные линии бальмеровской серии, достигающие наибольшей интенсивности в классе А0, линии гелия исчезают. Нарастают интенсивности линии К и линии l 4481 , в классе А2 появляется линия нейтрального кальция l 4227 , а в классе А5 - линии нейтрального железа.Цвет звезды белые.

Класс F (t " 6000—7500 К). Водородные линии всё ещё наиболее интенсивны, но заметны также многочисленные линии металлов - ионизованных и нейтральных. Очень интенсивны линии Н и К ионизованного кальция. Несколько линий железа и ионизованного титана на спектрограммах с малой дисперсией сливаются, образуя т. н. полосу G (длины волн от 4305 ?до 4315 ). Цвет звезды - желтовато-белыею.

Класс G (t " 5000—6000 K). Водородные линии более не выделяются среди мощных спектральных линий металлов и в спектрах G5 - G9 слабее некоторых линий железа. Очень интенсивны линии Н и К. К классу G2 принадлежит Солнце. Цвет звезды - жёлтые.

Класс К (t " 3500—5000 К). Линии Н и К, линия l 4227 ?и полоса G достигают наибольшего развития. В классе К5 появляются следы полос поглощения молекулы окиси титана. Непрерывный спектр в ближайшем ультрафиолетовом участке (за линией К) практически отсутствует. Цвет звезды - оранжевые.

Класс М (t " 2000—3500 К). К этому классу принадлежат красные звёзды с полосчатым спектром. Особенно выделяются полосы окиси титана. Из атомных линий выделяется только линия l 4227 . Линии Н и К почти не видны. Встречаются спектры М с одной или несколькими водородными линиями бальмеровской серии в виде линий излучения. Цвет звезды - красные

Дополнительные классы

Класс W (t "60000-100000 К). Звёзды Вольфа-Райе, очень тяжёлые яркие звёзды с температурой порядка 70000 K и интенсивными эмиссионными линиями в спектрах. Излучение в линиях He II, He I, N I, N III-V, O III-VI, C II-IV

Класс С (=R-N) (t "2000-350К). Углеродные звёзды, гиганты с повышенным содержанием углерода. Молекулярные полосы поглощения C2 и его соединений CH, CO, CN. У звезд R0–R3 имеются относительно слабые полосы C2 и CN, тогда как в типах R5–R8 эти полосы сильны, а также имеется континуум, простирающийся как минимум до 3900 A. У N-звезд полосы C2 и CN также сильны, но континуум обрывается до 4000 A... В 1993 году Keenan провел ревизию MK-классификации и разделил углеродные звезды на три последовательности: C-R, C-N и C-H с подклассами до C-R6, C-N9 и C-H6, определяемыми по температуре. Новые последовательности моделировали старую R-N систему с отдельной категорией для CH-звезд, которые ранее классифицировались как R-пекулярные.

Класс S (t "2000-3500К). Циркониевые звёзды. Полосы поглощения ZrO.

Спектральный класс L (t " 1500-2000К). Сильные полосы CrH, рубидия, цезия.

Спектральный класс T (t " 1000-1500 К). Интенсивные полосы поглощения воды, метана, молекулярного водорода.

Для планетарных туманностей введен специальный спектральный класс P, а для новых звезд - класс Q.


28.Диаграммы спектр,цвет,температура-совместимость.

Звезды сильно различаются по размерам, светимости, температуре.

Благодаря огромной площади поверхности, гиганты излучают неизмеримо больше энергии, чем нормальные звезды вроде Солнца, несмотря на то, что температура их поверхности значительно ниже. Радиус красного сверхгиганта Бетельгейзе (α Ориона) во много раз превосходит радиус Солнца. Напротив, размер нормальной красной звезды, как правило, не превосходит одной десятой размера Солнца. По контрасту с гигантами их называют карликами. Например, две звезды, имеющие одинаковый спектральный класс М2, Бетельгейзе и Лаланд 21185, различаются по светимости в 600 000 раз. Светимость Бетельгейзе в 3 000 раз больше светимости Солнца, а Лаланд 21185 – в 200 раз меньше. Гигантами и карликами звезды бывают на разных стадиях своей эволюции, и гигант, достигнув «пожилого возраста», может превратиться в белый карлик.

Наряду с красными гигантами и сверхгигантами встречаются белые и голубые сверхгиганты: Регул (α Льва), Ригель (β Ориона).


По распределению звезд в соответствии с их светимостью и температурой на диаграмме Герцшпрунга–Рассела выделены следующие классы светимости:
сверхгиганты – I класс светимости;
гиганты – II класс светимости;
звезды главной последовательности – V класс светимости;
субкарлики – VI класс светимости;
белые карлики – VII класс светимости.

Принято указывать класс светимости после спектрального класса звезды. Солнце – звезда G2V.

В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. Параллельно главной последовательности, но несколько ниже ее располагаются субкарлики. Они отличаются от звезд главной последовательности меньшим содержанием металлов.

29,Межзвёздная среда, разреженное вещество, межзвёздный газ и мельчайшие пылевые частицы, заполняющие пространство между звёздами в нашей и других галактиках. В состав Межзвёздная среда входят, кроме того, космические лучи, межзвёздные магнитные поля, а также кванты электромагнитного излучения различной длины волны. Вблизи Солнца (и других звёзд) Межзвёздная среда переходит в межпланетную среду. Пространство между галактиками заполняет межгалактическая среда.


  Межзвёздный газ состоит из нейтральных и ионизованных атомов и молекул. Основную массу газа составляют атомы водорода и гелия (соответственно около 90 % и 10 % по числу атомов) с небольшой примесью кислорода, углерода, неона, азота (около 0,01 % каждого). Из молекул наиболее обильно представлена H2, сосредоточенная в облаках. Кроме того, имеются в малом количестве CH, OH, H2O, NH3, CH2O и другие органические и неорганические молекулы. Межзвёздный газ почти равномерно перемешан с межзвёздной пылью, состоящей из частиц размером 10-4-3·10-6 см. Газ и пыль почти полностью отсутствуют в эллиптических галактиках, в спиральных же галактиках типов Sa, Sb, Sc составляют соответственно около 1 %, 3 %, 10 % массы галактики, а в неправильных галактиках - в среднем 16 %. Межзвёздные газ и пыль сильно концентрируются к плоскости галактик, образуя диск, толщина которого составляет в среднем несколько сотен пс, возрастая к периферии иногда до нескольких кпс. Концентрация газа в дисках в среднем около 1 или нескольких атомов в 1 см3 (плотность около 10-24 г/см3); вне диска и на его краях плотность газа значительно меньше. В спиральных галактиках большая часть газа и пыли сосредоточена в спиральных рукавах (ветвях): плотность газа между рукавами галактики в 3-10 раз меньше, чем в рукавах. В рукавах около 80-90 % газа сосредоточено в межзвёздных облаках, которые часто объединяются, образуя газопылевые комплексы, располагающиеся главным образом на внутренней (вогнутой) стороне спиральных рукавов. Параметры межзвёздных облаков крайне разнообразны.

  В нашей Галактике диаметры межзвёздных облаков обычно составляют 5-40 пс, концентрация атомов в них от 2 до 100 в 1 см3, температура 20-100 К. Облака занимают около 10 % объёма диска Галактики. Газ и пыль Межзвёздная среда вместе со звёздами движутся в диске галактик вокруг её центра по орбитам, близким к круговым, со средними скоростями, составляющими 100-200 км/сек. Отдельные облака межзвёздного газа имеют собственные (пекулярные) скорости, величина которых в среднем равна 10 км/сек, достигая иногда 50-100 км/сек. В галактической короне наблюдается газ, падающий на плоскость галактики со скоростями в десятки и сотни (до 200) км/сек; происхождение этого газа не выяснено. Концентрация атомов между облаками 0,02-0,2 в 1 см3, температура 7-10 тысяч К.

  Водород, гелий и другие элементы, потенциалы ионизации которых больше, чем у водорода, в облаках ионизованы очень слабо, а между облаками ионизация водорода - несколько десятков процентов. Остальные элементы однократно ионизованы светом звёзд.
  Средняя плотность пыли в диске Галактики 10-26 г/см (0,01 плотности газа). Эта пыль поглощает свет звёзд, причём синие лучи сильнее, чем красные. Поэтому из-за пыли свет далёких звёзд виден не только ослабленным, но и более красным.
  Массы больших газопылевых комплексов достигают десятков и сотен тысяч масс Солнца. В их центральных частях температура очень низкая (иногда всего 5-6 К) при концентрации атомов до сотен в 1 см3 и более. Плотность пыли в них больше 1/100 плотности газа. Последнее обстоятельство связано с тем, что при низких температурах и больших плотностях происходит образование молекул, в том числе многоатомных, и налипание их на пылинки. В таких местах могут образовываться звёзды. В связи с этим имеет важное значение то обстоятельство, что в центральных частях комплексов наблюдаются компактные объекты (размером порядка 1015 см и меньше), из которых, возможно, образуются звёзды (см. Протозвёзды) и планеты. Они очень интенсивно излучают в радиолиниях молекул OH, H2O и других, характер излучения которых иногда аналогичен излучению лазеров.

  Частиц, составляющих космические лучи и обладающих огромными энергиями - от 106 до 1020 эв, в Межзвёздная среда гораздо меньше, чем других её компонентов, но их общая энергия в 1 см3 составляет около 1 эв, то есть превышает энергию тепловых движений межзвёздного газа. Космические лучи больших энергий слабо взаимодействуют с газом и пылью, изредка вызывая в них ядерные реакции.

30.Газово-пылевые комплексы. Характернейшей особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны Н I и зоны Н II, кинетическая температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч на кубический сантиметр, и весьма разреженная среда между облаками, где концентрация не превышает 0,1 частицы на 1 см3. Имеются, наконец, огромные области, где распространяются сильные ударные волны от взрывов звезд (см. § 16), нагревающие газ до температуры 106 К. В этом параграфе мы сосредоточим наше внимание на сравнительно плотных, холодных газово-пылевых  комплексах , физические процессы в которых отличаются большим своеобразием.

Наряду с отдельными облаками как ионизованного, так и неионизованного газа в Галактике наблюдаются, значительно большие по своим размерам, массе и плотности агрегаты холодного межзвездного вещества, получившие название « газово-пылевых  комплексов »1. На небе астрономам уже давно известно довольно много таких комплексов. Один из ближайших к нам и, пожалуй, лучше всего исследованный комплекс находится в созвездии Ориона (см. рис. 2.3). Он включает в себя знаменитую туманность Ориона, плотные, поглощающие свет газово-пылевые  облака и ряд других примечательных объектов. Для нас самым существенным является тс, что в таких газово-пылевых комплексах  происходит важнейший процесс конденсации звезд из диффузной межзвездной среды. Об этом будет идти речь ниже, здесь же мы остановимся на интересном вопросе о происхождении таких комплексов. Конечно, этим вопросом можно было бы и не интересоваться, принимая газово-пылевые  комплексы  как реальный наблюдательный факт. Но такой чисто эмпирический путь исследования при всей его несомненной полезности не помогает глубоко понять суть явления и заложенную в самой его природе неизбежность. Во введении мы уже подчеркивали, что современная астрофизика насквозь исторична. Нельзя считать до конца понятым происхождение звезд из диффузной межзвездной среды, если неизвестно происхождение массивных, плотных газово-пылевых  комплексов . Их происхождение нельзя понять как следствие тепловой неустойчивости межзвездной среды, о которой речь шла выше. Такая неустойчивость может привести лишь к образованию отдельных облаков, вкрапленных в значительно более разреженную среду. Ключом к пониманию происхождения массивных газово-пылевых  комплексов  являются некоторые свойства межзвездного магнитного поля.

Речь идет прежде всего об «упругости» магнитных силовых линий этого поля. Направление этих линий в основном параллельно плоскости галактического экватора. Так как облака межзвездной среды, образовавшиеся в результате ее тепловой неустойчивости, более или менее сильно ионизованы и поэтому представляют собой проводящую среду, они не могут двигаться поперек силовых линий — это сразу же искривило бы силовые линии и вызвало силу, направленную против движения. Следовательно, облака сравнительно быстро были бы остановлены. Поэтому они могут двигаться только по силовым линиям магнитного поля, как бы «скользя» вдоль них. Теперь представим себе, что по какой-то причине, может быть даже случайно, в системе (горизонтально» простирающихся силовых линий образовалась небольшая «впадина», «ложбина». Тогда под действием силы тяжести облака будут «соскальзывать» в такую ложбину. От этого масса газа во впадине увеличится и под влиянием его тяжести «ложбина» будет прогибаться еще сильнее. Ее «склоны» станут круче, и скорость втекания облаков межзвездного газа увеличится. В результате такого своеобразного характера неустойчивости межзвездной намагниченной плазмы (так называемая «неустойчивость Рэлея — Тэйлора») в системе межзвездных силовых линий образуются глубокие «ямы», наполненные довольно плотным газом . Это и есть газово-пылевой  комплекс .
31.Образование протозвезд и звезд. Звезды рождаются из газопылевой диффузной среды в результате процесса гравитационного сжатия отдельных газовых облаков под действием собственного тяготения. Гравитационное сжатие начинается в наиболее плотных областях межзвездного газа, в котором несколько процентов вещества сосредоточенно в твердых частицах, называемых межзвездной пылью. Сжатие возникает как следствие гравитационной неустойчивости. Минимальный критический размер области, начиная с которого возможно самопроизвольное сжатие, называеться длиной волны Джинса.

Протозвезда.Когда разогрев центрального сгущения окажется достаточным, чтобы возросшее газовое давление противостояло гравитации, сжатие этого центрального сгущения прекращается, и основным процессом становиться аккрекция вещества из газовой оболочки на сформировавшееся ядро. В результате масса ядра постепенно увеличивается. С ростом массы быстро растет светимость ядра. С дальнейшим ростом массы и светимости быстро растущее давление излучения протозвезды останавливает аккрецию, а затем начинает отталкивать остатки оболочки, не успевшие упасть на рождающуюся звезду


32. Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает нескольких миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. В таком состоянии он пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии.

В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы.

33. Бе́лые ка́рлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать, как белый карлик), лишённые собственных источников термоядерной энергии.

Белые карлики представляют собой компактные звёзды с массами, сравнимыми с массой Солнца, но с радиусами в ~100[1] и, соответственно, светимостями в ~10 000 раз меньшими солнечной. Плотность белых карликов составляет 105—109 г/см³[1], что почти в миллион раз выше плотности обычных звёзд главной последовательности. По численности белые карлики составляют по разным оценкам 3—10 % звёздного населения нашей Галактики.Как образуются белые карликиВ современной теории звёздной эволюции белые карлики рассматриваются как конечный этап эволюции звёзд средней и малой массы (3 - 4 масс Солнца).После того как в центральных областях стареющей звезды выгорит весь водород, её ядро должно сжаться и разгореться. Внешние слои при этом сильно расширяются, эффективная температура светила падает, и оно становится красным гигантом.


Образовавшаяся разреженная оболочка звезды очень слабо связана с ядром - она, в конце концов, рассеивается в пространстве. На месте бывшего красного гиганта остаётся очень горячая и компактная звезда, состоящая в основном из гелия - белый карлик. Благодаря своей высокой температуре она излучает главным образом в ультрафиолетовом диапазоне и ионизует газ разлетающейся оболочки. Расширяющиеся оболочки, окружающие горячие звёзды, - планетарные туманности.Красные гиганты - это звезды, в ядре которых уже закончилось горение водорода. Их ядро состоит из гелия, но так как температура ядерного горения гелия больше, чем температура горения водорода, то гелий не может загореться. Поскольку больше нет выделения энергии в ядре, оно перестает находиться в состоянии гидростатического равновесия и начинает быстро сжиматься и нагреваться под действием сил гравитации. Так как во время сжатия температура ядра поднимается, то оно поджигает водород в окружающем ядро тонком слое (начало горения слоевого источника) (см. строение красных гигантов).Энергия, вырабатываемая водородным слоевым источником, выталкивает внешние слои звезды наружу, заставляя их расширяться и остывать. Более холодная звезда становится краснее, однако из-за своего огромного радиуса ее светимость возрастает по сравнению со звездами главной последовательности. Сочетание невысокой температуры и большой светимости, собственно говоря, и характеризует звезду как красного гиганта

Планетарные туманности- система из звезды, называемой ядром туманности, и симметрично окружающей ее светящейся газовой оболочки (существенно реже - неск. оболочек). П. т. были открыты англ. астрономом В. Гершелем ок. 1783 г.. Оболочка П. т. - полностью ионизованное газовое образование с электронной темп-рой 10-12 тыс.. П. т. свойствен характерный эмиссионный спектр излучения, отличающийся от спектров галактич. диффузных туманностей большим возбуждением излучающих атомов и молекул.Радиоизлучение П. т. - тепловое; в нек-рых из них замечено слабое радиоизлучение молекул СО. Свечение оболочки возбуждается УФ-излучением ядра. Ср. масса оболочки П. т. - ок. 0,1 Осн. масса оболочки П. т. сосредоточена в плотной тороидальной структуре. Периферийная часть оболочки более разрежена, и образующий её газ менее возбуждён. Всё многообразие видимых форм П. т. возникает, вероятно, вследствие проекции тороидальной структуры на небесную сферу под разными углами. Оболочки П. т. расширяются в окружающее пространство со скоростями 20-40 км/с под действием внутр. давления горячего газа. По мере расширения оболочка становится разреженней, её свечение ослабевает, и в конце концов она становится невидимой. Длительность жизни П. т. в наблюдаемой фазе - ок. 20 000 лет. За это время их линейные радиусы возрастают в среднем от до см (от 0,015 до 0,15 пк) и более, а ср. концентрация частиц уменьшается от до менее чем см-3. Ядра П. т. представляют собой горячие звёзды раннего спектрального класса, претерпевающие значит, изменения за время жизни туманности. Непрерывные спектры ядер близки к спектру абсолютно чёрного тела. Темп-ры ядер обычно составляют 50-100 тыс. К. За время существования П. т. линейные радиусы ядра убывают от 10 до 0,03 , болометрич. светимости - от до 3 , а спектры изменяются от сложных эмиссионно-абсорбционных спектров звёзд типа Вольфа-Райе или Of до спектров субкарликов класса О. Ядра старых П. т. близки к белым карликам, но вместе с тем значительно горячее и ярче типичных объектов такого рода. Массы ядер определяются из косвенных соображений; считается, что они близки к 1. Среди ядер встречаются двойные звезды. П. т. концентрируются к галактич. экватору и к направлению на галактический центр.

34.Эволюция звезд в тесных двойных системах. Рассмотрим теперь следующую модель эволюции звезд в тесной двойной системе. Пока обе компоненты двойной системы пребывали на главной последовательности, их радиусы были меньше радиусов соответствующих полостей Роша, определяемых формулой.Когда исчерпается значительная часть водородного горючего в центральной части быстрее эволюционирующей более массивной звезды, радиус последней станет увеличиваться, в то время как радиус второй компоненты останется неизменным. Таким образом, более массивная компонента станет «разбухать», пока ее наружная часть не заполнит свою полость Роша. После этого расширение главной компоненты прекратится, так как избыточная ее масса, выходящая за пределы полости Роша, начнет «переливаться» во вторую компоненту, масса которой начнет расти.

Скорость потери массы эволюционирующей звездой очень быстро растет по мере роста радиуса этой звезды после достижения им величины радиуса полости Роша. Расчеты показывают, что убыль массы за единицу времени q дается формулой



(14.2)



Достарыңызбен бөлісу:
1   2   3   4   5   6




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет