СВЕТОВАЯ ОТДАЧА. 1) С. о. атома, одно из пондеромоторных действий света, заключающееся в том, что атом, испускающий фотон, приобретает импульс отдачи, направленный в сторону, противоположную вылету фотона. При спонтанном испускании разные атомы ансамбля получают импульсы отдачи в разл. произвольных направлениях; при вынужденном испускании — в одном определ. направлении. См. Световое давление.
2) С. о. источника света, отношение излучаемого источником светового потока к потребляемой им мощности. Измеряется в люменах на Ватт (лм/Вт).. Служит хар-кой экономичности источников; С. о. совр. ламп накаливания общего назначения 8—20 лм/Вт, люминесцентных ламп — до 90 лм/Вт, металлогалогенных и натриевых — до 130 лм/Вт. См. также Световая эффективность, Источники оптического излучения.
Д. Н. Лазарев.
СВЕТОВАЯ ЭНЕРГИЯ, одна из осн. световых величин, равная произведению светового потока на длительность освещения. Единица С. э.— люмен-секунда (лм•с). См. также Спектральная световая эффективность излучения. В системе энергетич. величин аналогичная величина — энергия излучения (лучистая энергия), единица
измерения — Дж.
Д. Н. Лазарев.
СВЕТОВАЯ ЭФФЕКТИВНОСТЬ излучения, отношение светового потока к соответствующему потоку излучения. Единица С. э.—лм•Вт-1. См. также Спектральная световая эффективность. Д. Н. Лазарев.
СВЕТОВОД (светопровод, волновод оптический), закрытое устройство для направленной передачи (канализации) света. В открытом пр-ве его передача возможна только в пределах прямой видимости и связана с потерями, обусловленными нач. расходимостью излучения, поглощением и рассеянием в атмосфере. Переход к С. позволяет значительно уменьшить потери световой энергии при её передаче на большие расстояния, а также передавать световую энергию по криволинейным трассам.
Одним из типов С. явл. л и н з о в ы й в о л н о в о д — система заключённых в трубу и расположенных на определ. расстояниях (обычно через 50—100 м) стеклянных линз, к-рые служат для периодич. коррекции волн. фронта светового пучка. В кач-ве корректоров могут также применяться газовые линзы или зеркала определённой формы.
Наиболее перспективный тип С.— гибкий волоконный С. с низкими оптич. потерями, позволяющий передавать свет на большие расстояния. Он представляет собой тонкую нить из оптически прозрачного материала, сердцевина к-рой радиуса а1 имеет показатель преломления n1, а внеш. оболочка с радиусом а2 имеет показатель преломления n21 (рис. 1).
Поэтому лучи, распространяющиеся под достаточно малыми углами к оси С., испытывают полное внутреннее отражение на поверхности раздела сердцевины и оболочки и распространяются только по сердцевине. В зависимости от назначения С. его диаметр 2a1 составляет от неск, мкм до неск. сотен мкм, а 2а2— от неск. десятков до неск. тысяч мкм. Величины 2а1 и n1 -n2 определяют число типов волн (мод), к-рые могут распространяться по С. при заданной длине волны света.
Рис. 1. Поперечное сечение волоконного световода.
Выбирая 2a1 и n1-n2 достаточно малыми, можно добиться, чтобы С. работал в одномодовом режиме. Волоконные С. находят широкое применение в системах оптической связи, в вычислит. технике, в датчиках разл. физ. полей и т. д.
Важнейшими хар-ками С., предназначенных для подобных применений, являются оптич. потери, обусловленные поглощением и рассеянием света в С., и информац. полоса пропускания. В 70-х гг. 20 в. созданы волоконные С. с малыми потерями: затухание сигнала ~1 дБ/км в ближней ИК области спектра. Типичный спектр оптич. потерь в таких С. представлен на рис. 2. Материалом для этих С.
Рис. 2. Спектр оптич. потерь в стеклянном волоконном световоде.
служит кварцевое стекло; различия показателей преломления сердцевины и оболочки достигают легированием стекла (напр., бором, германием, фосфором). Минимально возможные потери в таких С. составляют ~0,2 дБ/км на волне 1,55 мкм. Полоса пропускания типичных многомодовых волоконных С. со ступенчатым профилем показателя преломления составляет величину 20—30 МГц•км, с градиентным профилем — 400—600 МГц•км. Наиболее широкополосны одномодовые С. в области длин волн 1,26—1,32 мкм, где материальная дисперсия кварцевых стёкол ближе к 0; полоса пропускания составляет —1011 Гц•км.
Волоконные С. с самыми низкими потерями изготавливают методом хим. осаждения из газовой фазы. В кач-ве исходных соединений используются хлориды кремния, германия и др. Получаемая этим методом заготовка диаметром 10—20 мм и длиной 200— 400 мм перетягивается в волоконный С. диаметром 125—150 мкм с одноврем. покрытием его защитно-упрочняющей полимерной оболочкой.
Разработаны волоконные С. более сложной конструкции, напр. многослойные С. и С. с эллиптической сердцевиной. Одномодовые С. последнего типа перспективны для применений, где требуется сохранение поляризации распространяющегося света. Перспективными явл. волоконные С. для среднего ИК диапазона длин волн (2—11 мкм), в к-рый попадают длины волн генерации химических, СО и СО2-лазеров. Имеются материалы, такие, как халькогенидные стёкла, флюоридные стёкла, щёлочно-галоидные кристаллы, в к-рых оптич. потери могут составлять величину ~10-1—10-3 дБ/км в указанном диапазоне.
Для целей интегральной оптики разработаны тонкоплёночные и диффузные диэлектрич. волноводы — С., представляющие собой тонкую (порядка длины световой волны) однородную плёнку, нанесённую на однородную подложку. Необходимое условие волноводного режима, т. е. существования поверхностных световых волн, заключается в том, что показатель преломления плёнки больше показателей преломления подложки и среды над волноводом. Световая волна в таком С. распространяется в процессе многократных полных отражений от её стенок. Диэлектрич. С. изготавливают методом катодного распыления стекла или др. материала (ZnS, CdS, ZnSe) на кварцевой подложке, методом эпитаксиального наращивания из жидкой или газообразной фазы, методом ионной имплантации (подложка бомбардируется ионами Li, T1 или протонами).
• Маркузе Д., Оптические волноводы, пер. с англ., М., 1974; Основы волоконно-оптической связи, под ред. М. Бар-носки, пер. с англ., М., 1980; Д и а н о в Е. М., Волоконные световоды для оптической связи. Справочник по лазерам, т. 2, М., 1978; Девятых Г. Г., Дианов Е. М., Волоконные световоды с малыми оптическими потерями, «Вестник АН СССР», 1981, №10, с. 54.
Е. М. Дианов.
СВЕТОВОЕ ДАВЛЕНИЕ (давление света), давление, производимое светом на отражающие и поглощающие тела, ч-цы, а также отд. молекулы и атомы, частный случай пондеромоторного действия света.
Гипотеза о С. д. впервые была высказана нем. учёным И. Кеплером (1619) для объяснения отклонения хвостов комет, пролетающих вблизи Солнца. В 1873 англ. физик Дж. К. Максвелл, исходя из эл.-магн. теории, предсказал величину С. д., к-рая оказалась исключительно малой даже
665
для самых сильных источников света (Солнце, электрич. дуга). В земных условиях С. д. маскируется побочными явлениями (конвекционными токами, радиометрич. силами; см. Радиометрический эффект), к-рые могут превышать величину С. д. в тысячи раз. Поэтому измерить величину С. д. было чрезвычайно трудно. Впервые экспериментально измерить С. д. удалось П. Н. Лебедеву в 1899,
Осн. частью прибора Лебедева служили плоские лёгкие крылышки (диаметром 5 мм) из разл. металлов и слюды, к-рые подвешивались на тон-
Рис. 1. Схема опыта Лебедева: В — источник света (угольная дуга); С — конденсатор; D — металлич. диафрагма; К — линза; W — светофильтр; S1—S6 — зеркала; L1 и L2 — линзы; R — изображение диафрагмы D на крылышках (на рис. крылышки не показаны) внутри стеклянного баллона G; P1 и Р2 — стеклянные пластинки; Т — термобатарея; R, — изображение диафрагмы D на поверхности термобатареи.
кой стеклянной нити и помещались внутри стеклянного вакуумиров. сосуда G (рис. 1). На крылышки с помощью спец. оптич. системы и зеркал направлялся свет от сильной электрич. дуги В. Перемещение зеркал S1, S4 давало возможность изменять направление падения света на крылышки. Устройство прибора и методика измерения позволили свести до минимума мешающие радиометрич. силы и обнаружить С. д. на отражающие или поглощающие крылышки, к-рые под его воздействием отклонялись и закручивали нить. В 1907—10 Лебедев исследовал С. д. на газы, что было ещё труднее, т. к. оно в сотни раз меньше С. д. на тв. тела.
Результаты экспериментов Лебедева и более поздних исследований полностью согласовывались с величиной С. д., рассчитанной Максвеллом, что явилось ещё одним подтверждением эл.-магн. теории света.
Согласно этой теории, давление, к-рое оказывает на поверхность тела плоская эл.-магн. волна, падающая
перпендикулярно к поверхности, равно плотности и эл.-магн. энергии около поверхности. Эта энергия складывается из энергии падающих и энергии отражённых от тела волн. Если мощность эл.-магн, волны, падающей на 1 см2 поверхности тела, равна Q эрг/см2•с, а коэфф. отражения R, то вблизи поверхности плотность энергии u=Q(1+R)/c. Этой величине и равно С. д. на поверхности тела: p=Q(1+R)/c (эрг/см3 или Дж/м3). Напр., мощность солнечного излучения, приходящего на Землю, равна 1,4•106 эрг/см2•с или 1,4•103 Вт/м2; следовательно, для абсолютно поглощающей поверхности р=4,3•10-5 дин/см=4,3•10-6 Н/м2. Общее давление солнечного излучения на Землю равно 6•1013 дин (6•108 Н), что в 1013 раз меньше силы притяжения Солнца.
Существование С. д. показывает, что поток излучения обладает не только энергией (следовательно, и массой), но и импульсом. С точки зрения квант. теории, С. д.— результат передачи телам импульса фотонов в процессах поглощения или отражения света. Квант. теория даёт для С. д. те же формулы.
С. д. играет важную роль в двух противоположных по масштабам областях явлений — астрономич. и атомных. В астрофизике С. д. наряду с давлением газов обеспечивает стабильность звёзд, противодействуя силам гравитац. сжатия. С. д. существенно для динамики околозвёздного и межзвёздного газа: так, напр., высокоскоростное (2•108 см/с) испускание газа горячими звёздами объясняется превышением С. д. над гравитац. притяжением. К эффектам С. д. в ат. области близко явление передачи высокоэнергичными фотонами (γ-квантами) части своего импульса эл-нам, на к-рых они рассеиваются (см. Комптона эффект), или ядрам атомов кристалла в процессах излучения и поглощения (см. Мёссбауэра эффект).
Возможности использовать С. д. в решении целого ряда практич. земных задач появились после создания лазеров. Лазерный луч, обладающий высокой монохроматичностью и пространств. когерентностью, можно фокусировать в пятно с радиусом, близким к теор. пределу,— порядка длины волны. При этом в результате концентрации световой энергии возникает сила С. д., достаточная для удержания маленьких ч-ц (0,1 —100 мкм) в воздухе или иной среде
(о п т и ч е с к а я л е в и т а ц и я) и даже их перемещения. Т. к. ч-цы одного и того же в-ва, но разных размеров будут испытывать разл. С. д. и поэтому двигаться с разл. скоростями, их можно разделять по размерам. Возможно также разделение ч-ц с разл. (относительно среды) показателями преломления. На рис. 2 изображены две сферы с разными показателями преломления, находящиеся на краю пучка, имеющего гауссовское распределение интенсивности. Лучи а и b, расположенные симметрично относительно центра сферы, проходя через неё, искривляются т. о., что возникают две силы С. д. Fa и Fb, направленные вдоль изменения импульса лучей. Т. к. луч о расположен ближе к центру сечения пучка, то Fa>Fb и существует результирующая поперечная компонента, направленная к центру пучка, если показатель преломления сферы больше показателя преломления среды (рис. 2, вверху), и от центра — в обратном случае (рис. 2, внизу). Такой способ разделения может оказаться очень удобным для разделения биол. объектов (вирусы, макромолекулы, клетки), находящихся в жидкости (при предотвращении чрезмерного нагрева).
Рис. 2. Схема действия лазерного пучка на ч-цы с разными показателями преломления. На верхнем рис. ч-ца втягивается лазерным лучом на нижнем — выталкивается.
Двумя встречными лазерными пучками можно создать т. н. «оптич. ловушку», в к-рой ч-цы в воздухе, имеющие высокий показатель преломления, находятся в устойчивом равновесии, т. к. любое смещение приводило бы к появлению возвращающей оптич. силы (оптич. левитация). Будучи захваченной, ч-ца остаётся в воздухе, пока на неё сфокусирован свет. Движением линзы можно очень точно перемещать фокус луча и тем самым положение ч-цы. Точная микроманипуляция с ч-цами очень ценна, напр., в проблеме термоядерных исследований: с помощью лазера можно вводить и поддерживать на весу маленькую ч-цу, играющую роль мишени для мощного импульсного лазера.
Возможным использованием С. д. в высоком вакууме явл. ускорение микрочастиц в-ва до больших скоростей. Ограничением предельно достижимых скоростей явл. плавление и испарение ч-цы. Если считать плавление предельным случаем, то при известных показателе преломления и коэфф. поглощения можно найти предельно допустимую мощность луча и рассчитать предельную скорость. Для ч-ц диаметром 0,5 мкм, имеющих коэфф. поглощения 3•10-5 см-1, конечная скорость может быть 3•108 см/с. Если такую ч-цу направить на мишень или др. ч-цу таких же размеров и скорости, то была бы получена мощ-
666
ность ~1011 Вт в течение 10-13 с. Ч-ца испарилась бы и образовала высокотемпературную плазму, в к-рой возможны термоядерные реакции. Поэтому эта методика может представлять интерес в термоядерных исследованиях, однако здесь имеются техн. трудности, связанные с подавлением нелинейного поглощения, и др.
Сила С. д. на отд. атомы невелика, но вследствие малости массы атома, эффект механич. воздействия света может быть значительным. Особенно велико такое воздействие, если частота лазерного излучения равна частоте ат. перехода (оптич. резонанс). Поглощая фотон, атом получает импульс в направлении лазерного пучка и переходит в возбуждённое состояние, в к-ром находится конечное время. При спонтанном испускании фотона атом приобретает импульс (световая отдача) в произвольном направлении. При последующих поглощениях и спонтанных испусканиях фотонов произвольно направленные импульсы световой отдачи взаимно гасятся, и в конечном итоге резонансный атом получает импульс, направленный вдоль светового луча — резонансное световое давление. С увеличением мощности оптич. излучения резонансное С. д. насыщается, что связано с конечным временем жизни возбуждённого состояния. Если ср. время жизни ~10-8 с, то атом в среднем может рассеять не более 108 фотонов в 1 с. В действительности из-за наличия вынужденного излучения в возбуждённом состоянии атом может рассеять лишь половину этого кол-ва. Однако при насыщении резонансное С. д. может создавать ускорение атомов до 105 g (где g — ускорение свободного падения).
Одним из возможных применений резонансного С. д. явл. разделение газов: при облучении двухкамерного сосуда, наполненного смесью двух газов, один из к-рых находится в резонансе с излучением, резонансные атомы под действием С. д. перейдут в дальнюю камеру 7 (рис. 3). При
Рис. 3. Схема разделения газов при помощи резонансного светового давления.
помощи резонансного С. д. можно даже получить разделение изотопов за счёт сдвига резонансной частоты у изотопов. С помощью резонансного С. д. можно селектировать атомы с определённой скоростью из многоскоростного ат. пучка.
• Лебедев П. Н., Избр. соч., М.— Л., 1949; Э ш к и н А., Давление лазерного излучения, «УФН», 1973, т. 110, в. 1; К а з а н ц е в А. П., Резонансное световое давление, «УФН», 1978, т. 124, в. 1.
СВЕТОВОЕ ПОЛЕ, поле светового вектора, пространств. распределение световых потоков. Теория С. п.— раздел теор. фотометрии. Осн. хар-ки С. п.— световой вектор, определяющий величину и направление переноса лучистой энергии, и скалярная величина — ср. сферич. освещённость, определяющая объёмную плотность световой энергии в исследуемой точке поля. Распределение освещённости находят, применяя общие методы расчёта пространств. распределения светового потока. В теории С. п. используют понятие о световых линиях, аналогичное понятию силовых линий в классич. теории эл.-магн. поля. С. п. исследуют методами фотометрии; при этом не учитывают квант. природу света, принимая, что распределение энергии в С. п. непрерывно во времени и пространстве.
Л. Н. Капорский.
СВЕТОВОЙ ВЕКТОР, вектор плотности светового потока, определяет величину и направление переноса световой энергии. Абс. величина С. в.— отношение переносимой через площадку AS, перпендикулярную направлению переноса, в ед. времени световой энергии к величине этой площадки. Понятие «С. в.» используется гл. обр. в теор. фотометрии для количеств. описания световых полей и явл. фотометрич. аналогом Пойнтинга вектора. Так, напр., дивергенция С. в. определяет объёмную плотность поглощения или испускания света в данной точке светового поля. Проекция С. в. на любое направление, проходящее через точку, равна разности освещённостей двух сторон малой площадки, помещённой в этой точке перпендикулярно данному направлению. Размер и положение С. в. не зависят от системы координат.
Иногда С. в. наз. вектор Е напряжённости электрического поля эл.-магн. волны. Это связано с тем, что именно действие электрического поля на вещество приводит к поглощению, излучению, поляризации и др. оптическим явлениям.
Л. Н. Капорский.
СВЕТОВОЙ ГОД, внесистемная единица длины, применяемая в астрономии; 1 С. г. равен расстоянию, проходимому светом за 1 год. 1 С. г.= 0,3068 парсек=9,4605•1015 м.
СВЕТОВОЙ КОНУС, понятие используемое при описании геом. св-в четырёхмерного пространства-времени в частной (специальной) и общей теории относительности. С. к., соответствующим данной точке пространства-времени, наз. трёхмерное подпространство в этом четырёхмерном пр-ве, образованное совокупностью мировых линий свободно распространяющихся световых сигналов (или любых ч-ц с нулевой массой покоя), проходящих через эту точку (вершину конуса). Т. о., каждой точке четырёхмерного пространства-времени соответствует свой С. к.
В случае, если справедлива частная теория относительности, геометрия пространства-времени явл. псевдоевклидовой, наз. г е о м е т р и е й М и н к о в с к о г о, в к-рой все точки пространства-времени равноправны. Поэтому достаточно рассмотреть С. к. с вершиной в начале координат О: х=0, y=0, z=0, t=0 (где х, у, z — пространств. координаты, t — время). Ур-ние поверхности С. к. с вершиной в О имеет вид: c2t2-х2-y2-z2=0; оно инвариантно относительно Лоренца преобразований. Точки (события) с x2+y2+z2c2t2 и t>0, t<0 образуют
верхнюю и нижнюю полости С. к., соответственно — области I, II; события с x2+y2+z2>c2t2 образуют область III вне С. к. Пересечение С. к. с плоскостью y=0, z=0 изображено на рис. Поверхность С. к. пересекает эту плоскость по прямым x=±ct. События А, лежащие в области 1, образуют т. н. абс. будущее по отношению к событию О; событие О может оказать непосредств. воздействие на любое событие А, т. к. они могут быть связаны с О сигналами или вз-ствиями. События в области II образуют абс. прошедшее для события О; любое событие В может влиять на событие О, сигналы из В могут достичь О. События в области III не могут быть связаны с О никаким вз-ствием, т. к. никакие ч-цы и сигналы не распространяются быстрее света. Т. о., поверхность С. к. отделяет события, к-рые могут находиться в причинной связи с О, от событий для к-рых это невозможно,— с этим связано фундам. значение понятия «С. к.». Наблюдатель, находящийся в О, может знать только о событиях в области II и воздействовать только на события в области I.
При наличии полей тяготения мировые линии, образующие поверхность С. к., уже не явл. прямыми; св-ва С. к. вблизи вершины такие же. как в частной теории относительности, но в целом они могут отличаться.
И. Ю. Кобзарее.
СВЕТОВОЙ ПОТОК, световая величина, оценивающая поток излучения, т. е. мощность оптич. излучения, по вызываемому им световому ощущению, точнее, по его действию на се-
667
лективный приемник света, спектр. чувствительность к-рого определяется ф-цией относит. спектральной светоsoй эффективности излучения V (К) ( — длина волны света в вакууме). Ед. С. п.— люмен. С. п. Фv связан с потоком излучения Фе соотношением
где К m — максимальное значение спектральной световой эффективности, равное 683 лм/Вт (при длине волны 555 нм).
Д. Н. Лазарев.
СВЕТОВОЙ ПРОБОЙ (оптический пробой, оптический разряд, лазерная искра), переход вещества в результате интенсивной ионизации в состояние плазмы под действием эл.-магн. полей оптич. частот. Впервые С. п. наблюдался в 1963 при фокусировке в воздухе излучения мощного импульсного лазера на кристалле рубина, работающего в режиме модулированной добротности. При С. п. в фокусе линзы возникает искра, эффект воспринимается наблюдателем как яркая вспышка, сопровождаемая сильным звуком. Для пробоя газов на оптич. частотах требуются огромные электрич. поля порядка 106—107 В/см, что соответствует интенсивности светового потока в луче лазера ~109—1011 Вт/см2 (для сравнения, СВЧ-пробой атм. воздуха происходит при напряжённости поля ~104 В/см). Возможны два механизма С. п. газа под действием интенсивного светового излучения. Первый из них не отличается по своей природе от пробоя газов в полях не очень больших частот (сюда относится и СВЧ-диапазон). Первые затравочные эл-ны, появившиеся по тем или иным причинам в поле, сначала набирают энергию, поглощая фотоны при столкновениях с атомами газа,— этот процесс явл. обратным по отношению к тормозному испусканию квантов при рассеянии эл-нов нейтр. возбуждёнными атомами. Накопив энергию, достаточную для ионизации, эл-н ионизует атом, и вместо одного появляются два медленных эл-на, процесс повторяется. Так развивается лавина (см. также Лавинный разряд). В сильных полях такой процесс осуществляется достаточно быстро и в газе вспыхивает пробой. Второй механизм возникновения С. п., характерный именно для оптич. частот, имеет чисто квантовую природу. Эл-ны могут отрываться от атомов в результате многоквантового фотоэффекта, т. е. при одновременном поглощении сразу неск. фотонов. Одно-квантовый фотоэффект в случае частот видимого диапазона невозможен, т. к. потенциалы ионизации атомов в несколько раз превышают энергию кванта. Так, напр., энергия фотона рубинового лазера равна 1,78 эВ, а
ионизационный потенциал аргона равен 15,8 эВ, т. е. для отрыва эл-на требуется 9 фотонов. Обычно многофотонные процессы маловероятны, но скорость их резко повышается при увеличении плотности числа фотонов, а при тех высоких интенсивностях, при к-рых наблюдают С. п., вероятность их достигает значительной величины. В плотных газах, при давлениях порядка атмосферного и выше, всегда происходит лавинная ионизация, многофотонные процессы явл. здесь лишь причиной появления первых эл-нов. В разреженных же газах и в полях пикосекундных импульсов, когда эл-ны вылетают из области действия поля, не успев испытать много столкновений, лавина не развивается и С. п. возможен только за счёт непосредственного вырывания эл-нов из атомов под действием света. Это возможно только при очень сильных световых полях >107 В/см. При высоких давлениях С. п. наблюдается в гораздо более слабых полях. Весь механизм С. п. сложен и многообразен.
ОСНОВНЫЕ СВЕТОВЫЕ ВЕЛИЧИНЫ
С. п. наблюдается и в конденсированных средах при распространении в них мощного лазерного излучения и может явиться причиной разрушения материалов и оптич. деталей лазерных устройств.
О возможных применениях плазмы, возникающей при С. п., см. в ст. Лазерная плазма.
• Райзер Ю.П., Лазерная искра и распространение разрядов, М., 1974; Барынин В. А., Хохлов Р. В., К вопросу о механизме светового пробоя в газе, «ЖЭТФ», 1966, т. 50, в. 2.
СВЕТОВОЙ ПУЧОК, совокупность световых лучей, испускаемых элементом поверхности источника dS в пределах малого телесного угла d. Если яркость поверхности источника равна I, а ось пучка и нормаль к dS совпадают, то поток энергии, переносимой С. п., равен dФ=IdSd.
СВЕТОВЫЕ ВЕЛИЧИНЫ, система редуцированных фотометрических величин, характеризующих свет в процессах его испускания, распространения и преобразования (отражение, пропускание и пр.). С. в. определяют по отношению к т. н. ср. человеческому светоадаптированному глазу (см. Адаптация глаза). Относительной спектр. чувствительностью этого условного приёмника света считают ф-цию относит. спектральной световой эффективности, нормализованную в результате эксперим. статистич. исследований (в них усреднение произведено как по большой совокупности глаз отдельных людей с нормальным
зрением, так и по реакциям глаз одного и того же человека в разл. моменты времени). В табл. приведены осн. С. в. и единицы С. в. в Международной системе единиц (СИ). Их определения см. также в отд. статьях (Световой поток, Люмен и др.).
Д. Н. Лазарев.
СВЕТОВЫЕ ЕДИНИЦЫ, единицы световых величин: силы света, освещённости, яркости, светового потока и т. д. Ед. силы света наз. кандела (кд, ранее свеча); она воспроизводится по световым эталонам и входит в качестве осн. единицы в Междунар. систему единиц (СИ). С. е. в этой
668
системе приведены в табл. к ст. Световые величины. Употребляются также др. единицы освещённости и яркости: 1 фот=104 люксов; 1 люмен на кв. фут (лм/фут2 или 1 фут-свеча) =10,764 люкса; 1 стильб=104 кд/м2; 1 ламберт=104/ кд/м2; 1 фут-ламберт=3,426 кд/м2.
Д. Н. Лазарев.
СВЕТОВЫЕ ИЗМЕРЕНИЯ, количественные определения величин, характеризующих оптическое излучение, оптич. св-ва материалов (прозрачность, отражат. способность) и пр. С. и. производятся приборами, в состав к-рых входят приёмники света. В простейших случаях в диапазоне видимого света приёмником, с помощью к-рого оцениваются световые величины, служит человеческий глаз. Подробно о С. и. см. в ст. Фотометрия.
СВЕТОВЫЕ ЭТАЛОНЫ, меры, воспроизводящие с наивысшей достижимой точностью единицы световых величин для их хранения и передачи; обеспечивают единство световых измерений. В качестве С. э. в разное время применялись: пламя свечи или лампы с заданными хар-ками (размеры пламени, топливо и пр.); 1 см2 поверхности платины при темп-ре затвердевания; электрич. лампы накаливания. Различают первичный и вторичные С. э. Первичный С. э. единицы силы света — канделы, был осуществлён в 8 национальных лабораториях в виде т. н. полного излучателя, обладающего свойствами абсолютно чёрного тела, при темп-ре затвердевания платины. Его яркость 6•105 кд/м2, междунар. согласованность ок. 0,6% при внутрилабораторной погрешности ±0,2%. Этот С. э. действовал по междунар. соглашению с 1948 по 1979. В 1979 междунар. решением принято новое определение канделы, устанавливающее её связь с ваттом монохроматического излучения вне зависимости от способа воспроизведения. Вторичные С. э. для единиц силы света и освещённости и для единицы светового потока представляют собой группы светоизмерит. ламп накаливания разл. устройства и разной цветовой темп-ры.
В. Е. Карташевская.
СВЕТОДАЛЬНОМЕР (дальномер оптический), прибор для измерения расстояний по времени прохождения оптическим излучением (светом) измеряемого расстояния. С. содержит источник оптич. излучения, устройство управления его параметрами, передающую и приёмную системы, фотоприёмное устройство и устройство измерения временных интервалов. С. делятся на импульсные и фазовые в зависимости от методов определения времени прохождения излучением расстояния от объекта и обратно (см. Светодальнометрия).
В импульсном С. источником излучения чаще всего является лазер, излучение к-рого формируется в виде коротких импульсов. Для измерения медленно меняющихся расстоянии используют одиночные импульсы, при быстро изменяющихся расстояниях применяется импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50—100 Гц, полупроводниковые — до 104—105 Гц. Формирование коротких импульсов излучения в твердотельных лазерах осуществляется механич., электрооптич. или акустооптич. затворами или их комбинациями (см. Оптический затвор). Инжекционные лазеры управляются током инжекции.
В фазовых С. в качестве источников света применяются накальные или газосветные лампы, светодиоды и почти все виды лазеров. С. со светодиодами обеспечивают дальность действия до 2—5 км, с газовыми лазерами при работе с оптич. отражателями на объекте — до 100 км, а при диффузном отражении от объектов — до 0,8 км; аналогично, С. с полупроводниковыми лазерами обеспечивает дальность действия 15 и 0,3 км. В фазовых С. излучение модулируется интерференционными, акустооптич. и злектрооптич. модуляторами (см. Модуляция света). В СВЧ фазовых С. преим. применяются электрооптич. модуляторы на резонаторных и волноводных СВЧ структурах.
В импульсных С. обычно в качестве фотоприёмного устройства применяются фотодиоды, в фазовых С. фотоприём осуществляется на фотоэлектронные умножители. Чувствительность фотоприёмного тракта С. может быть увеличена на неск. порядков применением оптич. гетеродинирования. Дальность действия такого С. ограничивается длиной когерентности (см. Когерентность) передающего лазера, при этом возможна регистрация перемещений и колебаний объектов до 0,2 км.
Измерение временных интервалов чаще всего осуществляется счётно-импульсным методом.
Ю. В. Попов.
СВЕТОДАЛЬНОМЕТРИЯ, измерение расстояний по времени распространения оптического излучения (света) от точки, в к-рой расположен источник излучения, до объекта, отражающего или рассеивающего это излучение. При этом измеряемое расстояние D =(v/2), где v — скорость распространения света в среде, а — время прохождения им двойного измеряемого расстояния.
Величина может измеряться и м п у л ь с н ы м или ф а з о в ы м методом. В первом случае излучение посылается короткими импульсами и измеряется интервал между фронтами или энергетич. максимумами излучённого и отражённого импульсов. Во втором случае непрерывное излучение модулируется с высокой частотой f и значение определяется по запаздыванию фазы принимаемого отражённого излучения по отношению к фазе
испускаемого: D=(v/4f). При этом однозначный результат получается лишь при измерении расстояний, дающих сдвиг фазы <2. Для однозначного определения больших расстояний измерения производятся последовательно на неск. разл. частотах модуляции.
Существенным для С. явл. значение скорости распространения оптич. излучения вдоль измеряемого расстояния, определяемой показателем преломления. Последний изменяется с темп-рой (ок. 10-6 на 1 К), давлением и влажностью и зависит от длины волны излучения. Определить его ср. значение в момент измерения позволяет последоват. измерение расстояния на неск. длинах волн излучения (т. н. р е ф р а к т о м е т р и ч е с к а я С.).
Идея С. была высказана А. Майкельсоном (США), первый светодальномер был реализован А. А. Лебедевым в 1936, большое развитие С. получила после разработки лазеров. Импульсная лазерная С. обеспечивает при длительности импульсов излучения 20—100 нс ошибку измерения 5—10 м. Применение систем с накоплением сигнала даёт ошибку менее 1 м. При энергии излучения в импульсе ок. 0,3 Дж достигается дальность действия по протяжённым объектам до 20 км.
Лазерная импульсная С. применяется для измерения высоты облаков, для измерения высот полёта летательных аппаратов при аэрофотосъёмке, для точного определения орбиты ИСЗ, снабжённого уголковым отражателем, что важно для геодезич. целей, и т. д.
Фазовая С. находит применение в основном в топографо-геодезич. работах, инженерных изысканиях, машиностроении, гляциологии, гидротехнике (СВЧ светодальномеры, позволяющие при частоте модуляции выше 108 Гц снизить инструментальную ошибку до 0,2—0,5 мм).
Дифференцирование данных о расстоянии до объекта как в фазовой, так и в импульсной С. позволяет получить значение радиальной скорости его перемещения (светодальномерные системы стыковки в космосе). Определяя пространств. распределение расстояний до отражающих поверхностей, получают данные о профиле этих поверхностей (светодальномерная профилометрия). Последняя используется для определения профиля антенн радиотелескопов, корпусов судов, при изучении подвижек льда и т. д. Светодальномерный профилометр применим для автономного ориентирования планетоходов.
• В а ф и а д и В. Г., П о п о в Ю. В., Скорость света и ее значение в науке и технике, Минск, 1970; Прилепин М. Т., Голубев А. Н., Оптические квантовые генераторы в геодезических измерениях, М., 1972.
Ю. В. Попов.
669
0>
Достарыңызбен бөлісу: |