Своды правил по проектированию и строительству проектирование тепловых пунктов



бет12/13
Дата27.02.2016
өлшемі2.16 Mb.
#28668
1   ...   5   6   7   8   9   10   11   12   13


ПРИЛОЖЕНИЕ 14
ПЕРЕЧЕНЬ АЛЬБОМОВ ОТРАСЛЕВОЙ УТПД ТЭП ТХТ-05 И ТЭП

ТХТ-05-П ДЛЯ ИСПОЛЬЗОВАНИЯ ПРИ ПРОЕКТИРОВАНИИ

ТЕПЛОВОЙ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ, АРМАТУРЫ И ОБОРУДОВАНИЯ В ТЕПЛОВЫХ ПУНКТАХ


Шифр работы

Название

Альбом

Содержание материалов в альбомах

ТЭП ТХТ-05

Типовые проектные решения по применению теплоизоля­ционных

№ 1

ТЭП ТХГ-05-Т

ТЭП ТХТ-05-0


Трубопроводы и оборудование




конструкций для трубопроводов и оборудова­ния тепловых электростанций


№2

ТЭП ТУТ-05-А

ТЭП ТХТ-05-Ф


Арматура и фланцевые соедине­ния




Часть 1

Объекты, расположенные внутри помещений



№3

(с изменениями) ТЭП ТХТ-05-МТ

ТЭП ТХТ-05-МО


Масса теплоизоляционных кон­струкций для трубопроводов и оборудования

ТЭП ТХТ-ОП

-ІІ


То же

Часть ІІ

Объекты, расположенные на открытом воздухе


№ 5

ТЭП ТХТ-05-П-ОП ТЭП ТХТ-05-П-ОК



Разгружающие устройства для трубопроводов, расположенных внутри помещений и на откры­том воздухе (опорные полки и опорное кольцо)

Примечания

1. Типовые проектные решения ТХТ-05 и ТХТ-05-П разработаны институтом Теплоэлектропроект, СПКБ ВПСМО Союзэнергозащита и ВНИПИтеплопроект и согласованы ВССМО Союзэнергозащиты, Утверждены ВГНИПИИ Тепло-электропроект, введены в действие ГПИО Энергопроект, часть І с 1.01.90 г. (протокол № 45), часть II — с 1 01.91г. (протокол №66) и утверждены Минэнерго СССР.

2. Отраслевая УТПД предназначена для применения при проектировании и монтаже тепловой изоляции наруж­ной поверхности трубопроводов диаметром от 10 до 1420 мм, арматуры и фланцевых соединений плоских и криво­линейных поверхностей оборудования ТЭС с температурой теплоносителя от плюс 50 до плюс 60 °С

3. При разработке УТПД толщина основного слоя тепловой изоляции определялась по нормам линейной плот­ности теплового потока, приведенных в СНиП 2.04.14-88 .

4. При разработке УТПД использованы материалы ВНИПИтеплопроект:

типовые конструкции изделия и узлы зданий и сооружений Серия 7.903. 9-2 «Тепловая изоляция трубопрово­дов с положительными температурами»:

вып. 1 Тепловая изоляция трубопроводов. Рабочие чертежи вып. 2. Тепло­вая изоляция арматуры и фланцевых соединений. Рабочие чертежи Серия 3.903-11 «Тепловая изоляция криволи­нейных и фасонных участков трубопроводов и узлов оборудования. Рабочие чертежи»

5. Калькодержателями УТПД являются институты Теплоэлектропроект и

СПКБ ВПСМО Союзэнергозащита.



ПРИЛОЖЕНИЕ 15
ВЫБОР СПОСОБА ОБРАБОТКИ ВОДЫ ДЛЯ ЦЕНТРАЛИЗОВАННОГО

ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ В ЗАКРЫТЫХ СИСТЕМАХ

ТЕПЛОСНАБЖЕНИЯ


Показатели качества исходной питьевой воды из хозяй­ственного водопровода (средние за год)

Способы противокоррозионной и противонакипной обра­ботки воды в зависимости от вида труб

Индекс насыщения карбонатом кальция J

при 60 °С



Суммарная концен­трация хлоридов и сульфатов мг/л

Перманга-

натная окисляе-



мость,

мг О/л


Стальные трубы без покрытия со­вместно с оцинко­ванными трубами

Оцинкованные трубы

Стальные трубы с внутренними эмалевыми и другими не­металлическими пок­рытиями или термо­стойкие пластмассо­вые трубы

1

2

3

4

5

6

J < -1,5

 50

0—6

ВД

ВД



J < -1,5

> 50

0—6

ВД+С

ВД+С



-1,5  Ј < -1,5

 50

0—6

С

с



-0,5  Ј  0

 50

0—6

С





0 < Ј  0,5

 50

> 3

С





0 < Ј  0,5

 50

 3

С+ М

М

М

Ј > 0,5

 50

0—6

М

М

М

-1,5  Ј  0

51 —75

0—6

С

C



-1,5  Ј  0

76 —150

0—6

ВД

C



-1,5  Ј  0

> 150

0—6

ВД+С

ВД



0 < Ј  0,5

51 — 200

> 3

С

C



0 < Ј  0,5

51 — 200

 3

С + М

C + М

М

0 < Ј  0,5

> 200

> 3

ВД

ВД



0 < Ј  0,5

> 200

 3

ВД+ М

ВД+ М

М

Ј > 0,5

51 — 200

0—6

C+ М

C + М

М

Ј > 0,5

201 — 350

0—6

ВД+ М

С + М

М

Ј > 0,5

> 350

0—6

ВД+ М

ВД + М

М

Примечания

1. В графах 4 — 6 приняты следующие обозначения способов обработки

воды:

противокоррозионный: ВД—вакуумная деаэрация, С—силикатный;



противонакипный: М — магнитный.

Знак «—« обозначает что обработка воды не требуется.

2. Значение индекса насыщения карбонатом кальция J определяется в соответствии со СНиП 2.04.02-84*, а средние за год концентрации хлоридов сульфатов и других растворенных в воде веществ — по ГОСТ 2761. При подсчете индекса насыщения следует вводить поправку на температуру, при которой определяется водородный показатель рН.

3. Суммарную концентрацию хлоридов и сульфатов следует определять по выражению [Сl -] + [SO2-4]

4. Содержание хлоридов [Сl -] в исходной воде согласно ГОСТ 2874 не

должно превышать 350 мг/л а [SO2-4] — 500мг/л.

5. Использование для горячего водоснабжения исходной воды с окисляемостью более 5 мг О/л, определенной методом окисления органических веществ перманганатом калия в кислотной среде как правило, не допускается.

При допущении органами Минздрава цветности исходной воды до 35° окисляемость воды может быть допущена более 6 мг О/л

6. При наличии в тепловом пункте пара вместо вакуумной деаэрации следует предусматривать деаэрацию при атмосферном давлении с обязательной установкой охладителей деаэрированной воды.

7. Если в исходной воде концентрация свободной углекислоты [СО2]

превыщавт 10 мг/л, то следует после вакуумной деаэрации производить подщелачиваиие.

8. Магнитная обработка применяется при общей жесткости исходной воды не более 10 мг-экв/л и карбонатной жесткости (щелочности) более 4 мг-экв/л. Напряженность магнитного поля в рабочем зазоре магнитного аппарата не должна превышать 159 103 А/м.

9. При содержании в воде железа [Fе2+;3+] более 0,3 мг/л следует предусмат-

ривать обезжелезивание воды независимо от наличия других способов обработки воды.



  1. Силикатную обработку воды и подщелачивание следует предусматривать путем добавления в исходную воду раствора жидкого натриевого стекла по ГОСТ 13078.

  2. При среднечасовом расходе воды на горячее водоснабжение менее 50 т/ч деаэрацию воды предусматривать не рекомендуется.


ПРИЛОЖЕНИЕ 16
ХАРАКТЕРИСТИКИ ФИЛЬТРУЮЩЕГО СЛОЯ И ТЕХНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ФИЛЬТРОВ


Наименование

Единица измерения

Показатели

Крупность зерен

мм

0,5 -1,1

Насыпная масса 1 м3 сухого материала

т

0,6—0,7

Насыпная масса 1 м3 влажного материала

«

0,55

Высота слоя

М

1,0—1,2

Длительность взрыхления

мин

15

Интенсивность взрыхления

л/(с м2)

4

Оптимальная скорость фильтрования

м/ч

20

Потеря давления в свежем фильтрующем слое

МПа

0,03 - 0,05

Потеря давления в загрязненном слое перед промывкой

«

0,1


ПРИЛОЖЕНИЕ 17
ДОЗА ВВОДИМОГО ЖИДКОГО НАТРИЕВОГО СТЕКЛА ДЛЯ

СИЛИКАТНОЙ ОБРАБОТКИ ВОДЫ


Показатели качества исходной водопроводной воды

(средние за год)



Доза

Индекс насыщения

Концентрация, мг/л

вводимого жидкого

карбонатом кальция J при

60 °С


соединений кремния

SIO2-3



растворенного кисло­рода 02

хлоридов и сульфатов (суммарно)

[Cl-]+[SO2-4]



натриевого стекла в пересчете на SiO2-3, мг/л

-0,5  Ј  0

До 35

Любая

 50

15

-1,5  Ј  0,5

« 15

«

 50

35

J > 0

« 25

«

51 —100

25

J > 0

« 15

«

101 — 200

35

________

При концентрации в исходной воде соединений кремния <15 мг/л (в перес-

чете на SiO2-3) доза вводимого жидкого натриевого стекла должна быть увеличена до ПДК, указанной в п. 5.20 настоящего свода правил.




ПРИЛОЖЕНИЕ 18
МЕТОДИКА РАСЧЕТА ГРАФИКОВ РЕГУЛИРОВАНИЯ ПОДАЧИ

ТЕПЛОТЫ НА ОТОПЛЕНИЕ У ПОТРЕБИТЕЛЕЙ
А. РАСЧЕТ ГРАФИКОВ ПОДАЧИ ТЕПЛОТЫ В СИСТЕМЫ ОТОПЛЕНИЯ В ЗАВИСИМОСТИ ОТ ПОГОДНЫХ УСЛОВИЙ
Для промышленных и общественных зданий, при расчете теплопотерь, которых не учитывают­ся бытовые тепловыделения, изменение подачи теплоты на отопление определяется по форму­ле (рис. 1, линия 1)

(1)
__

где Q0— относительный тепловой поток на ото­пление;

Q0 тепловой поток на отопление при те­кущей температуре наружного воздуха tн, Вт;

Q0max — расчетный тепловой поток на отопле­ние при расчетной температуре наруж­ного воздуха для проектирования ото­пления t0, Вт;

ti — расчетная температура внутреннего воздуха в отапливаемых зданиях.



Рис. 1. Графики относительного изменения теплового потока на отопление Q0, в зависимости от наружной температуры t0 для разного типа потребителей и способов авторегулирования

1 для промышленых и общественных зданий; 2 — для жилых зданий при регулировании без коррекции по отклоне­нию внутренней температуры от заданной; 3 — для жилых зданий при регулировании с коррекцией по ti.

Для жилых зданий при расчете изменения теплового потока на отопление в соответствии со СНиП 2.04.05-91 учитываются бытовые тепловыделения в квартирах, которые в отличие от теплопотерь через ограждения не зависят от величины tн . Поэтому с ее повышением доля бытовых тепловыделений в тепловом балансе жилого здания возрастает, за счет чего можно сократить подачу теплоты на отопление по срав­нению с определением его по формуле (1). Тог­да относительный тепловой поток на отопление жилых зданий, ориентируясь на квартиры с уг­ловыми комнатами верхнего этажа, где доля бытовых тепловыделений от теплопотерь самая низкая, определяется по формуле

(2)

где tiОПТ—оптимальная температура воздуха в отапливаемых помещениях, принима­емая с учетом принятого способа ре­гулирования;

0,14—доля бытовых тепловыделений в квартирах с угловой комнатой от теп­лопотерь для условий t0 = —25 °С. При регулировании систем отопления под­держанием графика подачи теплоты в зависи­мости от tн без коррекции по температуре внут­реннего воздуха, когда скорость ветра при рас­чете теппопотерь принимается равной расчет­ной, что соответствует примерно постоянному объему инфильтрующегося наружного воздуха в течение всего отопительного периода, tiопт при­нимается равной 20,5 °С при tн, соответствую­щей параметрам А. постепенно снижаясь до 19 °С с понижением tн до tн=t0, (рис. 1, линия 2).

При регулировании систем отопления с ав­томатической коррекцией графика подачи теп­лоты при отклонении внутренней температуры от заданной, когда скорость ветра при расчете теплопотерь принимается равной нулю, что со­ответствует сокращению объемов инфильтрую­щегося наружного воздуха, но не менее сани­тарной нормы притока, tiопт принимается равной 21,5 °С. График изменения относительного теп­лового потока на отопление будет представлять собой прямую пинию, пересекающую ось аб­сцисс в той же точке, что и при регулировании без коррекции по ti, а при tн = t0 относительный тепловой поток будет равным 0,96 Q0max (рис. 1, линия 3).


Б. РАСЧЕТ ГРАФИКОВ ТЕМПЕРАТУР ТЕПЛОНОСИТЕЛЯ У ПОТРЕБИТЕЛЯ ПОДДЕРЖИВАЕМЫХ ПРИ АВТОМАТИЗАЦИИ

СИСТЕМ ОТОПЛЕНИЯ
При автоматизации систем отопления задан­ный график подачи теплоты обеспечивается пу­тем поддержания регулятором соответствующего графика температур теплоносителя. Могут применяться следующие способы поддержания графика температур теплоносителя, циркулирующего в системе отопления:

1 ) поддержание графика температур тепло­носителя в подающем трубопроводе — 01;

2) поддержание графика температур тепло­носителя в обратном трубопроводе — 2;

3) поддержание графика разности темпера­тур теплоносителя в обоих трубопроводах =01 -2.

Первый способ, наиболее распространенный за рубежом, приводит к завышению подачи теп­лоты в теплый период отопительного сезона при­мерно на 4 % годового теплопотребления на ото­пление вследствие необходимости спрямления криволинейного графика температур воды в по­дающем трубопроводе.

Второй способ рекомендуется применять при автоматизации систем, в которых возможно из­менение расхода циркулирующего теплоносите­ля (например, при подключении системы отопле­ния к тепловым сетям через элеватор с регули­руемым сечением сопла, с корректирующим на­сосом, установленным на перемычке между по­дающим и обратным трубопроводами). Контроль температуры в обратном трубопроводе гаран­тирует нормальный прогрев последних по ходу воды в стояке отопительных приборов.

Третий способ наиболее эффективен, так как при нем повышается точность регулирования, из-за того, что график разности температур — ли­нейный, в отличие от криволинейных графиков температур воды в подающем и обратном тру­бопроводах систем отопления. Но он может при­меняться только в системах отопления, в кото­рых поддерживается постоянный расход цирку­лирующего теплоносителя (например, при неза­висимом присоединении через водоподогреватель или с корректирующими насосами, установ­ленными на подающем или обратном трубопро­водах системы отопления). При известном рас­ходе воды, циркулирующей в системе, этот спо­соб регулирования является наиболее точным, так как еще устраняет ошибки в подаче теплоты при наличии запаса в поверхности нагрева ото­пительных приборов (при других способах регу­лирования поддержание расчетного графика приведет к перерасходу теплоты и из-за незна­ния фактического значения показателя степени т в формуле коэффициента теплопередачи ото­пительного прибора).

На рис. 2 и 3 представлены графики измене­ния относительной температуры воды в подающем и обратном трубо­проводах систем отопления с постоянной цирку­ляцией воды (температурного критерия системы отопления)_ в зависимости от относительного теп­лового потока на отопление Q0, определенного по разделу А настоящего приложения, и с учетом возможных значений показателя степени m в фор­муле коэффициента теплопередачи отопительного прибора (здесь b далее с индексом «т» — зна­чения температур при текущей температуре на­ружного воздуха).





Рис. 2. Графики изменения температурного критерия системы отопления по температуре воды в подающем трубопроводе для различных значений показателя степени m и при постоянной циркуляции теплоносителя в системе
Эти рисунки иллюстрируют значительное влияние на степень криволинейности графиков температур воды фактического значения коэф­фициента m, который зависит от типа отопитель­ных приборов и способа прокладки стояка. Так. например, в системах отопления с замоноличенными стояками и конвекторами «Прогресс» следует принимать m= 0,15, а в системах отопле­ния с конвекторами «Комфорт» и открыто про­ложенными стояками m= 0,32. В системах с чу­гунными радиаторами m = 0,25.

Используя эти графики, находят искомую температуру воды в подающем или обратном трубопроводе при различных температурах на­ружного воздуха: для требуемой tн находят по формулам (1) и (2) или из графика рис.1 отно­сительный расход теплоты на отопление Q0, а



Рис. 3. Графики изменения температурного критерия системы отопления по температуре воды в обратном трубопроводе при постоянной циркуляции воды в системе


по нему — из графиков рис. 2 или 3 относитель­ную температуру воды. Затем по нижеперечис­ленным формулам — искомую температуру воды:

(3)

(4)

Значения ti и tiопт принимаются теми же, что и при определении Q0.

На рис. 4 приведены для однотрубных сис­тем отопления требуемые графики изменения относительной температуры воды в подающем (T01-tiопт)/(01 -ti) обратном (T2-tiопт)/(2 -ti) трубопроводах и их разности (T01-T2)/(01 -2), обозначаемые далее критерием , и определен­ные исходя из обеспечения одинакового изме­нения теплоотдачи первых и последних по ходу




Достарыңызбен бөлісу:
1   ...   5   6   7   8   9   10   11   12   13




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет