Текст взят с психологического сайта



бет43/70
Дата30.05.2022
өлшемі4.9 Mb.
#458792
1   ...   39   40   41   42   43   44   45   46   ...   70
KARL H

X — Y, В —то же самое через несколько дней (Hamburger, 1961).
них изменений. Нервные процессы, лежащие в основе этого самоадаптирующегося механизма, были уже детально рассмотрены, и Брунер (1957) в работе о «перцептивной готовности» изложил свои взгляды на значение для психологии экспериментально подтвержденных процессов ожидания. В данной работе я буду говорить об этих результатах, пользуясь терминами «готовность ткани», «компетентные участки мозга» в том смысле, в каком их употребляют эмбриологи при описании развития организма.
Биологическая концепция, согласно которой ткань должна быть «компетентной», для того чтобы дифференцироваться, является результатом ряда работ, авторы которых пытались наглядно показать, как возникает и контролируется процесс дифференциации ткани, то есть как начинается ее развитие. Толчком к развитию служит, в сущности, химическое взаимодействие между «компетентной» тканью и организующими воздействиями среды, которые направляют развитие этой ткани. Классическим примером является один из ранних экспериментов, в котором
286
развитие хрусталика определялось глазным пузырьком. Контакт между этим пузырьком и внешним слоем эпидермы стимулирует пузырек к образованию хрусталика на месте контакта Если глазной пузырек удален, эпидерма не способна превратиться в хрусталик (рис. XIV-4).
Этот эксперимент поставил целый ряд проблем, из которых родилось новое направление исследований в экспериментальной эмбриологии, имевшее поразительное сходство с направлением исследований в экспериментальной психологии и этологии. Сначала предполагалось, что индуктор действует только как пусковой механизм (триггер); так, в классическом примере считалось, что эпителий головного конца уже «предрасположен» к образованию хрусталика и требуется только сигнал к старту Эта концепция индуктора была опровергнута двумя видами данных. Во-первых, было доказано методом трансплантации, что зачаток глаза превращается в хрусталик не обязательно в коже, взятой из головного конца эмбриона, но, например, и из эпителия туловища. Во-вторых, в других экспериментах по трансплантации было показано, что та область головного конца, в которой обычно формируется хрусталик, является полипотенциалъной и, следовательно, вовсе не предназначена для формирования только одного хрусталика. Например, если участок головной эпидермы, иэ которой обычно формируется хрусталик, соединяется с индуктором слухового органа, то иэ этого участка разовьется ухо; если он соединяется с обонятельным индуктором, то образуется орган обоняния (рис. XIV-5).
Кроме этих фактов, существуют другие, которые показывают, что реагирующая ткань должна быть «готова» или «компетентна», то есть она должна находиться в соответствующем состоянии реактивности, чтобы индукция стала эффективной. Например, ткань, процесс превращения которой в различные специализированные структуры уже «запущен», совершенно не отвечает на индукцию. Далее, было обнаружено, что индукторы действуют независимо от принадлежности животного к тому или другому виду Один и тот же индуктор может быть эффективным по отношению к ткани, принадлежащей животным различных видов, родов и даже отрядов Следовательно, можно предположить, что в основе действия индукторов лежат химические свойства, общие для многих организмов (мы будем подробнее говорить об этом дальше). По-видимому, химические агенты определяют общий характер воздействия индуцируемой структуры, тогда как наследственные механизмы клеток этой структуры определяют ее точную форму. Например, если участок кожи, взятый с боковой поверхности туловища эмбриона лягушки, трансплантируется на голову саламандры, чтобы сформировать соответствующие структуры из ткани саламандры, то у эмбриона саламандры будет
287

Рис. XIV-5. A — после имплантации кусочка почки мыши в гаструлу тритона, мозг, расположенный рядом с навальными placodes, глазными и ушными пузырьками, уже начал формироваться; Б — кусочек печени тритона, имплантированный в оболочку эктодермы гаструлы и обработанный раствором яда, дифференцируется на мозговой пузырек и несколько назальных placodes (Holtfreter and Chuang, см. Young, 1957).

Ответы лягушки при раздражении участка кожи, пересаженного со спины на живот
Рис. XIV-6. Результаты перемещения лоскутов кожи молодой лягушки. Подобные пересадки способствуют развитию врожденных механизмов пигментации лягушки, что происходит после метаморфозы, как это видно на рис. А и Б, где изображена взрослая лягушка сверху и снизу. Вследствие перемещения лоскута кожи со спины на живот прерванные волокна дорсальных корешков спи-пальных нервов регенерируют в коже живота, и наоборот. При раздражении пересаженного участка кожи возникают противоположные по характеру поведенческие реакции (потирание спины вместо живота, и наоборот). Это значит, что центральная нервная система благодаря развитию сенсорных аксонов в пересаженном участке кожи получает знания скорее о локальном участке кожи, чем об общей топографии поверхности тела и топологии центральной нервной системы (Sperry, см. Eddc, 1967).
развиваться голова саламандры, но с рядом признаков, типичных для лягушки (рис. XIV-6 и XIV-7).
В результате большого числа химических экспериментов постепенно утвердилось мнение, что рибонуклеиновая кислота (РНК) является наиболее вероятным, а возможно, и единственным веществом, которое ответственно за эффект индукции (см. Niu, 1959), хотя и рибонуклеопротеины, и стероиды не могут быть полностью исключены из этого процесса. В большинстве случаев рибонуклеаза разрушает эффект индукции, хотя остается
289

Рис. XIV-7. Эксперимент по изучению моторики, дополняющий опыт, показанный на рис. XIV-6. Пересаженные конечности действуют (во время плавания) так, как если бы они были на своем первоначальном месте. Если правые лапы пересаживаются на место левых, они продолжают работать как правые конечности, несмотря на новую иннервацию. Возникающее в результате этого поведение может не соответствовать требуемому, как это видно на рисунке, где животное пытается плавать, но совершает при этом движения, отдаляющие, а не приближающие его к пище И в этом случае приобретенная компетентность определяется периферической тканью. Эти результаты трудно объяснить с точки зрения обычных представлений о нервных связях. Я объясняю эти факты (Pribram, 1961, 1965) тем, что пространственно-временные структуры нервных импульсов становятся теми кодами, которые опознаются периферической тканью. Подобные пространственно-временные структуры начинают декодироваться в центральной нервной"т:истеме по мере ее развития независимо от путей, по которым они передаются Эти структуры импульсов специфичны по отношению к периферическим структурам, так как каждая периферическая иннервация характеризуется специфическим размером волокон, которые определяют скорость проведения нервного импульса (Quilliam, 1956; Thomas, 1956; см Weiss, 1950, Hamburger, 1961)
нерешенным вопрос, оказывает ли рибонуклеаза какие-либо иные воздействия на индуцируемую ткань, в которой нарушается процесс дифференциации. Однако более прямые доказательства роли РНК в процессе индукции были получены в опытах с демонстрацией эффекта индукции РНК, выделенной из различных органов. Было показано и то, что выделенная из различных органов РНК способна стимулировать реципиентную ткань к тому, чтобы она превращалась в различные специфические структуры. Эти экспе-
290
рименты свидетельствуют о том, что в организме существует много видов РНК, каждый из которых имеет свои специфические функции.
Итак, сторонники теории ассоциаций считают, что изменения поведения возникают всякий раз, когда события (стимулы) происходят одновременно или если такие одновременно происходящие стимулы (события) возникают благодаря ответам организма. Факты привыкания показывают, что «стимулы» с позиций теории ассоциаций должны рассматриваться как «проксимальные»; воздействие становится стимулом вследствие частичного совпадения «входной» информации с состоянием центров, которое в свою очередь формируется благодаря предшествующим частичным совпадениям центральных состояний и информации, поступающей от внешних воздействий. Таким образом, в любой отрезок времени центральные механизмы должны быть «компетентны», готовы к тому, чтобы обеспечить фон, на котором возникают стимулы. Следовательно, связь стимулов нужно рассматривать не как некую неопределенную, случайную, вероятную «ассоциацию»* а как биологически детерминированный процесс, Который организует взаимоотношения контекста (фона) и воздействия стимула. Если это так, то теория совпадения стимулов и теория ожидания сближаются с точки зрения процессов, происходящих в центральной нервной системе.
Таким образом, простого случайного сочетания, как такового— как фактора научения, — не существует, и эта концепция должна быть заменена биологической концепцией, основанной на принципе «компетентности»; наборы воздействий-стимулов (по существу, врожденных, хотя они и модифицируются в результате опыта) кодируются в центрах, которые приобретают «компетентность» по отношению к последующим наборам воздействий, создаваемых стимулами.
Этот процесс модификации поведения напоминает процесс эмбриогенеза, последний определяется унаследованными, врожденными свойствами, пробуждаемыми к жизни стимулирующей функцией среды, в которой растут клетки, Стимулирующая функция сама по себе специфична, но эта специфичность несколько иная, чем генетический потенциал. Генетическая «компетентность» индивидуально специфична (она специфична для каждого вида, рода, отряда). Наследственные факторы предполагают общность прошлого с будущим, допуская определенные вариации внутри каждого отдельного поколения. Индукторы, напротив, неспецифичны по отношению к индивидам, видам и т. д., поскольку существуют относительно простые химические агенты — РНК, общие для всех живых организмов. Таким образом, индукторы обеспечивают ту присущую всему живому общность, которая открывает возможность модификаций механизмов «компетентности» в отдельных поколениях в соответствии с требованиями момента,
291
СМЕЖНОСТЬ И ПОСЛЕДОВАТЕЛЬНОСТЬ
Второй вопрос, который возникал при бихевиористском подходе к проблеме, был следующим: что способствует научению, когда совершается действие? Можно сформулировать теперь этот вопрос иначе и спросить, происходит ли привыкание только при повторении стимулов или этот принцип применим к более широким проявлениям поведения. Хотя мы еще не можем дать точный ответ на этот вопрос — для этого необходимы новые исследования, — было высказано предположение, что процесс привыкания и угашение поведения имеют общие факторы. Например, Д. Примак (Premack and Collier, 1962), анализируя случаи ненодкреп-ления, отражающиеся на вероятности ответов, счел нужным заявить следующее:
«Существует по крайней мере ряд данных о безусловных ответах, которые не сохраняются полностью при их повторном вызывании. Хотя эта проблема мало изучена, в одном из немногих имеющих отношение к данному вопросу исследований Доджа (1927) сообщается о небольшом, но явно необратимом уменьшении величины и увеличении латентных периодов даже такого безусловного рефлекса, как коленный. Далее, в биологической литературе о привыкании содержатся описания нескольких случаев, когда безусловные ответы уменьшались по мере повторения, ■а их латентные периоды увеличивались... Возникает вопрос... не имеет ли этот факт некоторого несомненного уменьшения безусловных рефлексов более широкое значение для понимания поведения, чем это принято считать» (р. 15).
Только признав, что поведение регулируется механизмом, сходным с тем, который контролирует сенсорные процессы, можно, по-видимому, объяснить и правильно понять подобные факты. Однако остается вопрос: почему же поведенческие реакции не всегда ослабевают при их повторении? Первый приблизительный ответ состоит в том, что при нормальном ходе событий должно происходить «прерывание» процесса привыкания и угашения и что одна из функций подкрепления как раз и заключается в том, чтобы вызывать такое «прерывание». Эксперимент С. Гликмана и С Фельдмана (1961) показывает, что подобное «прерывание» действительно происходит. Этих исследователей интересовало, ■будет ли угасать реакция активации в ЭЭГ, которая возникает при стимуляции структур ствола мозга как компонент ориентировочного рефлекса (или бодрствования), при повторении внешних стимулов. Они обнаружили, что активация в ЭЭГ, вызванная стимуляцией ствола мозга, угасает, если только электроды не введены в ту область, в которой возникает эффект самораздра-■жения (рис. IX-8). Повторное раздражение этих зон, по-видимому, непрерывно возбуждая животное, создавая и изменяя установки, как это показано в гл. X, действует как фактор, прерывающий процесс привыкания.
Подводя итоги проблемам, поставленным сторонниками теории ассоциаций или совпадения стимулов с подкреплением (ассо-
Ш
циаций по смежности), следует сказать, что ни теория «отбора ■стимулов», ни теория «саморегуляции поведения» не могут дать адекватного ответа на вопрос о модификации поведения, вероятно, потому, что эти теории не принимают во внимание важность организации процесса научения во времени. Организмы реагируют •не на любые, одновременно происходящие смежные явления. Их поведение направляется предварительно сформированной «компетентностью» мозга, организующей стимулы и включающей в действие лишь те, которые важны для поведения. Таким образом, •стимулы представляют собой воздействия, детерминированные •нервной системой и «отобранные» на основании центральной «компетентности» организма (или его нервной «установки»), которая в свою очередь детерминирована предшествующим опытом ■и другими центральными процессами. Поведение организма направляется не только стимулами, но и посредством самоадапти-^рующегося фильтрующего механизма, который в определенных •случаях сам индуцирует стимулы (то есть вызывает ориентировочную реакцию). Это происходит в тех случаях, когда результат поведения лишь частично совпадает с центральной «компетентностью», которая и программирует поведение. В этих условиях как раз и имеет место подкрепление и поведение становится ■саморегулируемым.
Интересный эксперимент, проведенный Э. Джоном (John and Morgades, 1969), показал, что организм отвечает должным образом не только в силу того, что воздействия происходят одновременно. Три кошки были обучены нажимать на один рычаг при вспышках света частотой 2 кол/сек, и на другой, когда частота вспышек была равна 8 кол/сек. Регистрировалась электрическая активность в латеральном коленчатом теле — эвене зрительной системы. Было показано, что, когда животное правильно выполняло задание на различение вспышек, возникающие электрические ответы четко различались по форме волн. У четвертого необученного (контрольного) животного подобных различий в форме вызванных ответов не наблюдалось. Когда кошка ошибалась, то есть «огда давался неверный двигательный ответ при каком-либо сигнале, исчезало также и различие в форме электрических колебаний на этот сигнал. Джон пришел к выводу, что за наблюдаемые различия, коррелирующие с правильными ответами, должны быть ответственны определенного рода динамические процессы (с точки зрения концепции, развиваемой в этой книге, по-видимому, нейронные голографические процессы).
«У тренированных в разной степени животных форма вызванных потенциалов, возникающих под каждым электродом в ответ на два различных стимула, отчетливо различается. Эти различия в вызванных ответах наблюдались при регистрации реагирующих ансамблей клеток в пределах •ограниченных областей мозга. Таким образом, клеточные ансамбли, сооб-
293
щающие о наличии дифференцируемых сигналов, широко распространены по обширным областям мозга и постоянно обнаруживают два типа ответов на два различных стимула. Анализ показывает, что информация, содержащаяся в усредненных ответах каждого из этих двух локальных клеточных ансамблей, достаточна для различения двух периферических сигналов. Ансамбль из многочисленных реагирующих клеток обнаруживает поразительную стабильность в ответах, говорящую о существовании неизменного типа разрядов в ответ на каждый отдельный стимул. Напротив, активность одиночной клетки в высшей степени вариативна, проявляясь в виде разнообразных типов ответов при действии тех же самых стимулов. Эти факты говорят о том, что наборы разрядов обширных нейронных ансамблей служат гораздо более надежным источником информации, чем наборы разрядов одиночных клеток.
V обученных животных наблюдалось поразительное сходство в форме волн электрических ответов, регистрируемых в различных мозговых структурах. Анализ степени наклона кривых выявил, что эти сходные ответы широко распространены в головном мозгу, исключая проводящие пути. Динамическая природа этого феномена была проиллюстрирована фактами нарушения сходства при ошибочных ответах или при предъявлении новых стимулов. Эти факты свидетельствуют о том, что сходств» электрической активности в различных областях мозга отражает протекание некоторого эндогенного процесса, происходящего при научении, а не пассивно проявляющегося при действии физического стимула, как такового» (John and Morgades, 1969, p. 205—206).
Такое понимание процесса подкрепления начинают признавать даже бихевиористы. Так, в недавнем обзоре (Perkins, 1968) утверждается, что концепция «привлекательности» объединяет целый ряд ранее разрозненных фактов. Согласно этой теории, «все классические условные рефлексы могут быть описаны как подготовительные ответы, которые повышают характерную привлекательность комплекса стимулов, совпадающих с предъявлением безусловных стимулов». Другие авторы употребляют термин «желательность», «побудительная ценность» или «побуждение»; я пользуюсь в этой книге термином «интерес» как субъективным эквивалентом «привлекательности». Однако общий смысл: этих терминов сводится к тому, что назначением процесса подкрепления является обращение к некоторым предшествующим состояниям, к некой компетентности организма, что в свою очередь приводит к изменению этих состояний.
КОМПЕТЕНТНЫЙ МОЗГ
Что же тогда представляют собою эти состояния компетентности, которые регулируют поведение? Это иерархически организованные механизмы (логические модули), включающие серво-процессы, программы или планы, направленные на достижение внешнего эффекта, действия. В гл. XII и XIII была подробно описана нейронная организация механизма компетентности, участвующего в таких действиях, как, например, забивание гвоздя; анатомические структуры с однозначным соответствием между
294
мышцами и корой мозга организуются в образ, который контролирует любые движения, диктуемые внешним или «силовым нолем» для достижения результата. Этот результат кодируется в образе, в состоянии, в микроструктуре медленных потенциалов соединений; все это происходит посредством оценки мгновенных экстраполяции тех изменений в текущем процессе регулирования, которые появляются при сопоставлении соответствующих силовых полей с достигнутым результатом.
Несколько более простой, но аналогичный механизм может быть описан по отношению к другим, более «внутренним» состояниям компетентности. Если у животных структуры ствола мозга (например, гипоталамус) стимулируются дискретными импульсами, возникают отдельные движения, имеющие отношение к еде, питью и т. д. Участки, ответственные за подобные отдельные движения, по-видимому, распределены в случайном порядке по довольно широкой области мозга. Так, например, движение облизывания губ может быть вызвано раздражением участка, расположенного вблизи зоны, ответственной за движение выгибания спины (Robinson, 1964). Широко рассеянными оказываются, по-видимому, даже участки мозга, являющиеся субстратом генетической памяти, связанной с инстинктами. Однако при более сильной стимуляции или раздражении более широких зон эти отдельные движения интегрируются в структуры поведения, которые связаны с той или другой инстинктивной потребностью или аффектом. Таким образом, движения захватывания чего-нибудь ртом, жевание и заглатывание образуют комплекс движений при «де; пригибание и отворачивание в сторону указывает на начало полета; выпускание когтей и оскаливание зубов, выгибание спины, расширение зрачков означает агрессию. Можно предположить, что сильная электрическая стимуляция выявляет те движения, которые в обычных условиях возникают при активации тех же самых структур во время аффективных состояний и влечений.
Это предположение родилось в результате серии изобретательных экспериментов, выполненных Э. Валенстайном, которые, однако, в свою очередь поставили ряд новых вопросов. В этих экспериментах электроды вживлялись в ту область гипоталамуса крыс, электрическое раздражение которой вызывает движения еды, питья и попыток грызть кусок дерева. Когда один из таких поведенческих актов наблюдался особенно явно и стабильно, внешние условия эксперимента менялись таким образом, что первоначальный результат нельзя было получить. Так, в опыте создавались такие условия, когда в течение целой ночи животное через нерегулярные интервалы подвергалось стимуляции. На следующее утро та же стимуляция ранее раздражаемого участка вызывала либо первоначальное, либо измененное поведение, что
295
Рис. XIV-8. А — подкрепление моторных структур. Схема взаимосвязей между «подкрепляющей системой мозга» и системой ответов, основанная, на результатах экспериментов; В — роль сенсорного входа. Схема иллюстрирует взаимоотношение между специфическими потребностями и «непосредственным подкреплением», получаемым через сенсорный вход (Va-
lenstein, 1970).
зависело от внешних условий, и, когда были испробованы все возможные варианты, обнаружилось, что часто доминировали новые выработанные движения. Валенстайн пишет:
«В стандартных тестах на выявление обусловленного стимулами поведения удалялся объект (цель, к которой стремилась крыса), и животное-переводилось на ночной режим, когда ему предъявлялись два других целевых объекта. Если, например, крыса во время стимуляции в первой серии* опытов пила, то в ночное время сосуд с водой удалялся и в клетке сохранялись только кусочки пищи и дерева. Параметры стимула не менялись. Если животное не проявляло нового поведения, оно переводилось во второй, третий и т. д. раз на ночной режим. Однако в большинстве случаев-одного перевода на ночные условия было достаточно, чтобы возникало новое поведение. После появления нового поведения животным предъявлялись два стандартных теста, в которых начальный целевой объект отсутствовал, и третий стандартный тест (контрольный) со всеми тремя целевыми объектами. В тех случаях, когда животное не подвергалось стимуляции, всегда имелись все три целевых объекта, и, следовательно, животные могли насытиться пищей, напиться воды и удовлетворить свою потребность в том, чтобы грызть кусок дерева, еще до начала опыта. Одиннадцать животных прошли полностью через это испытание, что и составило первый эксперимент...
Вторая серия опытов была проведена после применения различного* числа тренировочных стимуляций в условиях отсутствия целевого объекта, к которому прежде стремилось животное.. в большинстве случаев вторично сгимулированное поведение появлялось так же закономерно, как и прежнее. Во время предъявления контрольного теста, когда одновременно присутствовали все три целевых объекта, в большинстве случаев с равной? вероятностью наблюдались два типа поведения. Как правило, один гиш
296

.поведения возникал при действии первых трех-четырех серий стимулов, а затем возникало другое поведение в приблизительно одинаковых по длительности сериях опытов. При предъявлении контрольных тестов животные обнаруживали несколько видов поведения за время предъявления некоторых из 20 стимулов.
Мы хотели выяснить, станет ли доминирующим первый тип поведения, если мы дадим серию контрольных тестов. Хотя в этих опытах наблюдались разнообразные виды поведения, мы пришли к заключению, что как только закреплялся второй вид обусловленного стимулами поведения, печальное поведение, вызванное стимуляцией, переставало быть доминирующим. И, действительно, у ряда животных обнаружилось явное преобладание второго вида поведения во время предъявления контрольных тестов (Valenstein, Cox and Kakolewski, 1969, p. 247—249).
Валенстайн объяснил эти результаты тем, что стимуляция гипоталамуса не вызывает специфических мотивационных состояний типа голода или жажды. Исходя из фактов взаимодействия двух типов явлений — эффекта самораздражения по Олдсу и эффекта вызова с помощью стимуляции определенного вида поведения (еды, питья или попыток грызть дерево), — он приходит к выводу, сходному с тем, который был изложен в гл. X, а именно что электрическая стимуляция, воздействуя на механизмы гомеоста-зиса, создает установку, изменяющую характер ответов.
Обратимся к одному примеру. Мендельсон (1967) описал поведение ■животных при стимуляции латерального гипоталамуса, которое проявлялось одновременно и в виде самораздражения, и в виде питья. Могенсон и Стивенсон (1967) приводят сходные данные. Мендельсон отобрал животных, у которых реакции питья появлялись при более слабой стимуляции, ■чем та, которая необходима для поддержания эффекта самораздражения. На этом низком уровне стимуляции животные не нажимали на рычаг, когда не было воды, однако когда жажда утолялась, они также не нажимали на рычаг для получения воды, если только не стимулировался гипоталамус. Мендельсон сделал следующий вывод: «Таким образом, если у крысы вызвать состояние жажды, она будет нажимать на рычаг, чтобы получить воду, а если крысе давать воду, то она будет нажимать на рычаг, чтобы вызвать жажду». Эти результаты очень важны, однако их интерпретация — предположение, что стимуляция вызывает жажду, — не кажется нам достаточно убедительной. Мы могли бы с уверенностью сказать, что у этих животных можно посредством электрической стимуляции вызвать обусловленное стимулом пищевое поведение, и что то же самое поведение можно затем получить и с помощью пищи. Из работ Кунза и Крюса (1968) известно, что животные, проявляющие в ответ на стимулы пищевое поведение, будут подвергать себя самораздражению на уровне ниже «порога вознаграждения», если они получают пищу. Поэтому более разумно было бы предположить, что подкрепление, возникающее * результате выполнения вызванного поведенческого акта, обусловливает не голод или жажду, а суммируется с подкреплением, возникающим непосредственно в результате самой стимуляции. Из этого следует, что сумма покрепления от выполнения поведенческих реакций и подпорогового подкрепления, вызванного стимуляцией мозга, может оказаться достаточной, ■чтобы поддерживать инструментальное поведение. Действительно, ранее Мендельсон (1966) показал, что сытое животное обнаруживает вызванное -стимулами пищевое поведение скорее при комбинации пищи и стимуляции мозга, чем при одной мозговой стимуляции (Valenstein, Cox and Kakolewski, 1969, p. 267—277).
297
Однако, предполагая, что стимуляция мозга не вызывает состояния жажды, Валенстайн может выбросить вместе с водой и ребенка. У. Роберте (1969) указывает, что сильная электрическая стимуляция может разрушить четко организованное поведение и расширить гипоталамическую зону, при раздражении которой постоянно наблюдаются частные движения, включенные в тот или иной поведенческий акт. Роберте обвиняет Валенстайна в том, что он стоит па позициях Лешли, отрицая специфичность нервных центров. Эта позиция, как он считает, должна быть пересмотрена, потому что, как отметил П. Милнер (Roberts, I960, р. 17—19), она «заставила многих исследователей на несколько десятилетий отказаться от изучения проблемы функциональной специфичности и локализации функций». Вопреки этому Роберте считает, что компетентная ткань состоит из «перекрывающих друг друга, но специфических по своим функциям механизмов».
Этот аргумент не нов, однако смысл его изменился. Почти сто лет поборники теории локализации функций спорили со сторонниками теории пластичности мозга; полем боя были зрительная и моторная кора. Теперь поле сражения переместилось в гипоталамус.
Как при анализе восприятия и действия, решение вопроса и в этом случае надо искать в микроструктурах медленных потенциалов соединений. Роберте признает существование данной проблемы, но не может дать ей неврологического объяснения.
«Большая частота ответов, имеющих незавершенный характер... подтверждает мнение о том, что [локальная] стимуляция гипоталамуса обычно возбуждает только небольшую часть нейронов данного механизма. Эти факты говорят также о том, что существует очень мало постоянных взаимосвязей между нейронами, контролирующими различные элементы этих ответов, внутри гипоталамуса или в его эфферентных путях. Таким образом, тенденция этих элементов возникать одновременно при нормальном поведении должна быть результатом несколько иного типа интеграции, например, результатом общих гуморальных влияний, как это наблюдается в случае терморегуляторного поведения (Roberts, et al., 1969), или результатом общего нейронного входа от других центральных структур или периферических рецепторов» (Roberts, 1969).
Общий вход, интеграция создается, конечно, в экспериментах Валенстайна благодаря комбинации электрической стимуляции моэга и подкрепления от окружающих условий, что — согласно концепции, изложенной в этой книге, — формирует окончательную структуру поведевия, которая опирается на динамическую систему медленных потенциалов соединений. Эти микроструктуры медленных потенциалов, эти кратковременные установочные состояния и регулируют поведение. Конечно, эти микроструктуры не обязательно локализованы в стволе мозга. Активирующий латеральный гипоталамическии механизм является
298
основным перекрестком путей, проводящих сигналы от многих областей мозга, включая и кору больших полушарий.
Результаты, полученные Валенстайном, как и повседневные наблюдения, говорящие о том, что заученные навыки сохраняются надолго, требуют, однако, более стабильной основы, чем эти кратковременные состояния, создаваемые микроструктурами соединений. Субстратом окончательного образа результата не могут быть чисто электрические процессы. Должны возникать какие-то длительные модификации, химические или нервные.
Таким образом, мы вернулись к вопросам, рассмотренным во II главе. В следующей главе мы еще раз обсудим эти вопросы и проанализируем модификацию поведения с точки зрения мотивации процессов памяти, то есть проблему подкрепления.
РЕЗЮМЕ
В моторных механизмах мозга кодируются условия внешней среды, которые организуют поведение. Для решения проблемы, как это происходит, одинаково важны и работа нейрофизиологов, и усилия бихевиористов, направленные на изучение модификации поведения в результате научения, и в частности на анализ тех процессов, с помощью которых внешние условия регулируют изменение поведения и становятся взаимно релевантными. В соответствии с принципами работы нервной системы механизмы, контролирующие поведение, даже те, которые имеют отношение к восприятиям и чувствам, представляют собой сложные системы, связанные с широким классом функций. В этих широких системах формируются компетентные структуры, особые функции которых зависят от опыта организма в данной внешней среде. Внешнее поведение организма определяется сложно организованным механизмом, сходным с тем, который продуцирует образы желаемых результатов. Простая последовательность воздействий не влияет на результат поведения; условия должны воздействовать на внутреннюю компетентность организма или регулировать поведение на основе предшествующего опыта данного организма и ожидания нужных результатов.
Г л а в а XV
ПОДКРЕПЛЕНИЕ И ЗАВЕРШЕНИЕ ДЕЙСТВИЯ


Достарыңызбен бөлісу:
1   ...   39   40   41   42   43   44   45   46   ...   70




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет