Большая часть водяного пара поступает в атмосферу с поверхности морей и океанов. Особенно это относится к влажным, тропическим районам Земли. В тропиках испарение превышает количество осадков. В высоких широтах имеет место обратное соотношение. В целом же по всему земному шару количество осадков приблизительно равно испарению.
Испарение регулируется некоторыми физическими свойствами местности, в частности температурой поверхности воды и крупных водоемов, преобладающими здесь скоростями ветра. Когда над поверхностью воды дует ветер, то он относит в сторону увлажнившийся воздух и заменяет его свежим, более сухим (т.е. к молекулярной диффузии добавляется адвекция и турбулентная диффузия). Чем сильнее ветер, тем быстрее сменяется воздух и тем интенсивнее испарение.
Испарение можно характеризовать скоростью протекания процесса. Скорость испарения (V) выражается в миллиметрах слоя воды, испарившейся за единицу времени с единицы поверхности. Она зависит от дефицита насыщения, атмосферного давления и скорости ветра.
Скорость испарения, гласит закон Дальтона, пропорционально разности между давлением насыщающего пара при температуре испаряющей поверхности и фактическим давлением водяного пара:
V = А(ЕS – е),
где ЕS – упругость водяного пара при температуре испарителя; е – фактическая упругость водяного пара в воздухе над испаряющей поверхностью; А – коэффициент пропорциональности.
Чем больше разность (ЕS – е), тем быстрее идет испарение. Если температура испарителя больше температуры воздуха, то испарение продолжается, когда воздух уже насыщен (т.е. когда е=Е, а Е<ЕS).
Согласно формуле Августа, скорость испарения обратно пропорциональна давлению атмосферы р:
.
Но этот фактор хорошо выражен лишь в горах, где имеет место большой перепад высот, а значит и атмосферного давления.
Скорость испарения также зависит от скорости ветра (v). Таким образом, суммарная формула для расчета V:
.
Испарение в реальных условиях измерить трудно. Для измерения испарения применяют испарители различных конструкций или испарительные бассейны (с площадью поперечного сечения 20 м2 или 100 м2 и глубиной 2 м). Но значения, полученные по испарителям, нельзя приравнивать к испарению с реальной физической поверхности. Поэтому прибегают к расчетным методам: испарение с поверхности суши рассчитывается исходя из данных по осадкам, стоку и влагосодержанию почвы, которые легче получить путем измерений. Испарение с поверхности моря можно вычислить по формулам, близким к суммарному уравнению.
Различают фактическое испарение и испаряемость.
Испаряемость – потенциально возможное испарение в данной местности при существующих в ней атмосферных условиях.
При этом подразумевают либо испарение с поверхности воды в испарителе; испарение с открытой водной поверхности крупного водоема (естественного пресноводного); испарение с поверхности избыточно увлажненной почвы. Испаряемость выражается в миллиметрах слоя испарившейся воды за единицу времени.
В полярных областях испаряемость мала: около 80 мм/год. Это связано с тем, что здесь наблюдаются низкие температуры испаряющей поверхности, а давление насыщенного водяного пара ЕS и фактическое давление водяного пара малы и близки между собой, поэтому и разность (ЕS – е) невелика.
В умеренных широтах испаряемость изменяется в широких пределах и имеет тенденцию к росту при продвижении с северо-запада на юго-восток материка, что объясняется ростом в этом же направлении дефицита насыщения. Наименьшие значения в этом поясе Евразии наблюдаются на северо-западе материка: 400–450 мм, наибольшие (до 1300–1800 мм) в Центральной Азии.
В тропиках испаряемость мала на побережьях и резко увеличивается во внутриматериковых частях до 2500–3000 мм.
У экватора испаряемость относительно низка: не превышает 100 мм по причине небольшой величины дефицита насыщения.
Фактическое испарение на океанах совпадает с испаряемостью. На суше оно существенно меньше, главным образом, зависит от режима увлажнения. Разность между испаряемостью и осадками можно использовать для расчета дефицита увлажнения воздуха.
4. Характеристики влажности воздуха
Для количественного выражения содержания водяного пара в атмосфере используют различные характеристики влажности воздуха.
Парциальное давление водяного пара (е) – основная и наиболее употребительная характеристика влажности. Эта та часть общего давления, которая обусловлена данным газом. Парциальное давление пропорционально его плотности и абсолютной температуре. Выражается в гектопаскалях.
Относительная влажность (f) – отношение фактического давления пара к давлению насыщенного пара при данной температуре, выраженное в процентах:
Абсолютная влажность (а) – масса водяного пара в граммах в 1 м3 воздуха, т.е. плотность водяного пара, выраженная в граммах на кубический метр.
Для абсолютной влажности а справедливо выражение:
, если е в гПа, и , если е в мм. рт. ст.,
где е – в гектопаскалях (гПа); Т – в Кельвинах (К). Это выражение получим, если плотность водяного пара ρw= (0,622e)/(RdT) выразим в граммах на 1 м3, а е – в гПа.
Итак, абсолютную влажность легко рассчитать, зная давление пара и температуру воздуха. При температуре 0°С (273 К) и для состояния насыщения а = 4,9 г/м3.
Абсолютная влажность меняется при адиабатических процессах. При расширении воздуха объем его увеличивается, и то же количество водяного пара распределяется на большой объем; следовательно, абсолютная влажность уменьшается. При сжатии воздуха абсолютная влажность растет.
Удельная влажность (массовая доля водяного пара) (q) – отношение массы водяного пара в некотором объеме к общей массе влажного воздуха в том же объеме. Если этот объем равен 1 м3 можно определить удельную влажность q как отношение плотности водяного пара к общей плотности влажного воздуха: q= ρw/ ρ
Удельную влажность можно рассчитать по формуле:
.
Т.к. величина (0,378 е/р) мала по сравнению с единицей, то ее без больших погрешностей можно отбросить, формула примет вид:
Итак, удельную влажность можно вычислить, зная давление водяного пара и давление воздуха.
Удельная влажность – безразмерная величина. Из выражения видно, что ее значения всегда малы, поскольку р во много раз больше е. В соответствии с ГОСТом удельную влажность выражают в промилле (‰). Однако на практике ее часто выражают числом граммов водяного пара в килограмме воздуха:
В отличие от абсолютной влажности удельная влажность не меняется при адиабатическом расширении или сжатии воздуха, так как при адиабатических процессах меняется объем воздуха, но не масса его.
Близка по значению к удельной влажности другая безразмерная характеристика – отношение смеси (S). Отношением смеси называют отношение массы водяного пара к массе сухого воздуха в том же объеме. Так же как и удельную влажность, на практике отношение смеси выражают числом граммов водяного пара на килограмм сухого воздуха:
Температура, при которой содержащийся в воздухе водяной пар достигает насыщения при неизменном общем давлении воздуха, называется точкой росы (τ). Так, если при температуре воздуха ±27°С давление пара в нем равно 23,4 гПа, то такой воздух не является насыщенным. Для того чтобы он стал насыщенным, нужно было бы понизить его температуру до +20°С. Вот эта температура +20°С и является в данном случае точкой росы. Очевидно, что чем меньше разница между фактической температурой и точкой росы, тем ближе воздух к насыщению. При насыщении точка росы равна фактической температуре.
Разность между температурой воздуха Т и точкой росы т называется дефицитом точки росы (Δ):
Δ = Т – τ.
Разность между давлением насыщенного пара Е при данной температуре воздуха и фактическим давлением е пара в воздухе называется дефицитом насыщения (D):
D = Е – е.
Выражается в гектопаскалях.
Достарыңызбен бөлісу: |