Аналитическая философия


Разделы семиотики: прагматика, семантика и синтаксис



бет15/80
Дата15.06.2016
өлшемі5.66 Mb.
#137837
түріРеферат
1   ...   11   12   13   14   15   16   17   18   ...   80

Разделы семиотики: прагматика, семантика и синтаксис. Наблюдая применение языка, мы наблюдаем организм, обычно человеческое существо, производящее звук, признак, жест или нечто подобное в качестве выражения для того, чтобы при его помощи указать на что-то иное, т.е. на объект. Таким образом, мы можем различить три фактора: говорящего, выражение, и то, на что это выражение указывает; это последнее Карнап называет десигнатом выражения. Например, мы говорим, что на немецком языке «Rhein» обозначает Рейн, и что Рейн является десигнатом «Rhein»; точно так же, как десигнатом «красный» («rot») является определенное свойство, а именно, красный цвет, десигнатом «меньше» – отношение, а десигнатом «температура» – функция и т.д. Нам нет необходимости заниматься одновременно говорящими и десигнатами. Важно то, что хотя эти факторы всегда задействованы при использовании языка, мы можем абстрагироваться от них при изучении языка. Соответственно, мы различаем три области исследования языков. Если исследование касается говорящего или, если выражаться в более общих терминах, лица, использующего язык, то исследование относится к области прагматики. Если мы абстрагируемся от лица, использующего язык, и анализируем только выражения и их десигнаты, то мы находимся в области семантики. И, наконец, если абстрагируемся также и от десигнатов и анализируем только отношения между выражениями, то мы находимся в области (логического) синтаксиса.

Исследование, метод, понятие, касающиеся выражений языка, называются формальными, если при их применении ссылка делается не на десигнаты выражений, но только на их форму, т.е на виды знаков, встречающиеся в выражении и на порядок, в котором они встречаются. Следовательно, все, что представлено формальным способом, относится к синтаксису. Нетрудно увидеть, что можно сформулировать правила для построения предложений, так называемые правила построения (rules of formation) строго формальным способом. На первый взгляд можно бы подумать, что синтаксис будет ограничиваться формулировкой и исследованием правил этого вида и, следовательно, будет представлять собой довольно скудную область. Однако в дополнение к правилам построения, правила дедукции также могут быть сформулированы формальным способом и, следовательно, – в рамках синтаксиса. Это можно сделать так, что эти правила приведут к тем же самым результатам, что и семантические правила логической дедукции. Подобным образом можно представить логику в синтаксисе.

Карнап отмечает, что представление определенных понятий или процедур формальным способом и, следовательно, в рамках синтаксиса иногда называется формализацией. Формализация семантических систем представляет собой построение соответствующих синтаксических систем.

Семантика и ее проблемы. В предисловии к «Введению в семантику» Карнап отмечает, что что для анализа науки, помимо чисто «формального» анализа языка, требуется также анализ сигнификативной функции языка, то есть теория значения и интерпретации. Этот раздел философского анализа языка называется логической семантикой. Семантика, по Карнапу, содержит «не только теорию обозначения (designation), т.е. отношения между выражениями и их значением», но также и «теорию истины и теорию логической дедукции». «Семантика, – говорит он, – содержит теорию того, что обычно называется значением выражений и, следовательно, включает в себя исследования, приводящие к созданию словаря, переводящего объектный язык в метаязык. Однако мы увидим, что теории на первый взгляд совершенно иной области также относятся к семантике, например, теория истины и теория логической дедукции. Оказывается, что истина и логическое следствие являются понятиями, основанными на отношении обозначения и, следовательно, семантическими понятиями».

В рамках самой семантики Карнап проводит различие между «описательной» семантикой и «чистой» семантикой. Описательная семантика занимается описанием и анализом семантических свойств исторически данных языков, например, французского, или всех исторически данных языков вообще. Первая будет специальной описательной семантикой; вторая – общей описательной семантикой. Итак, описательная семантика описывает факты; она является эмпирической наукой. С другой стороны, мы можем установить систему семантических правил, безразлично, тесно связанную ли с исторически данным языком или изобретенной; мы называем ее семантической системой. Построение и анализ семантических систем называется чистой семантикой. Правила семантической системы S составляют определение определенных семантических контекстов относительно S, например, «обозначение в S» и «истинно в S». Чистая семантика состоит из определений этого вида и их следствий; поэтому в отличие от описательной семантики чистая семантика является всецело аналитической и не имеет фактического содержания.

Соответственно, синтаксис также разделяется Карнапом на описательный и чистый синтаксис, а эти последние – на специальный и общий синтаксис. Описательный синтаксис представляет собой эмпирическое исследование синтаксических особенностей данных языков. Чистый синтаксис имеет дело с синтаксическими системами. Синтаксическая система (или исчисление) К состоит из правил, которые определяют синтаксические понятия, например, «предложение в К», «доказуемо в К», «выводимо в К» и т.д. Чистый синтаксис содержит предложения метаязыка, которые следуют из этих определений. Как в семантике, так и в синтаксисе отношение между чистой и описательной областями подобно отношению между чистой или математической геометрией, которая является частью математики и в силу этого имеет аналитический характер, и физической геометрией, которая является частью физики и в силу этого имеет эмпирический характер.

Время от времени обсуждается вопрос, зависят ли семантика и синтаксис от прагматики или нет. Ответ, который дает на этот вопрос Карнап, заключается в следующем: в одном смысле семантика и синтаксис зависят от прагматики, в другом – нет. Описательные семантика и синтаксис основаны на прагматике. Предположим, что мы хотим изучить семантические и синтаксические свойства определенного эскимосского языка, который прежде не исследовался. Ясно, что первоначально нет иного пути, кроме наблюдения речевых привычек людей, употребляющих язык. Только после открытия при помощи наблюдения того прагматического факта, что люди имеют привычку использовать слово «igloo» в тех случаях, когда они намереваются указать на дом, мы оказываемся в состоянии выдвинуть семантическое высказывание «”igloo” означает (обозначает) дом» и синтаксическое высказывание «”igloo” есть предикат». Подобным образом все знание в области описательной семантики и описательного синтаксиса основывается на предшествующем знании в прагматике. Лингвистика, в самом широком смысле этого слова, является той отраслью науки, которая включает в себя все эмпирические исследования, касающиеся языков. Она есть описательная, эмпирическая часть семиотики (устных или письменных языков); следовательно, она состоит из прагматики, описательной семантики и описательного синтаксиса. Однако эти три части не находятся на одном уровне; прагматика есть основа всей лингвистики. Это, однако, не означает, что в рамках лингвистики исследователи обязаны ссылаться на лиц, использующих соответствующий язык. Коль скоро семантические и синтаксические особенности языка были установлены при помощи прагматики, мы можем больше не обращать внимания на лиц, употребляющих язык и сосредоточить его на этих семантических и синтаксических особенностях. Так, например, два упомянутые выше высказывания больше уже не содержат явных прагматических ссылок. В этом смысле описательные семантика и синтаксис являются, строго говоря, частями прагматики.

С чистой семантикой и чистым синтаксисом дело обстоит по-иному. Эти области не зависят от прагматики, т.е. от использования языка его носителями. «Здесь мы даем определения некоторых понятий, обычно в форме правил, и изучаем аналитические следствия из этих понятий. При выборе правил мы совершенно свободны. Иногда мы можем руководствоваться в данном выборе рассмотрением данного языка, то есть, прагматическими фактами. Однако это имеет отношение исключительно к мотивации нашего выбора и никак не связано с правильностью результатов нашего анализа правил». Философски релевантные исследования языка, по признанию Карнапа, связаны именно с чистой семантикой и чистым синтаксисом.

Предметная область чистой семантики и чистого синтаксиса оказывается ограниченной и еще в одном отношении по сравнению с семиотикой в целом. Эти две дисциплины исследуют исключительно повествовательные предложения (declarative sentences), оставляя за своими рамками предложения всех прочих видов, т. е. вопросы, императивы и т.д. Следовательно, они касаются только тех языковых систем (семантических систем), которые состоят из повествовательных предложений. Поэтому терминология логической семантики должна, по Карнапу, пониматься в этом ограниченном смысле; «предложение» – как «повествовательное предложение», «язык» – как «язык (система), состоящая из повествовательных предложений», «английский язык» – как «та часть английского языка, которая состоит из повествовательных предложений», «интерпретация предложения исчисления» – как «интерпретация предложения как повествовательного предложения» и т.д.



Семантические категории выражений языка. Выражения языка делятся на классы в зависимости от видов объектов, которые они обозначают. Эти классы принято называть семантическими категориями. Карнап приводит список основных видов знаков, употребляемых в языке, и видов сущностей, обозначенных этими знаками. Знаки включают в себя

  • «индивидные константы» (individual constants),

  • «предикаты 1-ой степени» (predicates of degree I) и

  • «предикаты 2-ой и более высокой степени» (predicates of degree 2 and higher),

которым соответствуют в качестве «обозначенного»

  • «индивиды» (individuals),

  • «свойства» (properties) и

  • «отношения» (relations).

Кроме того, для комбинации знаков, составляющих определенное «предложение» (sentence), имеется соответствующая «пропозиция» (proposition); при этом предложение обозначает пропозицию. Наконец, к основным видам знаков относятся также «функторы» (functors), обозначающие «функции» (functions) (Примеры функторов: «prod», «temp»; «prod (m, n)» обозначает произведение m и n, «temp (x)» обозначает температуру тела x). Отметим, что все «обозначенное» – «индивиды», «свойства», «отношения», «функции» и «пропозиции» – он называет «сущностями» (entity).

Индивидные знаки обозначают индивидов соответствующей области объектов; они принадлежат к нулевому уровню. Их свойства и отношения, а также предикаты, при помощи которых они обозначаются, принадлежат к первому уровню. Атрибут (т.е. свойство или отношение), приписываемое чему-либо на уровне n, и предикат, его обозначающий, принадлежит уровню n + 1. Предикат степени I (называемый также одноместным предикатом) обозначает свойство; предикат степени n (n-местный предикат) обозначает n-адическое отношение, т.е. отношение, которое имеет место между n членов.

Определение имеет форму «. . . = Df - - -»; это означает: «”. . .” должно быть взаимозаменимо с “- - -”». Иногда вместо « = Df » испольхуется «  » для предложений или « = » для других выражений. «. . .» называется дефениендумом, «- - -» – дефиниенсом.

Классификация предложений.

  • Атомарные предложения суть те, которые не содержат ни связок, ни переменных (например, «R(а, b)», «b = с»);

  • молекулярное предложение – это предложение, которое не содержит переменных, но состоит из атомарных предложений (именуемых его компонентами) и связки (например, «Р(а)», «А  В»);

  • общее предложение – это предложение, которое содержит переменные (например, «(х)Р(х)»).

В предложении формы «(х) (...)» или «(х) (...)» или в выражении формы «(х) (... х  ...)», «(х)», «(х)» и «(х)» называются операторами (operator) (общности, существования и ламбда-оператором, соответственно); «...» называется операндой (operand), относящейся к оператору. Переменная, стоящая в определенном месте в выражении, называется связанной (bound), если она стоит на этом месте в операторе или в операнде, оператор которой содержит ту же самую переменную; в противном случае она называется свободной (free). Выражение называется открытым (open), если оно содержит свободную переменную; в противном случае оно называется замкнутым (closed). (Класс предложений называется замкнутым, если все его предложения являются замкнутыми; это понятие надо отличать от понятия класса, замкнутого в известном отношении). Открытое выражение будет именоваться также выразительной функцией (expressional function); и, более того, выразительной функцией степени n, если множество входящих в него в качестве свободных различных переменных равно n. Выразительная функция такая, что она или закрытые выражения, построенные из нее путем замещения, являются предложениями, называется сентенциальной функцией (sententional function).

Карнап указывает далее, что из знаков, обозначающих сущности, мы сперва строим атомарные предложения, а из этих последних при помощи связок, в свою очередь, – молекулярные предложения, генерализации, теории и т.д. Число предложений в подобных семантических системах бесконечно. Так обстоит дело практически со всеми семантическими системами, с которыми нам приходится иметь дело, и в особенности в естественными языками. Связки обычно вводятся при помощи таблиц истинности (truth-tables). Обычные таблицы истинности представляют собой не что иное, как семантические правила истинности в форме диаграмм. Их функция заключается в том, чтобы давать строгие определения логических связок «и», «или» и т.д. Истинность атомарных предложений обусловлена тем, объединяются ли в действительности «сущности» таким же путем, как и знаки в соответствующем предложении, а истинность других, производных предложений зависит исключительно от истинностных значений входящих в них атомарных предложений и характера связи между ними.



Семантическая система. Под семантической системой (или интерпретированной системой) Карнап понимает такого рода систему правил, сформулированную на метаязыке и относящуюся к объектному языку, что правила определяют условия истинности для каждого предложения объектного языка, т. е. достаточные и необходимые условия его истинности. Предложения интерпретируются с помощью правил и тем самым становятся понятными, так как понять предложение, знать, что им утверждается, — то же самое, что и знать, при каких условиях оно было бы истинным. Сформулируем это иначе: правила определяют значение предложений. Истинность и ложность называются истинностными значениями предложений. Знания условий истинности предложения в большинстве случаев недостаточно для знания его истинностного значения, однако оно представляет собой исходную точку для поиска истинностного значения предложения. Например, Пьер говорит: «Mon crayon est noir» (A1). Зная французский язык, мы понимаем предложение A1 лишь формально, переводя его словами: «Мой карандаш черен». Дело в том, что мы можем понимать предложение, не зная в то же самое время его истинностного значения. Наше понимание A1 заключается в данном случае в знании его условия истинности; мы знаем, что A1 истинно тогда и только тогда, когда определенный объект, карандаш Пьера, имеет определенный цвет, а именно черный. Это знание условия истинности A1 дает нам знать, что мы должны делать для того, чтобы определить истинностное значение A1, т.е. для того, чтобы установить, является ли A1 истинным или ложным.

Каким образом можно определить условия истинности для предложений какой-либо системы? Здесь возможны два основных варианта.



  • Если система содержит конечное число предложений, то мы можем дать исчерпывающий список условий истинности – по одному на каждое предложение. Так обстоит дело, например, с обыкновенным телеграфным кодом. Код переводит каждое предложение по отдельности и тем самым интерпретирует его. Такие примитивные семантические системы, содержащие конечное число предложений, Карнап называет кодовыми.

  • Если же система содержит бесконечное число предложений, то условия истинности могут быть заданы только формулированием общих правил. Такие системы Карнап называет языковыми.

В то время как кодовая система перечисляет условия истинности по отдельности для каждого предложения, языковая система дает общие правила для выражений, входящих в предложения, причем таким способом, что условие истинности для каждого предложения определяется правилами для выражений, из которых предложение состоит. Как подчеркивает Карнап, в случае с языковой системой, состоящей из бесконечного числа предложений, возможна только вторая форма задания условий истинности, а именно с помощью общих правил, поскольку мы не можем сформулировать бесконечное число правил для каждого отдельного предложения.

Например, мы строим семантическую систему S1, выбирая для этого семь знаков: три индивидные переменные, А1, А2, А3, два предиката – В1 и В2 и знаки скобок “(“ и “)”. Предложениями системы S1 являются выражения формы В(А). Условия истинности задаются по отдельности для каждого предложения при помощи следующих правил:

1. В11) истинно, если и только если Чикаго большой город.

2. В12) истинно, если и только если Нью-Йорк большой город.

3. В13) истинно, если и только если Кэрмел большой город.

4. В21) истинно, если и только если Чикаго имеет гавань.

5. В22) истинно, если и только если Нью-Йорк имеет гавань.

6. В23) истинно, если и только если Кэрмел имеет гавань.

На основании системы S1 строится система S2, которая представляет собой обобщение первой; построение осуществляется за счет формулировки пяти частных правил обозначения, каждое из которых выделяет десигнат одного из пяти основных знаков, и одного общего правила для условий истинности предложений:

1. А1 обозначает Чикаго.

2. А2 обозначает Нью-Йорк.

3. А3 обозначает Кэрмел.

4. В1 обозначает свойство быть большим городом.

5. В2 обозначает свойство иметь гавань.

6. Предложение Вij) истинно тогда и только тогда, когда десигнат Аj имеет десигнат Вi (т.е. тогда, когда объект, обозначенный Аj, имеет свойство, обозначенное Вi).

Системы S1 и S2 содержат одни и те же предложения, и каждое предложение имеет одно и то же условие истинности (интерпретацию, значение) в обоих системах. Следовательно, эти две системы подобны, и различаются исключительно способом применения правил обозначения и истинности; в S1 это кодовая система, а в S2 – языковая.

Отсюда становится ясно, что семантическая система строится в четыре этапа: сперва дается классификация знаков, затем устанавливаются правила построения (rules of formation), потом – правила обозначения (rules of designation) и, наконец, правила истинности (rules of truth). При помощи правил построения системы S определяется термин «предложение системы S»; при помощи правил обозначения определяется термин «обозначение в S»; при помощи правил истинности определяется термин «истинно в S». Определение термина «истинно в S» является главной целью всей системы S в целом; остальные определения имеют характер предварительных этапов, позволяющих достичь этой главной цели. На основании понятия «истинно в S» можно определить, – относительно системы S, – другие семантические понятия. Например, простейшим из подобного рода семантических понятий является определение ложности: предложение А1 системы S ложно в S = Df A1 не истинно в S. (При этом следует иметь в виду, что правила обозначения не делают фактических утверждений о том, что собой представляют десигнаты определеленных знаков. В чистой семантике отсутствуют фактические утверждения. Правила просто устанавливают соглашения в форме определения «обозначение в S»; это происходит путем перечисления случаев, в которых имеет место отношение обозначения. Причем иногда термин «обозначение» используется также для сложных выражений и даже для предложений. В этом случае правила обозначения определяют путем перечисления предварительный термин «непосредственное обозначение», а затем с его помощью рекурсивно определяется более общий термин «обозначение»).

В семантических дискуссиях термин «истинно» используется Карнапом преимущественно по отношению к предложениям и системам предложений. Он не отрицает, что этот термин может применяться аналогичным образом также и к пропозициям как десигнатам предложений; однако это употребление не встречается в его рассуждениях. «Мы используем здесь, – говорит Карнап, – этот термин в таком смысле, что утверждать, что предложение является истинным, означает то же самое, что и утверждать само предложение; например, два высказывания. Предложение “Луна есть круглая” истинно» и «Луна есть круглая» представляют собой просто две различные формулировки одного и того же утверждения. При этом он подчеркивает, что в этом случае два высказывания означают то же самое в логическом или семантическом смысле; ясно, что с точки зрения прагматики практически всегда две различные формулировки имеют различные особенности и различные условия применения; с точки зрения прагматики различие между этими двумя высказываниями состоит в акценте и эмоциональной функции.

Указанное решение относительно термина «истинно» само по себе не является определением термина «истинно». Скорее оно представляет собой стандарт, при помощи которого мы судим, является ли определение истины адекватным, т.е. соответствующим нашему намерению. Если определение предиката Вi – например, слов «истинно», или «обоснованно» или любых иных произвольно выбранных знаков, – предлагается в качестве определения истины, то мы примем его в качестве адекватного определения истины тогда и только тогда, когда на основе этого определения, предикат Вi удовлетворяет отмеченному выше условию, а именно, что он производит (yields) предложения типа «"Луна круглая" есть ... тогда и только тогда, когда луна круглая», где предикат Вi должен быть поставлен на место «...». Это приводит к следующему определению D7-A.

D7-A. Предикат Вi является адекватным предикатом (а его определение – адекватным определением) для понятия истины в рамках определенного класса предложений j = Df каждое предложение, которое построено из сентенциальной функции «х есть F тогда и только тогда, когда р» путем замены «F» на Вi, «р» на любое предложение k в j, и «х» – на любое имя (синтаксическое описание) из предложения k , следует из определения Вi.

Например, пусть класс предложений j содержит предложение «Чикаго – город». Пусть «1» будет именем этого предложения. Предположим, что кто-то вводит слово «verum» в английский язык при помощи определения D. Для того, чтобы применить D7-A, мы должны исследовать все предложения, построенные способом, указанным в D7-A. Заменив «F» на «verum», «р» на «Чикаго – город» и «х» – «1», получим: «1 истинно (verum) тогда и только тогда, когда Чикаго – город». Если наше исследование приведет к такому результату, что D таково, что это и все аналогичные предложения следуют из D, то в соответствии с D7-A, то мы назовем «verum» адекватным предикатом для истины и предложенное определение D – адекватным определением истины.

D7-A представляет собой простейшую форму определения адекватности; оно указывает исключительно на такой особенный случай, когда предложения, к которым применяется предикат, обозначающий понятие истины, принадлежат к тому же самому языку, что и сам предикат – иными словами, когда объектный язык является тем же самым, что и метаязык или же составляет часть последнего. Однако обычно объектный язык S и метаязык М отличаются друг от друга. В этом случае применяется более общее определение адекватности, предложенное Тарским.

D7-В. Предикат Вi в М является адекватным предикатом (а его определение – адекватным определением) для понятия истины в рамках объектного языка S = Df из определения Вi следует каждое предложение в М, построенное из сентенциальной функции «х есть F тогда и только тогда, когда р» путем замены «F» на Вi, «р» – на перевод любого предложения k в S на М, и «х» – на любое имя (синтаксическое описание) предложения k.

Например, пусть имеется некоторая семантическая система S, которая является частью немецкого языка, и содержит помимо прочих предложение «Der Mond ist rund». Пусть «2» будет именем этого предложения. В качестве метаязыка М мы принимаем русский язык. Переводом предложения 2 на М является предложение «Луна круглая». Предположим, что предложено определение D2 для знака «Т» и что мы желаем выяснить, является ли D2 адекватным определением истины относительно S как части немецкого языка. Согласно D7-В, одно из исследуемых предложений построено путем замены «F» на «Т», «р» – на перевод «Луна – круглая», и «х» – на «2». В результате получили предложение «2 есть Т тогда и только тогда, когда луна круглая». Если это и все аналогичные предложения оказываются следующими из определения D2 для «Т», тогда D2 есть адекватное определение, и «Т» – адекватный предикат для истины в S.

Карнап отмечает, что понятие истины в вышеуказанном смысле, – его можно назвать семантическим понятием истины, – принципиально отличается от понятий типа «убежден», «верифицировано», «в высокой степени подтверждено» и т.д. Отличие состоит в том, что последние понятия относятся к прагматике и требуют указания на определенное лицо, их употребляющее.

Например, имеются три предложения «На луне нет атмосферы» (1); «1 истинно» (2); «1 подтверждается в очень высокой степени учеными в настоящее время» (3). 2 говорит то же самое, что и 1; 2 является, как и 1, астрономическим высказыванием и должно, как и 1, проверяться астрономическими наблюдениями Луны. С другой стороны,  3 есть историческое высказывание; оно должно проверяться историческими, психологическими наблюдениями поведения астрономов.

Согласно Тарскому, С. Лесьневский был первым, кто сформулировал точное требование адекватности для определения истины в простейшей форме D7-A, приведенной выше (в неопубликованных лекциях, начиная с 1919 года); сходные формулировки имеются в книге по теории знания, опубликованной Т. Котарбиньским на польском языке в 1926 году. Ф. П. Рамсей в своей рецензии 1923 года на "Трактат" Витгенштейна дает схожую формулировку: «Если мысли или пропозиция в виде токена «р» утверждает р, то она называется истинной, если р, и ложной, если р»6. Сам Тарский дал определение адекватности в более общей форме, напоминающей указанное выше определение D7-В (его «Конвенция Т»). Кроме того, он дал первое точное определение истины для определенных формализованных языков; его требование удовлетворяет требованиям адекватности и одновременно избегает антиномий, связанных с неограниченным использованием понятия истины, в частности, в повседневном языке. В той же самой работе [Wahrheitsbegriff] Тарский приходит к очень ценным результатам благодаря своему анализу понятия истины и связанных с ним семантических понятий.

Отмеченное требование отнюдь не является новой теорией или понятием истины. Котарбиньский уже отмечал, что это – старая классическая концепция, которая восходит к Аристотелю. Новая особенность заключается исключительно в более точной формулировке требования. Тарский далее утверждает, что данная характеристика находится также в согласии с обычным употреблением слова «истинный». Как известно, вершиной этой линии стал Дональд Дэвидсон.



Отношение обозначения. В качестве центрального понятия семантики Карнап выделяет отношение обозначения (the relation of designation), при котором знак или языковое выражение представляет то, что он обозначает. Поэтому знаки (signs) Карнап предлагает отличать от объектов, которые они обозначают; эти последние он именует десигнатами (designata). Для обозначения того, что собой представляют объекты, обозначаемые или представляемые знаками, Карнап выбирает предельно широкое по своему объему понятие «сущность». В работе «Значение и необходимость» он характеризует «сущности», которые обозначаются знаками, следующим образом: «Термин «сущность» (entity), – пишет Карнап, – часто употребляется в этой книге. Я отдаю себе отчет во всех связанных с ним метафизических ассоциациях, но я надеюсь, что читатель сможет отрешиться от них и будет понимать это слово в том простом смысле, что в котором оно понимается здесь, – как общее обозначение для свойств, пропозиций и других интенсионалов, и для классов, индивидов и других экстенсионалов, – с другой стороны. Мне кажется, что в английском языке нет другого подходящего термина с такой широкой областью применения»7.

Одной из центральных проблем, связанных с отношением обозначения, является вопрос о том, к каким знакам или выражениям семантической системы S возможно и допустимо применять отношение обозначения? Обычно оно применяется к индивидным константам и предикатам различных уровней и степеней. Кроме того, оно может применяться к любого вида функторам, встречающимся в рамках семантической системы S. Однако Карнап утверждает, что существует возможность так расширить область применения отношения обозначения, что оно распространиться на знаки и выражения семантической системы S всех тех типов, для которых имеются переменные в метаязыке, даже если к их числу относятся типы предложений и типы сентенциальных связок. В качестве метаязыка в таком случае обычно используется какой-то естественный язык (например, английский или немецкий), дополненный переменными, включая пропозициональные переменные. Вместо того, чтобы писать «u обозначает v в S» Карнап предлагает писать «Dess (u, v)» или просто «Des (u, v)» в тех случаях, когда по контексту ясно, о какой семантической системе идет речь.

Как отмечает Карнап, наибольшее возражение встречает широкое использования отношения обозначения и в особенности его применение к отношению между предложениями и пропозициями. Утверждается, что в то время как объектные имена (индивидные константы) и предикаты и в самом деле что-то обозначают, а именно объекты, свойства и отношения, предложение ничего не обозначает; скорее оно что-то описывает или утверждает, что что-то имеет место. Быть может это действительно так по отношению к общепринятому употреблению слов «обозначение», «обозначать» и т.д. в обыденном языке. Понятно, что утверждение «Р(а) обозначает Чикаго – большой» не вполне согласуется с обычным словоупотреблением; то же самое касается и соответствующих предложений в языках со сходной структурой. Во-первых, русский (в данном случае) язык не позволяет помещать предложение в положение грамматического объекта. Это трудность, однако же, нетрудно обойти, поставив частицу «что» перед словом «обозначает». Во-вторых, даже в подобных случаях термин «обозначает» обычно не используется. Однако эти соображения не представляются Карнапу убедительными доводами против расширенного использования выражения «обозначать» в качестве технического термина. Дело в том, что при перемещении слова из обыденного языка в язык науки область его применения нередко расширяется. Единственным критерием разрешения спорных ситуаций является в этом случае критерий практической целесообразности; и решение зависит главным образом от того, является ли сходство между случаями обычного применения и новыми случаями достаточно значительным для того, чтобы расширение области применения термина выглядело естественно.

В отношении некоторых типов, к которым Карнап применяет отношение обозначения, время от времени поднимался вопрос, каковы в точности виды десигнатов одного типа или другого. Например, часто обсуждалась проблема, является ли десигнатом предметного имени (к примеру, «Чикаго») соответствующий предмет (thing) или класс однородных предметов (unit-class) (т.е. является ли его десигнатом Чикаго или{Чикаго}). Кроме того, часто задаются вопросом, является ли десигнатом предиката первой степени свойство или класс. В обоих случаях утверждается – в качестве аргумента в пользу второго ответа, – что десигнат всегда должен представлять собой класс. Если вообще принимаются десигнаты предложений, то возникает вопрос, являются ли десигнатами предложений положения дел (или возможные факты, условия и т.д.) или же скорее мысли.

Давайте предположим на время, что мы так понимаем данный объектный язык S, скажем, немецкий, что способны перевести его выражения и предложения на некоторый метаязык М, скажем, английский (включая некоторые переменные и символы). При этом не имеет значения, основывается ли это понимание на знании ссемантических правил или же является интуитивным; просто предполагается, что если дано выражение (скажем, «Pferd», «drei» в немецком языке), то с точки зрения наших практических целей мы знаем английское выражение, соответствующее ему в качестве «буквального перевода» («horse», «three» в английском языке). В таком случае мы сформулируем определение адекватности для понятия обозначения, которое само по себе не является определением для термина «Dess» (или «обозначает в S»), но стандартом, с которым мы сравниваем предполагаемые определения. В данном случае «адекватность» означает просто согласие с нашим намерением для использования термина.

D12-B. Предикат второй степени pri в М является адекватным предикатом для обозначения в S = Df каждое предложение в М формы pri (ui, uk), где ui есть имя (или синтаксическое описание) в М выражения um в рамках S (принадлежащего к одному из видов выражений, для которого определен pri) и uk является переводом um на язык М, истинно в М.

Если pri является адекватным, то мы также называем его определение и его десигнат, т.е. отношение, определенное как обозначение, адекватным. Это определение адекватности оставляет открытым вопрос о том, какие типы принимаются в качестве аргументов для pri; оно определяет только то, как предикат для обозначения должен использоваться для определенных типов, если мы решили использовать его для этих типов. Следовательно, мы можем, например, ограничить употребление pr, в смысле отмеченного выше возражения. Однако здесь предполагается использовать его для всех типов, для которых имеются переменные в М, т.е. принять в качестве второго аргумента uk любое выражение значения любой переменной в М. Практическое оправдание данного определения адекватности лежит в следующих двух фактах:

1. Оно дает общее правило для всех различных типов, причем простым способом;

2. оно, по-видимому, находится в согласии с обычным использованием термина «обозначение», по крайней мере постольку, поскольку это употребление имеет силу.

На основе адекватного отношения обозначения вопрос о десигнате объектного имени разрешается в пользу предмета, а не в пользу класса однородных предметов. Например, если «DesG» есть адекватный предикат (в М, т.е. в английском языке) для обозначения в немецком языке, то следующие предложения истинны:

а. «DesG («Pferd», horse»);

b. «DesG («drei», three»).

Если «DesS3» определено так, как указано выше (имея место «DesIndS3», «DesAttrS3» и «DesPropS3» соответственно), то он является адекватным предикатом для обозначения в S3. Помимо других предложений, следующие должны стать истинными:

а. «DesS3 («а», Чикаго»);

b. «DesS3 («P», большой»);

с. «DesS3 («Р(а)», Чикаго – большой»);

все три предложения истинны. Мы видим, что адекватность требует от нас писать на месте аргумента «большой» вместо «большевизна» или «свойства быть большим» или «класса больших вещей»; и сходным образом мы пишем «лошадь» вместо «лошадность» или «класс лошадей». Это указывает на то, что мы можем приписывать предикатам десигнаты, не употребляя ни термин «свойство», ни термин «класс». (Вопрос о том, является ли десигнат, например, большой, свойством или классом не имеет непосредственного отношения к употреблению нами отношения обозначения, однако конечно же, имеет ответ — зависящий попросту от того, является ли данный язык экстенсиональным, или насколько он экстенсионален. То же самое касается вопроса о том, являются ли десигнаты предложений (sententional designata) истинностными значениями или чем-то иным.)

На основе «обозначения» («designation») (D2) Карнап определяет термин «синонимичный» («synonymos»). Таким образом термин «синонимичный» как в более узком, так и в более широком смысле в соответствии с более узкой или более широкой областью применения, выбранной для термина «обозначение».

D12-2. ui в Sm синонимично uj в Sn = Df ui обозначает в Sm ту же самую сущность, что и uj в Sn.

Таким образом, констатирует Карнап, отношение синонимии не ограничивается выражениями одной системы. Большинство семантических отношений можно применить к выражениям различных систем, даже к тем, которые для простоты определяем относительно одной системы.



L-семантика. L-семантика занимается исследованием проблем логической истины («L-истинно»), логической выводимости («L-импликация») и связанных с ними понятий (L-понятий). При этом предполагается, что логика, в смысле теории логической выводимости и тем самым логической истины является отдельной частью семантики. Проблема определения L-понятий не только для отдельных систем (особенная L-семантика), но и для системы вообще (общая L-семантика) пока еще не нашла удовлетворительного решения.

Логические и дескриптивные знаки. В своем исследовании природы логической дедукции и логической истины Карнап исходит из убеждения, что логика является отдельной частью семантики, а потому понятия логической выводимости и логической истины являются семантическими понятиями. Они относятся к особенному виду семантических понятий, которые Карнап называет L-понятиями. Для логической истины он использует термин « L-истинно», для логческой выводимости – « L-импликация». Если даны правила семантической системы S и тем самым понятие истины в S, то L-понятия также определены в известном смысле; тем не менее задача их определения на базе радикальных понятий (а именно, «обозначение» и «истинно») встречается с определенными трудностями.

Прежде всего Карнап проводит различие между двумя видами выражений, которые он называет дескриптивными и логическими выражениями. При этом он отмечает, что имеется тесная связь между понятиями «дескриптивный» и «логический» и L-понятиями. Понятия «дескриптивный» и «логический» играют огромную роль в логическом анализе языка; однако для них также не известно удовлетворительного точного определения в общей семантике. К дескриптивным знакам обычно относят имена отдельных предметов в мире, т.е. отдельных вещей или частей вещей или события (например, «Наполеон», «озеро Мичиган», «Французская революция»), знаки, обозначающие эмпирические свойства, включая виды субстанций, и отношения вещей, мест, событий и т.д. (например, «черный», «собака», «гражданин»), эмпирические функции вещей, точки и т.д. (например, «вес», «эпоха», «температура», «цена»). Примером логических знаков являются сентенциальные связки («», «» и т.д.), знак оператора общности («каждый»), знак отношения включения элемента в класс («», «есть какой-то»), дополнительные знаки (скобки и точка, обычно используемые в символической логике), знак логической необходимости в (не-экстенсиональной) системе модальностей («N»). Кроме того, логическими считаются все те знаки, которые определимы при помощи перечисленных выше логических знаков, например, знак оператора существования («», или «некоторый»), знаки для универсального и нулевого класса всех типов, знак тождества («=», «является тем же самым, что и»), все знаки системы Уайтхеда и Рассела и практически все иные системы символической логики, все знаки математики (включая арифметику, анализ реальных чисел, инфинетезимальное исчисление, но не геометрию) со значением, которое они имеют, когда применяются в науке, все логические модальности (например, «строгая импликация» Льюиса). Определенный знак считается дескриптивным, если его дефиниенс содержит дескриптивный знак; в противном случае он считается логическим знаком. Выражение называется дескриптивным, если оно содержит дескриптивный знак; в противном случае оно является логическим.

Когда мы строим семантическую систему S, то обычно отдаем себе отчет в значении каждого знака; а затем в соответствии с этим намерением мы формулируем правила. В случае подобном этому нетрудно определить «логический знак в S» и «дескриптивный знак в S» таким образом, что различие будет согласовываться с общей концепцией различия между дескриптивными и логическими знаками, с одной стороны, и со значениями, предполагаемыми для знаков и сформулированными при помощи правил. Это различие обычно делается в форме простого перечисления логических или дескриптивных знаков, с которых начинается построение системы.

Что же касается переменных, то на первый взгляд кажется, что их следует считать логическими знаками. Более тщательный анализ, однако, показывает, что в отношении некоторых языков эта точка зрения не будет находиться в согласии с проведенным выше различием между дескриптивными и логическими знаками. В частности, это имеет место в случае с переменной, область значений которой вычленяется при помощи дескриптивного выражения метаязыка. Представляется, что переменную этого вида следует считать дескриптивной переменной. Проблема, однако, требует дальнейшего исследования.

Например, область значений переменных в системе S6 есть класс городов в Соединенных Штатах. Перевод на естественный язык предложения формы «(х) (...)» состоит в следующем: «Для каждого города х в Соединенных Штатах ...». Такой перевод является дескриптивным предложением. Следовательно, представляется вполне естественным назвать переменную х дескриптивной.

В рамках общей семантики проблема проведения различия между дескриптивными и логическими знаками встречается с серьезными трудностями. Дело в том, что в данном случае неясно, можно ли определить термины «дескриптивный» и «логический» на основе других семантических понятий, например, «обозначение» и «истинный» так, чтобы применение общего определения к любой частной системе приводило бы результату, который находился бы в согласии с предполагаемым различием. Как отмечает Карнап, удовлетворительное решение пока еще не найдено. Возможность и метод решения зависят от избранного вида метаязыка М. По-видимому, решение возможно, если мы предполагаем, что М построен таким образом, что его правила, сформулированные на метаметаязыке ММ, включают соответствующее различие знаков М.



Синтаксис. Третье измерение семиотики, или синтаксис, определяется Карнапом как такая область исследования, которая ограничивается формальным анализом выражений языка и не принимает во внимание ни лиц, употребляющих эти выражения, ни десигнаты этих выражений. Чистый синтаксис, как уже говорилось, представляет собой исследование не синтаксических особенностей эмпирически данных языков, но систем синтаксических правил. Система таких правил может быть или свободно изобретена, или построена относительно эмпирически данного языка. Ее отношение к данному языку в этом случае аналогично отношению между семантической системой и эмпирически данным языком. Система синтаксических правил называется синтаксической системой или исчислением. Она включает в себя классификацию знаков, правила образования (определяющие «предложение в К») и правила дедукции. Правила дедукции обычно состоят из примитивных предложений и правил вывода (определяющих «непосредственно выводимо в К»). Иногда К содержит также правила опровержения (определяющие «непосредственно опровержимо в К»). Если К содержит определения, то последние могут считаться дополнительными правилами дедукции.

Первый шаг построения некоторого исчисления К состоит в классификации знаков К, и выделении такого количества классов знаков, которое необходимо для формулировки синтаксических правил. Затем мы формулируем правила образования для К, иными словами, определение «предложения в К». Имеется определенное различие между правилами образования в синтаксической и в семантической системах. В последней правила должны ссылаться на десигнаты выражений. Однако в синтаксических правилах образования это запрещено; они должны носить исключительно формальный характер. Они указывают, какие выражения являются предложениями, описывая виды знаков, которые встречаются и тот порядок, в котором они встречаются. Определение этих видов, т.е. классификация знаков, также должно быть строго формальным. Определение «предложение в К» часто дается в рекурсивной форме; сперва описываются некоторые простые формы предложений, а затем – определенные операции для построения сложных предложений из исходных форм.

Важнейшая часть исчисления состоит в правилах дедукции (или трансформации). Они описывают, как можно сконструировать доказательства и выводы; иными словами, они конституируют определения «доказуемо в К» и «выводимо в К», а также ряд иных понятий. Обычно процедура заключается в следующем. Во-первых, формулируются примитивные предложения, либо путем перечисления, или путем заявления, что все предложения определенных форм принимаются в качестве примитивных предложений. В последнем случае число примитивных предложений (сентенциальные схем) может быть бесконечным. Во-вторых, формулируются правила вывода. Они могут быть сформулированы следующим образом: «j непосредственно выводимо из i тогда и только тогда, когда выполняется одно из следующих условий» и затем каждое правило устанавливает формальное условие для i и j. Таким образом, правила вывода определяют «непосредственно выводимо в К». Иногда, однако не часто, формулируются также правила опровержения, определяющие «непосредственно опровержимо в К».

Кроме того, исчисление К может содержать определения. Цель определения состоит в том, чтобы ввести новый знак на основе примитивных знаков К и знаков, определенных при помощи более ранних определений; поэтому огромную роль играет последовательность определений. Определение может иметь как форму предложения (а в случае рекурсивного предложения – нескольких предложений), именуемого предложением-определением (a definition sentence) (или определяющего предложения (defining sentence)) или простого определения, или простого правила, называемого правилом определения (или определяющим правилом). Предложение-определение в К может считаться дополнительным примитивным предложением в К, а правило определения для К – дополнительным правилом вывода для К. Предложение-определение может иметь форму u1 = Df u2, или u u2, а правило определения, например, «"..." для "---"», где «для» является сокращением для «является непосредственно С-взаимозаменимым с». u1 или «...» называется дефениендумом; оно содержит определяемый знак. u2 или «- - -» называется дефениенсом, оно содержит только примитивные знаки или знаки, определенные при помощи предыдущих определений. В дополнение к этому, как дефениенс, так и дефениендум могут содержать свободные переменные. Если определение сформулировано, то позволительно заменять дефениендум в любом контексте на дефиниенс и наоборот; и то же самое можно делать с любыми выражениями, построенными из дефениендума и дефениенса путем одинаковых подстановок на место свободных переменных. Иными словами, любые два выражения этого вида являются С-взаимозаменимыми; т.е. любые два предложения, содержащие их и подобные в иных отношениях непосредственно выводимы друг из друга. Определения должны удовлетворять определенным требованиям (смотри например [Syntax] §§ 8 и 29) для того, чтобы гарантировать (1) переводимость в обоих направлениях для введения и устранения нового знака; (2) С-непротиворечивость исчисления, содержащего определение, если исходное исчисление является С-непротиворечивым; (3) однозначную интерпретацию получивших определение знаков, если исходные знаки являются интерпретированными.



Отношение между семантикой и синтаксисом. На основании исходных понятий семантики Карнап вводит семантическое понятие «описание состояния». Он говорит о семантической системе или языке S1, которая содержит знаки, обозначающие индивиды, свойства и отношения. Из этих знаков при помощи логических терминов строятся атомарные предложения. Атомарные предложения можно сгруппировать в ряды, называемые «описаниями состояния», каждое из которых «дает наглядное и полное описание возможного состояния вселенной индивидов относительно всех свойств и отношений, выраженным посредством предикатов системы. Таким образом, описания состояния символизируют возможные миры Лейбница или возможные положения дел Витгенштейна»8. «Имеется, – продолжает Карнап, – одно и только одно описание состояния, которое дает действительное положение вселенной, а именно то, которое содержит все истинные атомарные предложения... Предложение любой формы истинно только в том случае, если оно входит в истинное описание состояния».

Однако, по Карнапу, описание состояния не есть лишь "ряд атомарных предложений", а есть конъюнкция (или множество) атомарных предложений вместе с их отрицаниями. А отрицание атомарного предложения — это не атомарное предложение. Поэтому также неверно было бы утверждать, что "состояние вселенной описывается группой атомарных предложений". (Это, кстати, соответствует концепции "Трактата", где Витгенштейн говорит, что для полного описания мира нужно перечислить как все, что имеет место, так и все, что не имеет места.)

Карнап указывает, что «предложение логически истинно, если оно входит во все описания состояния». Это положение соответствует концепции Лейбница о том, что необходимая истина должна содержаться во всех возможных мирах».

Следовательно, в рамках семантической концепции Карнапа «действительное» состояние вселенной описывается определенной группой «атомарных предложений». Имеется бесконечное число возможных состояний вселенной, из которых только одно имеет привилегированный статус действительного. «Имеется лишь один факт: всеобщность действительного мира – прошлого, настоящего и будущего»9. Законы же логики отличаются тем, что они истинны не только для действительного мира, но и «для всех возможных миров».

Придя к признанию необходимости не только семантики, но также и интенсионального значения, Карнап настаивал на философском интересе прагматики или использования языка, а это в свою очередь означает переход от анализа только формальных языков к рассмотрению естественных языков. Так, Карнап пытается показать, что интенсиональные понятия синонимии и аналитичности применимы к естественным языкам и должны быть выделены как экспликанды соответствующих формальных понятий. При этом хотя прагматика и не играет существенной роли при обосновании таких семантических понятий, как аналитичность и синонимия, она может значительно облегчить это обоснование. По мнению Карнапа, создание системы теоретической прагматики настоятельно необходимо не только для психологии и лингвистики, но также и для аналитической философии.




Достарыңызбен бөлісу:
1   ...   11   12   13   14   15   16   17   18   ...   80




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет