Атомная энергетика



Дата13.07.2016
өлшемі50.04 Kb.
#196618
Атомная энергетика

Модель атома Резерфорда

В 1911 г. Эрнест Резерфорд (1871 – 1937) предложил совершенно новую модель атома, основанную на результатах его собственных экспериментов и экспериментов Ханса Гейгера (1882 – 1945), в которых измерялось рассеяние альфа частиц при прохождении через золотую фольгу. Согласно модели Резерфорда, положительный заряд и основная масса атома сосредоточены в центральном ядре, вокруг которого движутся электроны. Сегодня мы знаем, что атом представляет собой почти пустое пространство с крошечным ядром, размеры которого в десятки тысяч раз меньше размеров атома в целом. Сами атомы тоже предельно малы: 10 млн. атомов, выстроенные в ряд, составят всего 1 мм.

Позже Резерфорд установил, что положительный заряд ядра несут частицы в 1836 раз более тяжелые, чем электрон. Он назвал их протонами. Заряд протона равен по величине, но противоположен по знаку заряду электрона. Простейший атом – атом водорода – состоит из одного протона (ядра) и одного электрона, движущегося вокруг него.

Более тяжелые ядра содержат большее число протонов (это число называют атомным номером), причем оно всегда равно числу окружающих ядро электронов. Позднее было установлено, что все ядра атомов, за исключением ядра водорода, содержат также частицы и другого типа – незаряженные частицы (поэтому названные нейтронами) с массой, почти равной массе протона.

Создание модели атома: квантовая теория и спектроскопия

Датский физик Нильс Бор (1885 – 1962), сделавший следующий важный шаг на пути создания модели атома, опирался при этом на две другие области исследований. Первая из них – квантовая теория, вторая – спектроскопия. Впервые идея квантования была высказана Максом Планком (1858 – 1947) в 1900 г. для объяснения механизма излучения тепла (и света) нагретым телом. Планк показал, что энергия может излучаться и поглощаться только определенными порциями, или квантами.

Основы спектроскопии были заложены еще Исааком Ньютоном (1642 – 1727): он пропустил луч солнечного света через стеклянную призму, разложив его на совокупность цветов видимого спектра. В 1814 г. Йозеф Фраунгофер (1787 – 1826) открыл, что спектр солнечного света содержит несколько темных линий, соответствующих, как было установлено позже, линиям в спектре испускания водорода, в котором произошел электрический разряд.

Бор доказал, что движущийся электрон в атоме водорода может существовать только на фиксированных орбитах, а спектральные линии водорода соответствуют поглощению (темные линии) или излучению (светлые линии) кванта энергии; эти процессы происходят, когда электрон “перепрыгивает” с одной фиксированной орбиты на другую. Модель Бора, позднее усовершенствованная Арнольдом Зоммерфельдом (1868 – 1951), позволила добиться успехов в объяснении спектра водорода.

Согласно современной квантовой теории, фиксированные орбиты Бора не следует представлять слишком буквально – в действительности электрон в атоме с некоторой вероятностью может быть обнаружен в любом месте, а не только вблизи орбиты. Это – следствие квантовой механики, которая была в основном сформулирована Вернером Гейзенбергом (1901 – 1976) и Эрвином Шредингером (1887 – 1961). В ее основе лежит так называемый принцип неопределенности Гейзенберга. В результате орбиты Бора оказались не точными траекториями электрона, а местами его наиболее вероятного обнаружения в атоме. Согласно идее корпускулярно-волнового дуализма, впервые высказанной Луи де Бройлем, субатомные частицы можно описывать так же, как и свет, в том смысле, что в одних случаях для этого целесообразно пользоваться понятием “частица”, а в других – “волна”. Так, “пучок” электронов ведет себя как совокупность частиц в катодных лучах, но как совокупность волн в электронном микроскопе. Однако, с точки зрения химии, представление об атоме, как о мельчайшей частичке материи, принимающей участие в химических реакциях, по-прежнему остается наиболее удобным.

Атомная энергетика

Ядерная энергия играет исключительную роль в современном мире: ядерное оружие оказывает влияние на политику, оно нависло угрозой над всем, живущим на Земле. А пока человечество стремится утолить свои непрерывно растущие потребности в энергии путем беспредельного развития ядерной энергетики, радиоактивные отходы загрязняют нашу планету. В действительности жизнь на Земле всегда зависела от ядерной энергии: ядерный синтез питает энергией Солнце, радиоактивные процессы в недрах Земли нагревают ее жидкое ядро влияют на подвижность материковых плит. Ядерная энергия выделяется, во-первых, при радиоактивном распаде и делении атомного ядра, а во-вторых, с процессе синтеза – слияния легких ядер в более тяжелые.

Радиоактивность – ее открытие и природа

Радиоактивность была открыта Антуаном Беккерелем (1852 – 1908). После получения радия стало ясно, что радиоактивный процесс сопровождается выделением огромного количества энергии. Распад радия происходит в несколько стадий, при этом выделяется в 2 * 105 раз больше энергии, чем при сгорании такой же массы угля. Ядро атома имеет диаметр порядка 10-12 сантиметров и состоит из протонов (положительно заряженных частиц) и нейтронов (нейтральных частиц с массой, почти равной массе протона). Только ядро водорода состоит лишь из одного-единственного протона (и не содержит нейтронов). Большинство элементов представляет собой смесь изотопов, ядра которых различаются числом нейтронов.

Получение ядерной энергии

Получение ядерной энергии в больших количествах впервые было достигнуто в цепной реакции деления ядер урана. Когда изотоп уран-235 поглощает нейтрон, ядро урана распадается на две части и при этом вылетают два – три нейтрона. Если из числа нейтронов, образующихся после каждого акта деления, в следующем участвует в среднем более одного нейтрона, то процесс экспоненциально нарастает, приводя к неуправляемой цепной реакции.

Для преобразования ядерной энергии в электрическую этот процесс необходимо замедлить и сделать управляемым; тогда его можно использовать для получения тепла, которое затем превращается в электричество. Ядерный реактор – это своего рода “печка”. Вероятность деления ядра урана-235 велика, если последний движется сравнительно медленно (со скоростью около 2 км/c). Для замедления нейтронов в ядерный реактор помещают специальные материалы, называемые замедлителями.

Атомное оружие



Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран-сверхдежав: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели, что делает его бессмысленным. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.
Каталог: doc
doc -> Оқулық. қамсыздандыру: Жұмыс дәптері
doc -> Регламенттерін бекіту туралы «Әкімшілік рәсімдер туралы»
doc -> Регламенттерін бекіту туралы «Әкімшілік рәсімдер туралы»
doc -> Мазмұны: Қалыптасқан қазақстан -2050 стратегиясы
doc -> Қызылорда облысының 2015 жылғЫ Әлеуметтік-экономикалық даму нәтижелері
doc -> Бекітемін Тарих және шетелдік студенттермен жұмыс факультетінің деканы
doc -> Программа по истории Казахстана: программа для 5-9 кл. / Б. К. Абдугулова. Алматы, 1999. 42 с. Абдугулова, Б. К. «Воспитание учащихся в духе дружбы народов при изучении истории ссср»


Достарыңызбен бөлісу:




©dereksiz.org 2022
әкімшілігінің қараңыз

    Басты бет