Исследование методов построения моделей кодер-декодер для распознавания русской речи


Simon Wiesler A. R., Schlüter R., Ney H



бет20/23
Дата02.01.2022
өлшемі220.96 Kb.
#452242
түріИсследование
1   ...   15   16   17   18   19   20   21   22   23
issledovanie-metodov-postroeniya-modeley-koder-dekoder-dlya-raspoznavaniya-russkoy-rechi

Simon Wiesler A. R., Schlüter R., Ney H. Mean-normalized stochastic gradient for large-scale deep learning. IEEE Intern. Conf. on Acoustics, Speech, and Signal Processing, 2014, pp. 180–184. doi:10.

1109/ICASSP.2014.6853582

  1. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 770–778. doi:10.1109/CVPR.2016.90

  2. Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. Rethinking the inception architecture for computer vision. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. doi:10.1109/CVPR.2016.308

  3. Chiu C. C., et al. State-of-the-art speech recognition with sequence-to-sequence models. IEEE Intern. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 4774–4778. doi:10.1109/ICASSP.

2018.8462105

  1. Kipyatkova I., Karpov A. DNN-based acoustic modeling for Russian speech recognition using Kaldi. Intern. Conf. on Speech and Computer (SPECOM), 2016, pp. 246–253. doi:10.1007/978-3-319-43958-7_29

  2. Verkhodanova V., Ronzhin A., Kipyatkova I. Havrus corpus: high-speed recordings of audio-visual Russian speech. Intern. Conf. on Speech and Computer

(SPECOM), 2016, pp. 338–345. doi:10.1007/978-3-

319-43958-7_40



  1. Verhelst W., Roelands M. An overlap-add technique based on waveform similarity (wsola) for high quality time-scale modification of speech. Acoustics, Speech, and Signal Processing (ICASSP), 1993, pp. 554–557. doi:10.1109/ICASSP.1993.319366

  2. Инструмент обработки звука Sox. http://sox.sourceforge.net/sox.html (дата обращения: 27.02.2019).

  3. Povey D., et al. The Kaldi speech recognition toolkit. IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, 2011. https://infoscience.epfl.ch/ record/192584/ (дата обращения: 27.02.2019).

  4. The Microsoft Cognitive Toolkit. https://docs.microsoft.com/ru-ru/cognitive-toolkit/ (дата обращения:

27.02.2019).

  1. Markovnikov N., Kipyatkova I., Karpov A., Filchenkov A. Deep neural networks in Russian speech recognition. Conf. on Artificial Intelligence and Natural Language (AINL), 2017, pp. 54–67. doi:10.1007/9783-319-71746-3_5

  2. Chen S. F., Goodman J. An empirical study of smoothing techniques for language modeling. Computer


Достарыңызбен бөлісу:
1   ...   15   16   17   18   19   20   21   22   23




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет