Краткое содержание цикла лекций № 1 «Проектирование и производство цифровых СБИС нанометрового масштаба» -
Введение в современную микроэлектронику
-
От алгоритмов к аппаратной архитектуре СБИС
-
Функциональная верификация СБИС
-
Моделирование с помощью языков VHDL и Verilog
-
Проектирование синхронных фрагментов СБИС
-
Тактирование синхронных цепей
-
Обмен асинхронными данными
-
Проектирование на уровне вентилей и транзисторов
-
Энергетическая эффективность СБИС и удаление выделяемого тепла
-
Целостность сигналов в СБИС
-
Физический этап проектирования СБИС
-
Верификация физического этапа проектирования
-
Экономика СБИС и управление проектами
-
Прогресс в развитии КМОП технологии
-
Жизнь электронной идустрии: настоящее и будущее
Краткое содержание цикла лекций № 2 «Архитектура высокопроизводительных микропроцессоров и систем на кристалле» -
Введение в компьютерную архитектуру и количественные принципы проектирования микропроцессоров
-
Принципы построения системы команд, формальные методы, автоматическая генерация системы команд
-
Примеры построения системы команд (CISC, RISC, Stream Processing, адаптивная)
-
Исполнение команд в конвейерном процессоре и проблемы задержек
-
Конфликты и прерывания в конвейерной архитектуре
-
Использование потенциального параллелизм на уровне команд: динамическое аппаратное и статическое программное диспетчирование исполнения команд
-
Суперскалярные (аппаратное диспетчирование) и VLIW (статическое программное диспетчирование) архитектуры микропроцессоров
-
Способы реализации параллелизма на уровне команд в современных статических и динамических архитектурах
-
Арифметические блоки в современных микропроцессорах и системах на кристалле
-
Иерархия памяти и кэш-память: Ключ к производительности и универсальности микропроцессоров
-
Основная память и поддержка механизма виртуальной памяти. Построение подсистемы памяти в современных микропроцессорах
-
Симметричные мультироцессоры с разделяемой памятью. Мультипроцессоры на кристалле и системы на кристалле
-
Мультитредность в высокопроизводительных микропроцессорах и графических машинах: возможные преимущества и затраты на их реализацию.
-
Структуры и производительность подсистем ввода-вывода
-
Параллельные вычисления. Архитектуры новейших суперкомпьютеров
Базовые справочные материалы: -
Hubert Kaeslin @ ETH Zurich «Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication», Cambridge University Press, 2008
-
Computer Architecture: A Quantitative Approach (4th Ed.) by J. Hennessy and D. Patterson, Morgan Kaufmann Publishers, 2007
Развернутое содержание цикла лекций № 1 «Проектирование и Производство Цифровых СБИС нанометрового масштаба» Introduction to Microelectronics
1.1 Economic impact
1.2 Concepts and terminology
1.2.1 The Guinness book of records point of view
1.2.2 The marketing point of view
1.2.3 The fabrication point of view
1.2.4 The design engineer’s point of view
1.2.5 The business point of view
1.3 Design flow in digital VLSI
1.3.1 The Y-chart, a map of digital electronic systems
1.3.2 Major stages in VLSI design
1.3.3 Cell libraries
1.3.4 Electronic design automation software
1.4 Field-programmable logic
1.4.1 Configuration technologies
1.4.2 Organization of hardware resources
1.4.3 Commercial products
2.1 The goals of architecture design
2.2 The architectural antipodes
2.2.1 What makes an algorithm suitable for a dedicated VLSI architecture?
2.2.2 There is plenty of land between the architectural antipodes
2.2.3 Assemblies of general-purpose and dedicated processing units
2.2.4 Coprocessors
2.2.5 Application-specific instruction set processors
2.2.6 Configurable computing
2.2.7 Extendable instruction set processors
2.3 A transform approach to VLSI architecture design
2.3.1 There is room for remodelling in the algorithmic domain . . .
2.3.2 . . . and there is room in the architectural domain
2.3.3 Systems engineers and VLSI designers must collaborate
2.3.4 A graph-based formalism for describing processing algorithms
2.3.5 The isomorphic architecture
2.3.6 Relative merits of architectural alternatives
2.3.7 Computation cycle versus clock period
2.4 Equivalence transforms for combinational computations
2.4.1 Common assumptions
2.4.2 Iterative decomposition
2.4.3 Pipelining
2.4.4 Replication
2.4.5 Time sharing
2.4.6 Associativity transform
2.4.7 Other algebraic transforms
2.5 Options for temporary storage of data
2.5.1 Data access patterns
2.5.2 Available memory configurations and area occupation
2.5.3 Storage capacities
2.5.4 Wiring and the costs of going off-chip
2.5.5 Latency and timing
2.6 Equivalence transforms for nonrecursive computations
2.6.1 Retiming
2.6.2 Pipelining revisited
2.6.3 Systolic conversion
2.6.4 Iterative decomposition and time-sharing revisited
2.6.5 Replication revisited
2.7 Equivalence transforms for recursive computations
2.7.1 The feedback bottleneck
2.7.2 Unfolding of first-order loops
2.7.3 Higher-order loops
2.7.4 Time-variant loops
2.7.5 Nonlinear or general loops
2.7.6 Pipeline interleaving is not an equivalence transform
2.8 Generalizations of the transform approach
2.8.1 Generalization to other levels of detail
2.8.2 Bit-serial architectures
2.8.3 Distributed arithmetic
2.8.4 Generalization to other algebraic structures
2.9.2 The grand architectural alternatives from an energy point of view
2.9.3 A guide to evaluating architectural alternatives
Functional Verification
3.1 How to establish valid functional specifications
3.1.1 Formal specification
3.1.2 Rapid prototyping
3.2 Developing an adequate simulation strategy
3.2.1 What does it take to uncover a design flaw during simulation?
3.2.2 Stimulation and response checking must occur automatically
3.2.3 Exhaustive verification remains an elusive goal
3.2.4 All partial verification techniques have their pitfalls
3.2.5 Collecting test cases from multiple sources helps
3.2.6 Assertion-based verification helps
3.2.7 Separating test development from circuit design helps
3.2.8 Virtual prototypes help to generate expected responses
3.3 Reusing the same functional gauge throughout the entire design cycle
3.3.1 Alternative ways to handle stimuli and expected responses
3.3.2 Modular testbench design
3.3.3 A well-defined schedule for stimuli and responses
3.3.4 Trimming run times by skipping redundant simulation sequences
3.3.5 Abstracting to higher-level transactions on higher-level data
3.3.6 Absorbing latency variations across multiple circuit models
Modelling Hardware with VHDL
4.1 Motivation
4.1.1 Why hardware synthesis?
4.1.2 What are the alternatives to VHDL?
4.1.3 What are the origins and aspirations of the IEEE 1076 standard?
4.1.4 Why bother learning hardware description languages?
4.1.5 Agenda
4.2 Key concepts and constructs of VHDL
4.2.1 Circuit hierarchy and connectivity
4.2.2 Concurrent processes and process interaction
4.2.3 A discrete replacement for electrical signals
4.2.4 An event-based concept of time for governing simulation
4.2.5 Facilities for model parametrization
4.2.6 Concepts borrowed from programming languages
4.3 Putting VHDL to service for hardware synthesis
4.3.1 Synthesis overview
4.3.2 Data types
4.3.3 Registers, finite state machines, and other sequential subcircuits
4.3.4 RAMs, ROMs, and other macrocells
4.3.5 Circuits that must be controlled at the netlist level
4.3.6 Timing constraints
4.3.7 Limitations and caveats for synthesis
4.3.8 How to establish a register transfer-level model step by step
4.4 Putting VHDL to service for hardware simulation
4.4.1 Ingredients of digital simulation
4.4.2 Anatomy of a generic testbench
4.4.3 Adapting to a design problem at hand
4.4.4 The VITAL modelling standard IEEE 1076.4
4.8.1 Protected shared variables IEEE 1076a
4.8.2 The analog and mixed-signal extension IEEE 1076.1
4.8.3 Mathematical packages for real and complex numbers IEEE 1076.2
4.8.4 The arithmetic packages IEEE 1076.3
4.8.5 A language subset earmarked for synthesis IEEE 1076.6
4.8.6 The standard delay format (SDF) IEEE 1497
4.8.7 A handy compilation of type conversion functions
4.9 Appendix III: Examples of VHDL models
4.9.1 Combinational circuit models
4.9.2 Mealy, Moore, and Medvedev machines
4.9.3 State reduction and state encoding
4.9.4 Simulation testbenches
4.9.5 Working with VHDL tools from different vendors
The Case for Synchronous Design
5.1 Introduction
5.2 The grand alternatives for regulating state changes
5.2.1 Synchronous clocking
5.2.2 Asynchronous clocking
5.2.3 Self-timed clocking
5.3 Why a rigorous approach to clocking is essential in VLSI
5.3.1 The perils of hazards
5.3.2 The pros and cons of synchronous clocking
5.3.3 Clock-as-clock-can is not an option in VLSI
5.3.4 Fully self-timed clocking is not normally an option either
5.3.5 Hybrid approaches to system clocking
5.4 The dos and don’ts of synchronous circuit design
5.4.1 First guiding principle: Dissociate signal classes!
5.4.2 Second guiding principle: Allow circuits to settle before clocking!
5.4.3 Synchronous design rules at a more detailed level
5.7 On identifying signals
5.7.1 Signal class
5.7.2 Active level
5.7.3 Signaling waveforms
5.7.4 Three-state capability
5.7.5 Inputs, outputs, and bidirectional terminals
5.7.6 Present state vs. next state
5.7.7 Syntactical conventions
5.7.8 A note on upper- and lower-case letters in VHDL
5.7.9 A note on the portability of names across EDA platforms
Clocking of Synchronous Circuits
6.1 What is the difficulty in clock distribution?
6.1.1 Agenda
6.1.2 Timing quantities related to clock distribution
6.2 How much skew and jitter does a circuit tolerate?
6.2.1 Basics
6.2.2 Single-edge-triggered one-phase clocking
6.2.3 Dual-edge-triggered one-phase clocking
6.2.4 Symmetric level-sensitive two-phase clocking
6.2.5 Unsymmetric level-sensitive two-phase clocking
6.2.6 Single-wire level-sensitive two-phase clocking
6.2.7 Level-sensitive one-phase clocking and wave pipelining
6.3 How to keep clock skew within tight bounds
6.3.1 Clock waveforms
6.3.2 Collective clock buffers
6.3.3 Distributed clock buffer trees
6.3.4 Hybrid clock distribution networks
6.3.5 Clock skew analysis
6.4 How to achieve friendly input/output timing
6.4.1 Friendly as opposed to unfriendly I/O timing
6.4.2 Impact of clock distribution delay on I/O timing
6.4.3 Impact of PTV variations on I/O timing
6.4.4 Registered inputs and outputs
6.4.5 Adding artificial contamination delay to data inputs
6.4.6 Driving input registers from an early clock
6.4.7 Tapping a domain’s clock from the slowest component therein
6.4.8 “Zero-delay” clock distribution by way of a DLL or PLL
6.5 How to implement clock gating properly
6.5.1 Traditional feedback-type registers with enable
6.5.2 A crude and unsafe approach to clock gating
6.5.3 A simple clock gating scheme that may work under certain conditions
6.5.4 Safe clock gating schemes
Acquisition of Asynchronous Data
7.1 Motivation
7.2 The data consistency problem of vectored acquisition
7.2.1 Plain bit-parallel synchronization
7.2.2 Unit-distance coding
7.2.3 Suppression of crossover patterns
7.2.4 Handshaking
7.2.5 Partial handshaking
7.3 The data consistency problem of scalar acquisition
7.3.1 No synchronization whatsoever
7.3.2 Synchronization at multiple places
7.3.3 Synchronization at a single place
7.3.4 Synchronization from a slow clock
7.4 Metastable synchronizer behavior
7.4.1 Marginal triggering and how it becomes manifest
7.4.2 Repercussions on circuit functioning
7.4.3 A statistical model for estimating synchronizer reliability
7.4.4 Plesiochronous interfaces
7.4.5 Containment of metastable behavior
Gate- and Transistor-Level Design
8.1 CMOS logic gates
8.1.1 The MOSFET as a switch
8.1.2 The inverter
8.1.3 Simple CMOS gates
8.1.4 Composite or complex gates
8.1.5 Gates with high-impedance capabilities
8.1.6 Parity gates
8.1.7 Adder slices
8.2 CMOS bistables
8.2.1 Latches
8.2.2 Function latches
8.2.3 Single-edge-triggered flip-flops
8.2.4 The mother of all flip-flops
8.2.5 Dual-edge-triggered flip-flops
8.3 CMOS on-chip memories
8.3.1 Static RAM
8.3.2 Dynamic RAM
8.3.3 Other differences and commonalities
8.4 Electrical CMOS contraptions
8.4.1 Snapper
8.4.2 Schmitt trigger
8.4.3 Tie-off cells
8.4.4 Filler cell or fillcap
8.4.5 Level shifters and input/output buffers
8.4.6 Digitally adjustable delay lines
8.5 Pitfalls
8.5.1 Busses and three-state nodes
8.5.2 Transmission gates and other bidirectional components
8.5.3 What do we mean by safe design?
8.5.4 Microprocessor interface circuits
8.5.5 Mechanical contacts
8.7 Summary on electrical MOSFET models
8.7.1 Naming and counting conventions
8.7.2 The Sah model
8.7.3 The Shichman–Hodges model
8.7.4 The alpha-power-law model
8.7.5 Second-order effects
8.7.6 Effects not normally captured by transistor models
Energy Efficiency and Heat Removal
9.1 What does energy get dissipated for in CMOS circuits?
9.1.1 Charging and discharging of capacitive loads
9.1.2 Crossover currents
9.1.3 Resistive loads
9.1.4 Leakage currents
9.1.5 Total energy dissipation
9.1.6 CMOS voltage scaling
9.2 How to improve energy efficiency
9.2.1 General guidelines
9.2.2 How to reduce dynamic dissipation
9.2.3 How to counteract leakage
9.3 Heat flow and heat removal
9.4 Contributions to node capacitance
9.5 Unorthodox approaches
9.5.1 Subthreshold logic
9.5.2 Voltage-swing-reduction techniques
9.5.3 Adiabatic logic
Signal Integrity
10.1 Introduction
10.1.1 How does noise enter electronic circuits?
10.1.2 How does noise affect digital circuits?
10.1.3 Agenda
10.2 Crosstalk
10.3 Ground bounce and supply droop
10.3.1 Coupling mechanisms due to common series impedances
10.3.2 Where do large switching currents originate?
10.3.3 How severe is the impact of ground bounce?
10.4 How to mitigate ground bounce
10.4.1 Reduce effective series impedances
10.4.2 Separate polluters from potential victims
10.4.3 Avoid excessive switching currents
10.4.4 Safeguard noise margins
10.5 Conclusions
10.6 Derivation of second-order approximation
Physical Design
11.1 Agenda
11.2 Conducting layers and their characteristics
11.2.1 Geometric properties and layout rules
11.2.2 Electrical properties
11.2.3 Connecting between layers
11.2.4 Typical roles of conducting layers
11.3 Cell-based back-end design
11.3.1 Floorplanning
11.3.2 Identify major building blocks and clock domains
11.3.3 Establish a pin budget
11.3.4 Find a relative arrangement of all major building blocks
11.3.5 Plan power, clock, and signal distribution
11.3.6 Place and route (P&R)
11.3.7 Chip assembly
11.4 Packaging
11.4.1 Wafer sorting
11.4.2 Wafer testing
11.4.3 Backgrinding and singulation
11.4.4 Encapsulation
11.4.5 Final testing and binning
11.4.6 Bonding diagram and bonding rules
11.4.7 Advanced packaging techniques
11.4.8 Selecting a packaging technique
11.5 Layout at the detail level
11.5.1 Objectives of manual layout design
11.5.2 Layout design is no WYSIWYG business
11.5.3 Standard cell layout
11.5.4 Sea-of-gates macro layout
11.5.5 SRAM cell layout
11.5.6 Lithography-friendly layouts help improve fabrication yield
11.5.7 The mesh, a highly efficient and popular layout arrangement
11.6 Preventing electrical overstress
11.6.1 Electromigration
11.6.2 Electrostatic discharge
11.6.3 Latch-up
11.8 Geometric quantities advertized in VLSI
11.9 On coding diffusion areas in layout drawings
11.10 Sheet resistance
Design Verification
12.1 Uncovering timing problems
12.1.1 What does simulation tell us about timing problems?
12.1.2 How does timing verification help?
12.2 How accurate are timing data?
12.2.1 Cell delays
12.2.2 Interconnect delays and layout parasitics
12.2.3 Making realistic assumptions is the point
12.3 More static verification techniques
12.3.1 Electrical rule check
12.3.2 Code inspection
12.4 Post-layout design verification
12.4.1 Design rule check
12.4.2 Manufacturability analysis
12.4.3 Layout extraction
12.4.4 Layout versus schematic
12.4.5 Equivalence checking
12.4.6 Post-layout timing verification
12.4.7 Power grid analysis
12.4.8 Signal integrity analysis
12.4.9 Post-layout simulations
12.4.10 The overall picture
12.7 Cell and library characterization
12.8 Equivalent circuits for interconnect modelling
VLSI Economics and Project Management
13.1 Agenda
13.2 Models of industrial cooperation
13.2.1 Systems assembled from standard parts exclusively
13.2.2 Systems built around program-controlled processors
13.2.3 Systems designed on the basis of field-programmable logic
13.2.4 Systems designed on the basis of semi-custom ASICs
13.2.5 Systems designed on the basis of full-custom ASICs
13.3 Interfacing within the ASIC industry
13.3.1 Handoff points for IC design data
13.3.2 Scopes of IC manufacturing services
13.4 Virtual components
13.4.1 Copyright protection vs. customer information
13.4.2 Design reuse demands better quality and more thorough verification
13.4.3 Many existing virtual components need to be reworked
13.4.4 Virtual components require follow-up services
13.4.5 Indemnification provisions
13.4.6 Deliverables of a comprehensive VC package
13.4.7 Business models
13.5 The costs of integrated circuits
13.5.1 The impact of circuit size
13.5.2 The impact of the fabrication process
13.5.3 The impact of volume
13.5.4 The impact of configurability
13.5.5 Digest
13.6 Fabrication avenues for small quantities
13.6.1 Multi-project wafers
13.6.2 Multi-layer reticles
13.6.3 Electron beam lithography
13.6.4 Laser programming
13.6.5 Hardwired FPGAs and structured ASICs
13.6.6 Cost trading
13.7 The market side
13.7.1 Ingredients of commercial success
13.7.2 Commercialization stages and market priorities
13.7.3 Service versus product
13.7.4 Product grading
13.8 Making a choice
13.8.1 ASICs yes or no?
13.8.2 Which implementation technique should one adopt?
13.8.3 What if nothing is known for sure?
13.8.4 Can system houses afford to ignore microelectronics?
13.9 Keys to successful VLSI design
13.9.1 Project definition and marketing
13.9.2 Technical management
13.9.3 Engineering
13.9.4 Verification
13.9.5 Myths
13.10 Appendix: Doing business in microelectronics
13.10.1 Checklists for evaluating business partners and design kits
13.10.2 Virtual component providers
13.10.3 Selected low-volume providers
13.10.4 Cost estimation helps
A Primer on CMOS Technology
14.1 The essence of MOS device physics
14.1.1 Energy bands and electrical conduction
14.1.2 Doping of semiconductor materials
14.1.3 Junctions, contacts, and diodes
14.1.4 MOSFETs
14.2 Basic CMOS fabrication flow
14.2.1 Key characteristics of CMOS technology
14.2.2 Front-end-of-line fabrication steps
14.2.3 Back-end-of-line fabrication steps
14.2.4 Process monitoring
14.2.5 Photolithography
14.3 Variations on the theme
14.3.1 Copper has replaced aluminum as interconnect material
14.3.2 Low-permittivity interlevel dielectrics are replacing silicon dioxide
14.3.3 High-permittivity gate dielectrics to replace silicon dioxide
14.3.4 Strained silicon and SiGe technology
14.3.5 Metal gates bound to come back
14.3.6 Silicon-on-insulator (SOI) technology
Outlook
15.1 Evolution paths for CMOS technology
15.1.1 Classic device scaling
15.1.2 The search for new device topologies
15.1.3 Vertical integration
15.1.4 The search for better semiconductor materials
15.2 Is there life after CMOS?
15.2.1 Non-CMOS data storage
15.2.2 Non-CMOS data processing
15.3 Technology push
15.3.1 The so-called industry “laws” and the forces behind them
15.3.2 Industrial roadmaps
15.4 Market pull
15.5 Evolution paths for design methodology
15.5.1 The productivity problem
15.5.2 Fresh approaches to architecture design
15.6 Six grand challenges
15.7 Non-semiconductor storage technologies for comparison
Развернутое содержание цикла лекций № 2 «Архитектура высокопроизводительных микропроцессоров и систем на кристалле» -
Introduction to Computer Architecture and Quantitative Principles of Design.
-
Defining Performance of computer system
-
Relating Metrics: how to measure
-
MIPS, MFLOPs, throughput, reaction
-
Choosing Programs to Evaluate Performance, SPEC Benchmarks
-
Calculation of Total Execution Time
-
Amdahl’s law to estimate improvement in performance
-
Comparing & Summarizing Performance of computer system
-
Instruction Set Architecture (ISA) Principles, formal approaches, automatic ISA generation
-
RISC vs CISC – comparison of ISA
-
Operations & Operands of the Computer hardware
-
Representing Instructions in the Computer
-
Logical and Arithmetic Operations
-
Control Instructions
-
Supporting Procedure Calls
-
Load and Store operations
-
MIPS, IA-32 and ARM Addressing
-
Instruction Set Examples (CISC, RISC, Stream Processing)
-
MIPS instructions
-
IA-32 Instructions
-
ARM Instructions
-
DSP Instructions
-
GPU instructions
-
Pipelined Instruction Execution and latency problems.
-
An Overview of Pipelining
-
Basic 3-stage and 5-stage pipelines
-
SystemC and HDL description of pipeline
-
The MIPS, ARM Cortex and Pentium 4 Pipelines
-
Pipeline Hazards and Exceptions
-
A Pipelined Datapath, data hazards
-
A Pipelined Control, control hazards
-
Branch prediction techniques
-
Software and hardware tricks to overcome pipeline hazards
-
Exception implementation in pipelined architecture
-
Instruction Level Parallelism: Dynamic Hardware and Static Software Scheduling
-
Sources of parallelism in the code
-
Loops and parallel fragments
-
In-order and out-of-order execution
-
Multiple parallel pipelines of execution units
-
Superscalar (hardware-based) and VLIW (software-based) Architectures.
-
Superscalar and VLIW architectures
-
Tomasulo algorithm and hardware for hardware scheduling in superscalars
-
Software-based scheduling of execution in VLIW machines
-
MIPS 10000 superscalar CPU example
-
Intel Itanium 2 VLIW machine example
-
Instruction Level Parallelism: Static Compiler and Dynamic Hardware Scheduling
-
Loop unrolling to extract parallelism using compiler
-
Speculative execution over branch prediction
-
Static (compiler-based) and dynamic speculative execution
-
Hardware support for speculative execution in superscalars and VLIW machines
-
Arithmetic execution units in modern CPU and SoC
-
Signed/Unsigned Numbers
-
Arithmetic Operations
-
Floating-Point Arithmetic and hardware structure
-
FP units in the IA-32 machines
-
FP Coprocessors in MIPS and ARM
-
Memory Hierarchy and Cache Memory: The key to performance and versatility.
-
Introduction to memory subsystem in modern CPU and SoC
-
Caches (direct mapped, fully associative and set-associative)
-
Cache design in different types of processing cores (CPU, DSP, GPU)
-
Measuring and improving cache performance
-
System performance impact with efficient cache architecture
-
Main Memory and Virtual Memory Support. Memory subsystem implementation.
-
Virtual Memory concept and required additional hardware to support
-
A Common Framework for Memory Hierarchy: caches and virtual memory combined
-
Modern ARM and MIPS cores memory hierarchy in Systems-On-Chip
-
The Pentium 4 and AMD Athlon Memory Hierarchy
-
Symmetric Shared Memory Multiprocessors. Chip multiprocessors (CMP) and Systems-on-Chip
-
Programming multiprocessors (MP)
-
Single bus multiprocessors, multi-core CMP
-
System-on-Chips with homogeneous cores
-
High-performance and low-power designs of multi-core CMP
-
Multithreading in high-performance CPU and GPUs: Benefits and Price.
-
Multithreading in superscalars: improving the load of execution units
-
Multithreading implementation in Pentium and Xeon
-
Multithreading in GPU to compensate memory access latency
-
Multithreading versus CPU core replication
-
Structure and Performance of Input/Output Sub-System
-
Disk storage and non-volatile memory storage devices. RAID systems
-
Buses and Other Connections between Processors, Memory, and I/O Devices
-
Networks and USB interfaces
-
Interfacing I/O Devices to the Processor, Memory, and OS on SoC
-
I/O Performance Measurement
-
Designing an I/O System for embedded computers and SoC
-
Real stuff: Digital camera
-
Parallel Computing. Modern supercomputer architectures.
-
Clusters
-
Network connected MP
-
Network topologies
-
Real stuff: Google cluster
Достарыңызбен бөлісу: |