Энциклопедия авиации. Главный редактор: Г. П. Свищёв. Издательство: Москва, «Большая Российская Энциклопедия»



бет73/170
Дата12.06.2016
өлшемі14.24 Mb.
#129636
түріКнига
1   ...   69   70   71   72   73   74   75   76   ...   170

В. Н. Гончаров


Таблица

Рис. 1. ДВБ-102.

Рис. 2. М-4.

Рис. 3. 3М.

Рис. 4. {{ВМ}}

Рис. 5. М-50.

Рис. 6. М-17 «Стратосфера».

Рис. 7. Самолет «Геофизика».

Рис. 8. Транспортировка самолетом ВМ-Т контейнера с элементами конструкции ракеты-носителя «Энергия».

Рис. 9. Самолет М-17 «Стратосфера».

Эмблема самолетов Экспериментального машиностроительного завода имени В. М. Мясищева.

магистральный самолет — пассажирский, грузопассажирский, грузовой самолет основных (магистральных) авиалиний. Различают ближние, средние и дальние М. с. с дальностью полёта соответственно 1000—2500 км, 2500—6000 км, свыше 6000 км (до 11000 км и более). М. с. отличаются от самолётов местных воздушных линий увеличенной дальностью полёта, значительно большим числом пассажирских мест (большей грузоподъёмностью) .

магниевые сплавы. Первые М. с. на базе систем магний — алюминий — цинк и магний — марганец, содержащие до 10% алюминия, до 3% цинка и до 2,5% марганца, появились в начале XX в. (под названием «электрон», теперь мало употребляемым). Значение конструкционных промышленных материалов М. с. приобрели в конце 20 х — начале 30 х гг. В промышленных М. с. содержатся добавки алюминия, цинка, марганца, циркония, тория, лития, некоторых редкоземельных металлов, серебра, кадмия, бериллия и др. Общее количество добавок в наиболее легированных М. с. достигает 10—14%. М. с. подразделяют на литейные (для производства фасонных отливок) и деформируемые (для производства полуфабрикатов прессованием, прокаткой, ковкой и штамповкой).

М. с. — наиболее лёгкие из конструкционных сплавов, Плотность их колеблется от 1400 до 2000 кг/м3 (то есть примерно в 4 раза меньше плотности стали и в 1,5 меньше плотности алюминиевых сплавов). М. с. обладают высокими жёсткостью (наибольшая у сплавов магний — литий), теплоёмкостью, демпфирующей способностью.

Максимальный уровень механических свойств достигнут у М. с., легированных иттрием (прочность до 450 МПа). Сплавы этой системы, как и сплавы, легированные неодимом и литием, работают длительно до 300{{°}}С и кратковременно до 400{{°}}C. Модуль упругости М. с. колеблется в пределах 41—45 ГПа, модуль сдвига равен 16—16,5 ГПа. При криогенных температурах модуль упругости, пределы прочности и текучести М. с. увеличиваются, а удлинение и ударная вязкость падают, но не в такой степени, как это наблюдается у сталей.

При получении М. с. из-за высокого сродства магния с кислородом поверхность расплава защищают флюсами или специальными газовыми средами. Чтобы избежать горения металла, при непрерывном литье М. с. применяются газовые среды, а при фасонном литье в состав формовочных смесей вводят защитные присадки, кокили красят красками, содержащими борную кислоту. Отливки получают всеми известными способами. М. с. деформируются только после нагрева (исключение составляют сплавы магний — литий с содержанием лития больше 11%). Детали, узлы различных конструкций из деформируемых М. с. изготовляют механической обработкой, сваркой, клёпкой, объёмной и листовой штамповкой. При конструировании деталей из М. с. избегают острых надрезов и резких переходов сечений. Сварке не подвергаются только сплавы с высоким содержанием цинка.

Из-за высокого электроотрицательного потенциала и недостаточных защитных свойств оксидной плёнки М. с. требуют специальных мер для защиты от коррозии. М. с. повышенной чистоты пригодны для эксплуатации в морском воздухе. Некоторые М. с. склонны к коррозии под напряжением. Консервация деталей и полуфабрикатов осуществляется с помощью хроматных плёнок, жидких нейтральных обезвоженных масел, специальных смазок. М. с. пригодны для работы при криогенных, нормальных и повышенных температурах.

В авиационной технике М. с. служат материалом для деталей колёс, систем управления и крыла, корпуса летательного аппарата и двигателей. В 1934 в СССР был построен экспериментальный самолёт из М. с., который в течение четырёх лет выполнил более 600 испытательных полётов.

Лит.: Магниевые сплавы. Справочник, под ред. М. Б. Альтмана [и др.], т. 1—2, М., 1978.

Б. И. Бондарев, М. Б. Альтман, М. Е. Драц.


магнуса эффект (по имени немецкого учёного Г. Г. Магнуса, G. G. Magnus) — возникновение поперечной силы при обтекании вращающегося тела однородным потоком жидкости или газа. Эта сила направлена к той стороне вращающегося тела, на которой направления вращения и скорости набегающего потока совпадают. Впервые явление было объяснено в 1852 Магнусом, исследовавшим причины отклонения шаровых артиллерийских снарядов от расчётной траектории и показавшим, что оно обусловлена вращением такого снаряда, которое он получает вследствие случайных причин.

Качественно М. э. можно объяснить на примере вращающегося кругового цилиндра, обтекаемого потоком несжимаемой жидкости, имеющим скорость V{{}} на бесконечности (см. рис.). Эта задача эквивалентна обтеканию цилиндра потоком при наличии циркуляции скорости Г, значение которой пропорционально угловой скорости вращения цилиндра и, а её возникновение обусловлено силами вязкости. В этом случае, согласно Жуковского теореме, на цилиндр действует сила F, перпендикулярная направлению набегающего потока и равная {{}}V{{}}Г на единицу длины цилиндра ({{}} — плотность жидкости). В реальных условиях картина течения вокруг вращающегося тела сложнее и сопровождается отрывом потока, который вызван вязкими силами и зависит от Рейнольдса числа. Всё это затрудняет установление связи между Г и {{}} и получение достоверных количественных результатов. Структура течения ещё более усложняется при движении пространственного вращающегося тела.

Немецкий инженер А. Флетнер в 1922—1926 пытался использовать М. э. для приведения в движение корабля энергией ветра — на корабле вместо парусов были установлены быстро вращающиеся цилиндры-роторы, Испытания показали техническую пригодность корабля, но он оказался менее экономичным, чем обычные винтовые суда.

М. э. широко используется в спортивных играх — «кручёные» мячи в теннисе, «сухой лист» в футболе и т. д.



Достарыңызбен бөлісу:
1   ...   69   70   71   72   73   74   75   76   ...   170




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет