З. у. зависит от формы летательного аппарата, его размеров, режима полёта, состояния атмосферы, рельефа местности и т. д. Это явление не поддаётся полному моделированию в лабораторных условиях. Влияние отдельных факторов на З. у. изучается экспериментально при полётах сверхзвуковых самолётов и в аэродинамических трубах. Влияние З. у. на человека и животных изучается на специальных экспериментальных установках, имитирующих З. у. Теоретические методы исследования З. у. основаны главным образом на геометрической акустике, но с учётом нелинейных эффектов. Согласно теории З. у. возмущения, исходящие от самолёта в какой-либо момент времени, распространяются вдоль звуковых (или характеристических) лучей, образующих в пространстве некоторую коническую поверхность (см. Маха конус). Вследствие неоднородности атмосферы лучи искривляются, так что некоторые из них уходят в верхние слои атмосферы, не достигая поверхности Земли. Благодаря отражению лучей зона слышимости З. у. (зона AB на рис. 2) ограничена в боковом направлении по отношению к трассе полёта. Ширина этой зоны в зависимости от состояния атмосферы и режима полёта самолёта составляет 8—10 высот полёта. Отражением лучей объясняется также отсутствие З. у. на поверхности Земли при полёте самолёта с небольшой сверхзвуковой скоростью. При разгоне, развороте к других манёврах самолета возможно образование каустики, вблизи которой происходит локальное повышение избыточного давления из-за наложения волн давления друг на друга.
Интенсивность З. у. (см. Интенсивность звука) невелика и имеет порядок 0,1% от атмосферного давления при продолжительности нескольких десятых долей секунды. Однако внезапность, с которой человек воспринимает З. у., может вызывать у него отрицательную реакцию (испуг).
Лит.: [Жилин Ю. Л.], Звуковой удар, в кн.: Авиационная акустика, М., 197З
Ю. Л. Жилин. С. Л. Чернышёв.
Рис. 1. Зависимость избыточного давления p от времени i в ближней (1) и дальней (2) зонах.
Рис. 2. Проекция траекторий звуковых на плоскость, нормальную вектору скорости полета.
звукоизоляция в летательных аппаратах — обеспечивает в них допустимые в соответствии с нормативными требованиями уровни шума при заданном акустическом нагружении внешней поверхности (см. Нормы шума). Как правило, З. выполняется в виде многослойных звукоизолирующих конструкций, включающих слои с высокой отражающей способностью (так называем стенки), слои звукопоглощающих материалов и воздушные промежутки. Наиболее широко используются двухстенные звукоизолирующие конструкции (см. рис.): функции одной стенки выполняет обшивка фюзеляжа, другой — панели интерьера, Требуемое ослабление передаваемой в салон звуковой энергии достигается установкой звукоизолирующих конструкций разной эффективности в соответствии с действующими на внешнюю поверхность фюзеляжа акустическими нагрузками.
Схема типовой звукоизолирующей конструкции салона летательного аппарата: 1 — обшивка фюзеляжа; 2 — воздушные промежутки; 3 — слои звукопоглощающих материалов; 4 — силовой элемент (шпангоут); 5 — виброизоляция; 6 — панель интерьера.
звукопоглощающие материалы — материалы, в которых осуществляется необратимый переход звуковой энергии в тепловую. В составе звукоизолирующих и звукопоглощающих конструкций З. м. используются в авиации для снижения уровней шума в пассажирском салоне, кабине экипажа и отсеках летательного аппарата (см. Звукоизоляция). Наиболее широкое распространение получили лёгкие З. м. из супертонкого волокна на основе стекла, капрона н базальта в виде холстов или стёганых матов разной толщины. Акустические свойства рыхловолокнистого материала зависят от типа и толщины волокна, от объёмной плотности материала, определяемой степенью его поджатия. Параметрами, определяющими акустические свойства рыхловолокнистых З. м., являются постоянная распространения и волновое сопротивление (см. Импеданс акустический).
Зеленко Екатерина Ивановна (1916—1941) — советская лётчица, старший лейтенант, Герой Советского Союза (1990, посмертно). Окончила Оренбургскую Военную авиационную школу лётчиков (1934). Летала на самолётах 7 типов.
Наряду со службой в авиачасти испытывала самолёты и авиационное оборудование. Участвовала в советско-финляндской войне. Входила в состав группы лётчиков, проводивших войсковые испытания ближнего бомбардировщика Су-2. Участница Великой Отечественной войны. Совершила 40 боевых вылетов. 12 сентября 1941 вела на бомбардировщике неравный бой с 7 истребителями противника, сбила один из них, а другой уничтожила тараном. Погибла. Это первый в истории авиации воздушный таран, совершённый женщиной. Награждена орденами Ленина, Красного Знамени. Бронзовый бюст в с. Анастасьевка Сумской области. Её именем название одна из малых планет.
Е. И. Зеленко.
земная скорость — скорость начала связанной системы координат летательного аппарат относительно какой-либо из земных систем координат.
«земной резонанс» вертолёта — самовозбуждающиеся связанные колебания лопастей винта вертолёта в плоскости его вращения и фюзеляжа или другой поддерживающей винт, конструкции, вызывающие перемещения втулки винта в плоскости его вращения. Колебания лопастей происходят из-за наличия вертикальных шарниров или собственно упругости (при бесшарнирном креплении), перемещения втулки в результате колебаний фюзеляжа вертолёта на шасси или упругих деформаций конструкции. Термин «З. р.» возник в связи с тем, что разрушения вертолётов и автожиров наиболее часто возникали на земле при колебаниях на шасси.
При работе на месте для одновинтового вертолёта возможны 2 зоны неустойчивости, соответствующие двум частотам собственно поперечных колебаний фюзеляжа на шасси: p1 ≈ 0,3{{ω}} и p2 ≈ {{ω}}, где {{ω}} — максимальная частота вращения винта. Устранение «З. р.» в первом случае достигается одновременным увеличением демпфирования лопастей винта и шасси. Во втором случае, когда амортизаторы шасси не работают, увеличением демпфирования только в вертикальных шарнирах зона неустойчивости не устраняется. Достаточный запас от {{ω}} до нижней границы зоны неустойчивости обеспечивается за счёт подбора частот собственно колебаний фюзеляжа и лопастей.
На режимах движения вертолёта по земле (руление, разбег, пробег) появление «З. р.» возможно из-за снижения частот собственно колебаний в результате изменения динамической реакции катящегося пневматика. «З. р.» может возникнуть также при колебаниях вертолёта с отрывом пневматиков от земли. Появление «З. р.» возможно и в полёте, если частоты собственно колебаний конструкции меньше {{ω}}. При этом перемещения втулки в плоскости вращения вызываются упругими колебаниями фюзеляжа (при продольной схеме вертолёта), вала верхнего винта (при соосной схеме), крыла или фермы (при поперечной схеме), хвостовой балки (при одновинтовой схеме с рулевым винтом, имеющим шарниры, аналогичные вертикальным шарнирам несущего винта).
При расчётном определении границ зон неустойчивости движение лопастей может быть описано системой однородных линейных дифференциальных уравнений 2 го порядка с периодичным коэффициентом. При числе лопастей винта n{{≥}}3 они сводятся к уравнениям с постоянным коэффициентом Для n = 2 характерно наличие дополнительных зон неустойчивости. Исследование «З. р.» для них затруднено, так как переход к уравнениям с постоянными коэффициентами неизвестен.
Для подтверждения отсутствия «З. р.» проводят специальные испытания вертолёта, при которых обследуют все критические режимы его работы.
Лит.: Вертолеты. Расчет и проектирование, под ред. M. Л. Миля, кн. 2, М., 1967; «Земной резонанс» вертолетов, М., 1970 (Тр. ЦАГИ, №. 1087); Михеев Р. А., Расчет вертолетов на прочность, ч. 3, M., I973; Акимов А. И., Берестов, Л. М. Мнхеев Р. А., Летные испытания вертолетов, М., 1980.
Ю. А. Мягков. Э. В. Токарев.
зенитная артиллерия — вид артиллерии, предназначенный для уничтожения воздушных целей (самолётов, вертолётов и других летательных аппаратов). Применяется для защиты войск и объектов от ударов средств воздушного нападения противника. При необходимости З. а. используется для борьбы с наземным противником (танками). Организационно З. а. может входить в состав частей и соединений противовоздушной обороны сухопутных войск и Военно-морского флота.
Зарождение и развитие З. а. связано с появлением средств воздушного нападения. Первоначально стрельбу по самолётам вели из обычных 76-мм полевых, а также морских пушек, установленных на специальных станках. Одновременно разрабатывались зенитные пушки. В числе первых была создана 76-мм зенитная пушка (1914) русским конструктором Ф. Ф. Лендером на Путиловском заводе. В 1915—1916 для обеспечения стрельбы З. а. сконструированы и поступили на вооружение приборы (курсомеры, дальномеры), разработаны специальные таблицы для определения координат движущейся воздушной цели и поправок при ведении огня. В 1916 для обеспечения ночной стрельбы стали применяться зенитные прожекторы. Основной тактической единицей являлась батарея из 2—4 орудий. После Первой мировой войны в связи с бурным развитием авиации продолжался процесс быстрого количественного и качественного развития З. а. (см. табл.). В 30 е гг. в армиях были созданы зенитные орудия малого (20—60 ми), среднего (60—100 мм) и в некоторых странах — крупного (свыше 100 мм) калибра.
Во время Второй мировой войны эффективность З. а. возросла, что связано с применением снарядов с механическими и радиовзрывателями и с поступлением на вооружение станций орудийной наводки (СОН). В после военный период во всех развитых странах продолжалось совершенствование З. а. и средств управления огнём. Начальные скорости снарядов превысили 1000 м/с, скорострельность некоторых зенитных систем достигла 3000 выстрелов в 1 мин. Основным способом для З. а. стала стрельба по данным радиолокационных СОН. К 60 м гг. в связи с увеличением высот, скоростей и повышением манёвренности реактивной авиации эффективность огня З. а. (особенно среднего и крупного калибров) по таким целям заметно снизилась. Борьба с ними стала возлагаться на зенитные ракетные комплексы. Малокалиберная З. а. с её мобильностью, простотой обслуживания и надёжностью в бою остаётся на вооружении как средство борьбы с воздушными целями на малых высотах и в первую очередь при прикрытии войск; на вооружении многих армий имеются многоствольные зенитные установки преимущественно на самоходном шасси, которые оснащены радиолокациоными и счётно-решающими приборами, обеспечивающими ведение эффективного огня при любых погодных условиях. Такие установки применяются, как правило, совместно с лёгкими зенитными ракетными комплексами, что позволяет повысить эффективность борьбы зенитных средств с современными скоростными целями на малых высотах.
Лит.: Агренич А. А., Зенитная артиллерия, М., 1960; Латухин А. Н., Современная артиллерия, М., 1970; Андерсен Ю. А., Дрожжин А. И., Лозик П. М., Противовоздушная оборона сухопутных войск, М., 1979.
В. И. Шитников.
Табл. — Основные данные образцов зенитной артиллерии по этапам развития
Государство
|
Образец
|
Масса снаряда, кг
|
Начальная
скорость снаряда, м/с
|
Максимальная досягаемость, км
|
Скорострельность (выстрелов в 1 мин)
|
по высоте дальности
|
Начало Первой мировой войны
|
Великобритания
|
40-мм АЗП* «Виккерс»
|
0,91
|
610
|
4,6
|
7,1
|
150
|
Германия
|
75-мм ЗП**
|
5,5
|
625
|
6,3
|
11
|
13
|
Россия
|
76-мм ЗП
|
6,5
|
588
|
5,5
|
8,3
|
15
|
Франция
|
75-мм ЗП
|
7,2
|
529
|
6,5
|
11
|
15
|
Начало Второй мировой войны
|
СССР
|
25-мм АЗП
|
0,28
|
900
|
2
|
6
|
250
|
|
37-мм АЗП
|
0,732
|
908
|
6,5
|
8,5
|
180
|
|
76,2-мм ЗП
|
6,В1
|
813
|
9,25
|
14,6
|
15—20
|
|
85-мм ЗП
|
9,2
|
880
|
10,23
|
15,65
|
15—20
|
Великобритания
|
40-мм АЗП Mk2
|
0,91
|
823
|
5
|
9,87
|
120
|
|
94-vм ЗП Mk3
|
12,7
|
792
|
14
|
17
|
20
|
|
133-мм ЗП Mk2
|
36,25
|
854
|
17,38
|
24,6
|
7—10
|
Германия
|
20-мм АЗП
|
0,115
|
900
|
2
|
4,4
|
120—150
|
|
37-мм АЗП
|
0,635
|
820
|
4,2
|
6,4
|
60-70
|
|
88-мм ЗП
|
9
|
820
|
11
|
15
|
15-20
|
|
105-мм ЗП
|
15,1
|
880
|
12,8
|
17,7
|
До 15
|
США
|
40-мм АЗП M1
|
0,875
|
875
|
4,8
|
9,9
|
120
|
|
90-мм ЗП M2
|
10,6
|
670
|
10,79
|
17,7
|
25
|
|
120-мм ЗП М1
|
22,7
|
945
|
14,17
|
25,3
|
10-12
|
1980-е годы
|
СССР
|
57-мм спаренная самоходная ЗСУ-57-2
|
2,3
|
1000
|
5
|
12
|
350
|
|
57-мм АЗП
|
2,8
|
1000
|
5
|
12
|
120
|
|
100-мм ЗП
|
15,6
|
900
|
15
|
21
|
15
|
|
130-мм ЗП
|
33,4
|
970
|
19,5
|
27,5
|
12
|
США
|
20-мм 6-ствольная АЗП «Вулкан"
|
0,12
|
1050
|
2
|
5,4
|
3000
|
|
40-мм спаренная самоходная АЗП М42
|
0,96
|
875
|
4,8
|
9,9
|
240
|
Великобритания
|
20-мм АЗП Mk20
|
0,12
|
1100
|
2
|
7
|
2000
|
ФРГ
|
35-мм спаренная самоходная АЗП «Гепард»
|
0,55
|
1175
|
5,5
|
11
|
1100
|
АЗП — автоматическая зенитная пушка, ** ЗП — зенитная пушка,
зенитная управляемая ракета (ЗУР) — крылатая ракета класса «поверхность (земля, море) — воздух»; беспилотный управляемый летательный аппарат с реактивным двигателем для поражения с высокой эффективностью воздушных целей всех типов (самолёт, вертолёт, аэростат, дирижабль, крылатая ракета и др.); составная часть зенитного ракетного комплекса. К ЗУР относятся также противоракеты, предназначенные для поражения баллистических ракет.
Основные элементы ЗУР: планёр (корпус и аэродинамические поверхности), бортовая аппаратура управления и наведения (БАУН), взрыватели, боевая часть, реактивная двигательная установка. Боевая часть, БАУН и двигательная установка размещаются в корпусе. Аэродинамические поверхности планёра служат для удержания ЗУР на траектории наведения (или для изменения траектории полёта) и стабилизации ЗУР. В ЗУР некоторых типов, предназначенных для поражения воздушных целей на больших высотах (30—40 км и более), в дополнение к аэродинамическому управлению или вместо него применяются газодинамические рули. Аэродинамические схемы ЗУР могут быть различными (например, «нормальная», «утка»), траектория полёта ЗУР, а также состав и принцип действия БАУН определяются методом и способом наведения. В ЗУР используются следующие способы наведения: теленаведение (командное и по лучу), самонаведение (активное, полуактивное, пассивное) и их сочетание (комбинированное наведение). БАУН совместно с наземными средствами или самостоятельно-(в зависимости от способа наведения) непрерывно определяет взаимное положение ЗУР и цели, рассчитывает отклонения от заданной траектории и вырабатывает команды управления. Основу БАУН во всех вариантах составляет автопилот, включающий датчики, преобразовательно-усилительные устройства и рулевые приводы. Боевая часть ЗУР может быть обычной или ядерной. Обычные боевые части ЗУР по принципу действия делятся на фугасные, осколочные, фугасно-осколочные, кумулятивные и др. Они могут быть направленного действия (в основном боевые части осколочного и фугасно-осколочного типов). Подрыв заряда осуществляется в районе цели с помощью взрывателя неконтактного типа, который по принципу действия может быть активного, полуактивного или пассивного типа. В отдельных типах ЗУР, предназначенных для поражения целей на небольших дальностях, могут устанавливаться контактные взрыватели. В двигательных установках ЗУР используются твердотопливные или жидкостные ракетные двигатели. Могут применяться также реактивные двигатели и других типов. По числу ступеней ЗУР бывают одно- и -двухступенчатые, а противоракеты — и трехступенчатые. Современные ЗУР противосамолётной обороны имеют стартовую массу от нескольких кг до нескольких т, максимальная скорость полёта до 1700 м/с, дальность полёта до 700 км, выcота полёта 30—40 км и более.
В СССР первая ЗУР была создана и испытана к середине 1948. В конце 40 х — начале 50 х гг. появились первые ЗУР и в ряде других стран (США, Великобритания, Франция).
В. И. Шитников.
Зимин Георгий Васильевич (р. 1912) — советкский военачальник, маршал авиации (1973), профессор (1974), доктор военных наук (1972), Герой Советского Союза (1943). В Советской Армии с 1931. Окончил Ленинградскую военно-теоретическую школу лётчиков (1933), Энгельсскую военную школу лётчиков (1935), Высшую военную академию (1948). Участник боёв в районе озера Хасан. Во время Великой Отечественной войны был командиром авиаполка, командиром авиадивизии. Совершил 249 боевых вылетов, сбил лично 18 самолётов противника и 20 в составе группы. После войны 1 й заместитель главнокомандующего противовоздушной обороной (1960—1966), начальник Военной командной академии противовоздушной обороны имени Г. К. Жукова (1966—1981). Депутат Верховного Совета СССР в 1958—1966. Награждён 3 орденами Ленина, орденом Октябрьской Революции, 4 орденами Красного Знамени, орденами Суворова 2 й степени, Кутузова 2 й степени, 2 орденами Трудового Красного Знамени, орденом Отечественной войны 1 й степени, 2 орденами Красной Звезды, медалями.
Соч.: Истребители, М. 1988.
Г. В. Зимин.
змейка — фигура пилотажа: слитно выполненные противоположные развороты летательного аппарата на заданный угол в горизонтальной плоскости (см. рис.). После каждого разворота крен изменяется на противоположный.
знаки опознавательные — 1)
Достарыңызбен бөлісу: |