Глоссарий (негізгі терминдер, анықтамалар). Бұл оқу-әдістемелік құжаттар жиынтығында мына негізгі терминдер мен анықтамалар пайдаланылған. Оларды студент оқу семестрі бойы зерделеп, білуі қажет. Адсорбция



бет3/7
Дата27.06.2016
өлшемі0.64 Mb.
#160049
1   2   3   4   5   6   7

Молекулалық зерттеулер кейінгі кезде басталды. Оның көмегімен нуклеин қышқылдарының қызметі, химиялық құрылысы арасындағы тығыз байланыстар бары анықталды. Қазір барлық биохимиялық процестер молекулярлық деңгейде өтеді. ДНҚ мен РНҚ түзілуі және рибосомада өтетін белоктың түзілуі бұған мысал бола алады.

Сонымен жасуша ядросы – жануарлар мен өсімдіктер жасушаларының ең басты, маңызды құрамбөлiктерiнiң бiрi, онда тектiк аппарат, немесе нәсілдік (генетикалық) хабар (информация) сақталады. Тектiк хабарды сақтап, таратады, ұрпақтан ұрпаққа бередi. Жасуша әдетте бiр ядролы болады. Организмде екi, көп ядролы жасушаларда кездеседi. Олар қарапайымдарда, омыртқалы жануарлардың бауырында, сүйек кемігінде, бұлшық ет, дәнекер ұлпаларда кездеседі. Жалпы ядро пiшiнi жасушаға сәйкес шар тәрiздi, домалақ, текше, призма тәрiздi жасушаларда созылыңқы, эллипстей болады, жасушада әр түрлi: дәл ортасында (домалақ, жайпақ, текше жасушалар), төменгi (призма пiшiндi жасушалар), шеткi (май жасушалар) бетiнде орналасады. Барлық жасушаларда ядро сілті бояуларымен жақсы боялады. Ядро көлемі жасуша жасына, қызметіне, ұлпа түріне байланысты болады.



Ядро құрылысын 2 жағдайда: бөлінбеген және бөліну кезінде (митозда) зерттейді. Бөлінбеген, немесе 2 бөліну арасы кезеңіндегі ядроны кезеңаралық (интерфазалық) деп атайды.

Кезеңаралық жасушаның ядросы кариолеммадан (қабығы, қабықшасы), ядрошықтан, хроматиннен (дөңгелек денешік), кариоплазмадан (ядро шырыны, iркiлдек шырын) тұрады.

Кариолемма ядроны цитоплазмадан бөліп тұрады, жарық микроскопта ол ядроны айнала қоршап тұрған өте жұқа шеңбер тәрізденіп көрінеді. Электронды микроскопта 40-50 мың есе ұлғайтып қарағанда кариолемма екі – сыртқы, ішкі жарғақтардан тұратыны, аралығында қоймалжың затқа толы жіңішке кеңістік бары анықталды. Кейінгіні жарғақ аралық, немесе перинуклеарлық кеңістік деп атайды. Кариолеммада көптеген ұсақ тесіктер, немесе саңылаулар (порлар) болады. Осы саңылаулар арқылы ядродан цитоплазмаға және керісінше, белоктар, көмірсулар, майлар, ніклеин қышқылдары, су және әртүрлі иондар өтеді. Яғни, ядро мен цитоплазманың арасында үздіксіз зат алмасу процесі жүреді. Кариолемма барлық организмдер, бактериялар, көк-жасыл балдырлардан басқа, жасушалар ядроларында міндетті түрде болатын құрылым. Кариолемманың сыртқы жарғағында эндоплазмалық тормен байланысқан рибосомалар орналасады. Сонымен кариолемма мына қызметтерді: ядро құрамын цитоплазмадан шектейді; цитоплазмадан ядроға биополимерлерді өткізеді; тасымалдаушы, немесе транспорттық қызмет атқарады.

Ядрошық ядро ішіндегі домалақ келген тығыз денешік, мөлшері 1-2 мкм-ден 10 мкм дейін, кейде оданда көп шамаға өзгеруі мүмкін. Оның саны негізінен біреу, кейде екеу болады, бірақ жасушаның әртүрлі тіршілік әрекетіне орай, олардың саны да өзгеріп отырады. Ядрошықтың құрамына белок және РНҚ енеді. Мұнда РНҚ синтезі жүреді, әрі ядрошық белок синтезіне де қатысады. Ядрошық тек бөлінбейтін жасушада ғана қалыптасып, соларда көрінеді, ал жасушаның бөліну кезеңінде ол жойылып кетеді. Онда 70% цитоплазмалық РНҚ, 30% ядролық РНҚ синтезделеді.

Хроматин ұсақ түйіршіктер түрінде бөлінбеген өсімдіктер, жануарлар жасушалары ядроларында тірі қалпында, бекітіп, бояп барып зерттегенде ғана көрінеді. Хроматин атауын 1880 ж. Флемминг берді. Ол сілті (гемотоксилин) бояуларымен жақсы боялып, негізгі бояғыштарды жақсы сіңіретіндіктен және оның қышқылдық қабылдау қасиеті болатыны, ДНҚ-дан тұратыны, хромосома ДНҚ молекуласынан құралатыны айқындалды. Сондықтан хроматинді хромосомаларды түзетін зат деп түсіну керек. Алғашқы рет 19 ғасырдың 70 жылдары белгілі болған “хромосома” (гректің бояу, дене) атауын 1883 ж. ұсынған неміс ғалымы В.Вальдейер болды. Өсімдіктер мен жануарлар жасушаларында хромосомалар таяқша тәрізді, ұзынша, көлемі әр организмде әртүрлі, негізінде 0,2 мкм-ден 50 мкм-ге дейін барады. Адам хромосомасының ұзындығы 1,5 – 10 мкм. Өте ұсақ хромосомалар кейбір қарапайымдарда, саңырауқұлақтарда, балдырларда, ал ең үлкені жарғақ қанатты жәндіктер мен қосмекенділерде болады. Хромосомалардың құрылымын зерттеу үшін қазір көптеген әдістер қолданылуда. Солардың бірі әртүрлі бояулар арқылы хромосомаларды анықтап айыру, немесе ажырату. Ажырату әдісі арқылы адам хромосомасының құрылысы зерттеліп, 46 хромосома жеті топқа (А, В, С, Д, Е, Ғ, У) бөлінетіні, хромосоманың картасы жасалып, гендердің (тек) хромосома бөлімдерінде орналасатыны анықталды. Бұл әдіс хромосомаларды 3 түрге – ең үлкен, кішірек және акроцентрлі деп бөліп, оларды бір-бірінен жақсы ажыратты. Бұл әдістің кемшілігі сол, ол ұқсас хромосомаларды ажырата алмайды екен. Негізгі бояулармен бояғанда оның кейбір бөлшектері, кейде тұтас хромосоманың өзі, әртүрлі әсерлестік байқатады.

Хромосоманың жекеленген бөліктері қанығыңқы бояладыда (тығыздалған түрін, немесе формасын) гетерохроматин, ал тығыздалмаған, әлсіз боялған, болбыр түрін эухроматин деп атайды. Хроматин кариолеммаға тақау, әрі кариоплазмада біркелкі орналасады. Интерфаза кезінде хроматиндер бірнеше түрге бөлінеді. Көңіл аударатын жай, ол хроматин тым босаң болған сайын, жасушада солғұрлым түзілу (синтетикалық) процестері жоғары болады. Ал, жасуша бөлінгенде тығыздалған хроматиннен хромосомалар түзіледі. Ол кезде жасушада ешқандай синтетикалық процестер өтпейді. Бұдан бірнеше тұжырым жасауға болады. Біріншіден, жасуша хромосомалары интерфазада белсенді (активті), тығыздалмаған, босаң күйде болады. Бұл уақытта ядрода ДНҚ-ның транскрипция (ДНҚ жазылған генетикалық хабарды жұмсаудың алғашқы кезеңі; жасушада белок синтезі жүру үшін рибосомаға ДНҚ-да жазылып, сақталып тұрған белоктың құрылымы жөніндегі хабар хабарлаушы РНҚ-ға көшіріліп жазылуын айтады) және репликация (ДНҚ молекуласының екі еселенуі) процестері өтеді. 2-ден, жасуша бөлінгенде хромосомалар ырықсыз (пассивті), тығыздау күйінде болады. Бұл уақытта аналық жасушадағы хромосомалар тең бөлінеді, кейін олар түзілген жас жасушаларда пайда болады. Жалпы ядроның қызметі ДНҚ молекуласының тұқым қуалау хабарының 2 еселенуі мен жасушадан жасушаға берілуіне және ДНҚ арқылы жүретін транскрипция процесіне бағынышты болады. Хроматиннің химиялық құрамына негізінде ДНҚ, арнаулы хроматин белогі – гистон және РНҚ кіреді. Олардың көлемі 1:1,3:0,2 қатынастарымен белгіленеді. Хроматин өзінің химиялық құрамы жағынан ДНҚ мен белоктың күрделі қосылысы ДНП (дезоксинуклеопротеид) болып саналады.

Жасушалардың бөліну кезеңінде хроматин түйіршіктерінен жіптер – хромосомалар түзіледі. Хромосомалар белоктан және ДНҚ тұрады. Әртүрлі жануарлар түрлері үшін хромосомалар саны тұрақты болады. Мысалы, папортник өсімдігінде хромосомалар саны 50-ге, тұт ағашында – 308, өзен шаянында – 198 жетті. Ең аз хромосома (біреу) аскариданың бір түрінде, өсімдіктер ішінде – күрделі гүлділер тұқымдасының бір түрінде 4 хромосома кездеседі. Бір жасушаның ядросында хромосомалар әрқашанда қосарланып жүреді, яғни екі-екіден бірдей, немесе гомологты болып, бір жұп құрайды. Мысалы, арпада – 14, сұлыда – 42, томатта – 24, жеміс шыбыны дрозофилада – 8, үй шыбынында – 12, тауықта – 24, үй қоянында – 44, ешкіде – 60, қойда – 54, шимпанзеде – 48, ал адамда – 46, немесе 23 жұп түзіледі. Басқаша айтқанда әрбір жұпта бірдей 2 хромосома біріккен деп түсіну қажет. Әртүрлі жұптағы хромосомалардың шамасы, пішіні, үзбелер орналасуы жағынан бірінен-бірінің едеуір ерекшелігі байқалады.

Бір ядрода болатын барлық хромосомалар – хромосома жиынтығы деп аталып, организмнің әрбір түріне тән болады. Дене (сомалық) жасушаларының ядросында хромосомалар жиынтығы қосарлы, немесе диплоидты, ал жыныстық жасушалар ядросында олар, әр уақытта сыңар, жалқы, немесе гаплоидты болып келеді. Гаплоидтыда әрбір жұптан бір ғана хромосома қалады. Оргаизмдердің әрбір түрі үшін диплоидты және гаплоидты хромосомалар саны тұрақты болады. Хромосомалар арқылы ұрпақтан ұрпаққа нәсілдік тұқым қуалаушылық қасиеттері беріледі. Хроматин белокты синтездеуге қатысады. ДНҚ синтезінің өту ұзақтығы әртүрлі жануарлар мен өсімдіктерде түрліше болады. Мысалы, сүтқоректілер жасушасында бұл процес 6-10 сағатқа созылады, осы уақыттың ішінде ДНҚ-ның әрбір жеке молекуласы өзіне ұқсас екінші молекуланы жасап шығарады. Демек, синтездің басталуына дейін бір хромосоманың құрамында бір молекула, яғни ДНҚ-ның бір ғана жіпшесі болса, синтез аяқталғаннан кейін әрбір хромосоманың құрамында ДНҚ-ның мүлдем бірдей екі жіпшесі болады. Әрбір хромосоманың екі еселену процесінің мәні де осында.

Хромосомалардың морфологиясын митоздың метафаза сатысында жақсы көруге болады. Оның әрқайсысы бірнеше бөліктерден құралған, бір-бірімен үзбелене бөлінген созылыңқы тығыз денешік. Онда бірінші, екінші реттік кермені, немесе центромерді (гректің бөлік), немесе кинетохорды ажыратады. Хромосоманың әрқайсысы бұратылған ДНҚ-ның хроматидтер, немесе жас хромосомалар деп аталатын 2 жібінен (молекуласынан) құралады. Кейде хромосомалардың шетінде кішкентай денелер – хромосома серіктері кездеседі. Оның ең жіңішкерген жері, бірінші үзбе деп аталады. Бұл үзбе хромосоманы екі иыққа бөледі. Сондықтан хромосоманы – метацентрлі (екі иығы тең кезі), субметацентрлі (иықтары тең болмаса), акроцентрлі (бір иығы жетілмесе), телоцентрлі (таяқшаға ұқсас, бір иінді) деп ажыратады.

Қазір хромосома денесінде ұзынша орналасқан элементтер жөнінде әртүрлі деректер бар. Полинем ғылыми болжамы (гипотеза) хромосоманың денесі бір – бірімен шиыршықтана орналасқан бірнеше ұзынша жіпшелерден тұрады десе, унинем болжамы хромосоманың бойында орналасқан бір құрылымның барын дәлелдейді. Унинем болжамына қарсы пікірдегілер мұның генетикалық ұғымға қайшы келетіндігін айтуда. Бұл ілім хромосомадағы субхроматид элементтері бірдей ме? Егер бірдей болса, мұндай жағдайда тек тұқым қуалайтын өзгергіштігі (мутация) қалай жүреді? Әртүрлі болса, кроссинговер процесімен хромосомалар бойында тектердің орналасу принциптерімен қалай байланыстыруға болады ? – деген, көптеген сұрақтарға жауап бере алмады. (кроссинговер – айқас, мейоз кезінде гомологты хромосомалардың конъгациясынан өзара бөліктерімен алмасуы; конъюгация – хромосомалардың уақытша бір – бірімен жанасуы).

Тәжірибелік әдіс унинем болжамында айтылған тұжырымның растығын дәлелдеді. Мейоз хромосомасын ДНҚ-аза ферментімен бұзғанда бұл хромосоманың құрамында ДНҚ-ның бір ғана молекуласының бары айқындалды. Сонымен морфологиялық, физикалық, химиялық әдістер арқылы дрозофилдің бір хромосомасында бір ғана ДНҚ молекуласының бары, яғни дрозофилдің хромосомы унинемді екені анықталды.

Атқаратын қызметіне орай хромосомалар 2 бөлінеді: аутосомалар, немесе жыныстық хромосомалардан басқа хромосомалар, жыныстық хромосомалар. Жыныстықтардың белгілі бір жыныстың дамуына қатысы болғандықтан Х және У деп, белгіленеді.

Дене жасушаларының хромосомалар санының түрлік тұрақтылығы, саны, ұзындығы, морфологиялық белгілерінің жиынтығы – кариотип деп аталады. Интерфазада хроматиннің кейбір бөлігі өте тығыздалған болып көрінеді. Оны 1949 ж. Барр ашып, жыныс хроматині деп атады. Ол әйелдердің жұмыртқаклеткаларында кездеседі. Жыныс хроматині ұрықтың жынысын ерте ажыратуға мүмкіндік береді. Сондықтан ол медицинада кең қолданылады.

Кариоплазма, немесе ядро шырыны кариолемма ішіндегі және ядроның қуысын қоймалжың затпен толтырып тұратын сұйық бөлімі. Оның құрамына су, минералды тұздар иондары, ферменттер, белоктар, көмірсулар, витаминдер, басқада органикалық заттар кіреді. Жарық және электронды микроскоптарда кариоплазма біртектес мөлдір зат болып көрінеді.

Әдебиеттер

1.Бет. 99-181. 2. Бет. 77-128. 3. Бет. 40-106. 5. Бет. 128-200. 6. Бет. 97-141.

7 дәріс тақырыбы – Тұрақты және тұрақсыз қосындылар

Жалпы сұрақтары: Жасушаның тұрақты, тұрақсыз қосын дыларының құрылысы және қызметі.

Дәрістің қысқаша жазбасы.

Тұрақты қосындылар (органелла, органоид)-арнайы қызметтер атқаратын, құрамында әртүрлi молекулалар саны бар, мөлшерi 20 нм-ден 10 мкм дейiнгi жарғақшалы, жарғақшасыз құрылым.

Жарғақшалыларға - цитоплазмалық тор (эндоплазмалық ретикулум), тақташалар кешенi (Гольджи аппараты), митохондрий, лизосома, пероксисома, жарғақшасыздарға - рибосома (полирибосома), жасуша орталығы, цитоқаңқа элементтерi (микротүтiкше, микро-, аралық өскiндер (филаменттер) жатады.

Органоидтар цитоплазманың тұрақты бөлігі, өздеріне тән қызметтер атқарып, кейбіреуі организмнің әр жасушасында кездессе, ал басқалары тек арнаулы жасушаларда болады. Сондықтан оларды жалпы және арнайы деп бөледі. Жалпыға – митохондрийлер, эндоплазмалық тор, Гольджи аппараты, лизосома мен рибосомалар, центросома (жасуша орталығы), микротүтікшелер, микрофибриллдер, ал арнайы түріне – миофибриллдер, нейрофиламенттер, тонофибриллдер, кірпікшелер, қылаяқтылар және микроқылшықтылар жатады.



Цито-, эндоплазмалық торды (грек. жасуша, iшкi; ретикулум) 1945ж. К.Р.Портер ашты. Жұқа жарғақшалар цитоплазма iшiнде жайпақ ұзынша түтiкшелi, көпiршiктi жүйе түзiп орналасады. Онда ферменттер жүйесi көп болатындықтан белок қоюлығы өте жоғары болады. Эндоплазмалық тордың (ЭПТ) даму деңгейi, құрылыс ерекшелiгi әртүрлi жасушалардың атқаратын қызметiне сәйкес өзгерiп тұрады. Оның үш–түйiршiктi, түйiршiксiз (тегiс), бiр-бiрiмен байланысқан жерiнде өткiншi түрлерi болады.

Түйiршiктi ЭПТ барлық жарғақша, жасушадан шығатын белоктар түзiлуiн, белок молекулаларының бастапқы ферменттер арқылы ыдырауын, генетикалық ақпаратты иРНҚ тiлiнен белоктағы амин қышқылының тiлiне аударуынан кейiнгi өзгерiсiн қамтамасыз етедi. Жайпақ жарғақша, қуыс, түтiкше көпiршiктерден құралған. Қуыстарының енi 20 нм жуық, диаметрi бiрнеше мкм жетуi мүмкiн. Бұл ЭПТ атқаратын қызметiне орай, өзгерiп отыратынын көрсетедi. Гиалоплазмада рибосомалар, полисомалар түйiршiктi ЭПТ жарғақшасымен байланысып орналасады, қуыстарды (цистерналарды) жұқартатын ерекше белоктар сақтайды. Түйiршiктi ЭПТ аталық жасушадан басқа барлық жасушаларда кездеседi, әсiресе, арнайы белок түзетiн (асқорыту ферменттерiн бөлетiн) ұйқы без ацинустары бездi эпителийi, коллаген, басқа белоктар түзетiн фибробластар мен иммуноглобулиндер бөлетiн плазмалық жасушаларда жақсы байқалады. Жасушалар цитоплазмасында шоғырланған эндоплазмалық торға негiздiк боялу тән. Нейрондарда ол бояғыш сүйгiш негiз, «Ниссль денешiгi» аталып, жарық микроскопта жақсы көрiнедi.

Түйiршiксiз ЭПТ-ды 20-100 нм диаметрлi түтiкше, өзекше, цистерна, көпiршiкше ұштасқан жарғақшалар торы түзедi, олардың бетiнде рибосомалар болмайды. Олар липидтердi, гликогендi, холестериндi түзедi; iшкi, сыртқы әсерлерден пайда болған заттарды уытсыздандырады; кальций иондарын жинақтап, атқаратын қызметiне қарай, әр түрлi шоғырландырады. Кейiнгiнi стероидты гормондар бөлетiн бүйрек безi қыртыс затындағы жасушалардан, ен Лейдиг жасушаларынан, аналықбездегi лютеоциттерден көруге болады.

Өткiншi (көшпелi) ЭПТ қалыптаса бастаған Гольджи аппараты бетiнде түйiршiктi ЭПТ-дың түйiршiксiз түрiне ауысу үлескiсiде кездеседi. Мұнда түтiкшелер бөлшектерге бөлiнiп, көмкөрiлген тасымалдаушы көпiршiктер құрады, олар ЭПТ материалын Гольджи аппаратына тасиды.

Гольджи аппаратын 1898 жылы итальян ғалымы Камилло Гольджи «iшкi тор тәрiздi аппарат» деп атады. Ол күрделi жарғақшалы тұрақты қосынды. Үш негiзгi элементтерден - жайпақ цистерналар бумасынан (түрi иiлген дискi тәрiздi, диаметрi 0,5-5 мкм, 3-30 бума құрады. Бума кеңiстiгi 15-30 нм, дөңес жағымен ядроға, ойыс бетiмен - плазмолеммаға қарайды); торсылдақтардан (шар тәрiздi жарғақшамен қоршалған элементтер, диаметрi 40-80 нм, iш тығыздығы орташа, цистернадан бөлiнiп, түзiледi); секрет бөлетiн көпiршiктерден (iрi, диаметрi 0,1-1,0 мкм, жарғақшамен қоршалған шар тәрiздi құрылым, бездi жасушаларда жетiлген Гольджи аппараты цистернасынан бөлiнедi) құралады. Бұл элементтердiң бәрiн диктиосома (грек. тор) деп атайды. Арнайы секрет бөлетiн жасушаларда Гольджи аппараты ядродан жоғары орналасады, үстiңгi бетi арқылы секреттер экзоцитоз (жасушаның түйiршiктi, көпiршiктi секреция түрiнде зат бөлу процесi) жолымен бөлiнiп шығады. Гольджи аппараты полисахаридтер, гликопротеиндер (гликокаликс, сiлекей) түзедi; түйiршiктi эндоплазмалық тордан тасымалданатын көмiрсу құрамбөлiктерiн гликопротеиндерге қосады (оны ақтық ферменттер арқылы ыдырау деп атайды); фосфаттар тобына (фосфорлану), май қышқылдарына (ацилирлеу), сульфат қалдығына үстеу (сульфаттау) жүргiзедi, белок молекулаларын жартылай ажыратады; секреттiк өнiмдердi конденсациялап, оның түйiршiктерiн құрады; жаңа пайда болған түйiршiктердi жарғақшалармен қамтамасыз етедi. Гольджи аппаратынан белоктар басты үш ағында: бұрын алғашқы лизосомалар аталған гидролазалық көпiршiктермен; плазмолеммаға көмкөрiлген көпiршiктер құрамында; секрет бөлетiн түйiршiктерге қабығын жоғалтатын көмкөрiлген көпiршiктермен тасымалданады.

Митохондрийдi (хондриосом, хондриомит, хондриоконт) 1850 ж. Р.А. Келликер «саркосома» деп атағанымен, оған осы атауды (грек. жiп, дән) 1898 ж. чех ғалымы Бенда бердi. Ол стероидтар биотүзiлуiне, май қышқылдары тотығуына, нуклеин қышқылдары түзiлуiне қатысады. Сопақша (эллипс), шар -, таяқша-, жiпше тәрiздi, басқада түрлi болып, өзгермелi келедi. Енi 0,2-2 мкм, ұзындығы 2-10 мкм, саны 1-ден 500000 дейiн жетедi (әр жасуша түрiне орай өзгередi), цитоплазмада диффузды, қуат көп керек жерлерге тақау орналасады. Митохондрий сыртқы және iшкi жарғақшадан тұрады. Сыртқы жарғақша тегiс, өткiзгiш қабылетi жоғары (молекулаларды цитозольден жарғақша аралық кеңiстiкке өткiзуде жақсы байқалады), iшкiсi көп терең қатпарлар - кристалар (қалыңдығы 20 нм, оксисома деп аталатын заттар болады, түрi тақташа тәрiздi) құрады. Криста айналасын толтыратын сұйықты-митохондрий матриксi деп атайды. Митохондрийлер оттексiз тотығу процесiнде қоректiк заттан қуат (энергия) өндiредi. Сондықтан оларды жасушаның күш беретiн станциясы деп атайды. Оның матриксi, iшкi жарғақшасында тотығу процесiн қамтамасыз ететiн ферменттер болады. Олар ерiктi қуат бөледi. Қуат аденозинтрифосфатаза молекуласында жиналады. Бұл молекулалар барлық жасушаларға таралады, кейiн аденозинтрифосфатаза ыдырауынан бөлiнетiн ерiктi қуат жасушалардың өсуiне, тiршiлiк етуiне, организмнiң барлық қызметiн орындауға қолданылады. Онда тасымалдаушы, тыныс алу тiзбегi ферменттерi, сукцинатдегидрогеназа, АТФ тағы басқалар сақталады. Митохондрий матриксiнде (қуысты толтыратын тығыздығы орташа бiркелкi ұсақ түйiршiктi заттар, онда жүздеген ферменттер, митохондрий рибосомалары, түйiршiктерi, басқа тұрақты қосындылардан ажыратуға болатын митохондрий ДНҚ-сы болады. Жалпы ДНҚ хромосомадағы организм қасиеттерiн ұрпаққа берiп, тұқым қуалауда маңызды рөл атқарады.

Лизосоманы (грек. ерiту, дене) 1949 ж. Де Дюв Кристиан Рене ашты. Жасуша iшiндегi iрi молекулалардың қорытылуына қатысады. Оның диаметрi 0,5-2 мкм, түрi (фаго-, аутофаголизосома, көп көпiршiктi - мультивезикулярлы, қалдық денешiктер), құрылысы қорытылатын материалдарға қарай өзгермелi болады. Лизосомаларды анықтау үшiн ыдырату ферменттерiн табады.

Фаголизосома лизосомамен фагосоманың қосылуынан пайда болады, оны гетерофагосома деп атайды. Ол жарғақшалы көпiршiк, жасушадан тыс кездесiп, iшiнде қорытылуға арналған материалдар сақтайды.

Бұл материалдың бұзындысын гетерофагия деп атайды. Кейiнгi ұлпа жасушаларының қызметiнде маңызды рөл атқарады. Лизосома ферменттерiнiң тапшылығы жасушаларда қорытылмаған заттар (гликоген, гликолипид, гликозаминогликан) жинап, қажеттi қызметiн бұзып, организмде неше түрлi аурулар туғызады. Ол алдымен нейрондар, макрофагтар, фибробластар, остеобластар бұзылуына, олар қаңқа, жүйке жүйесi, бауыр, көкбауыр құрылысын, қызметiн бұзуға жеткiзедi. Гетерофагияда бүйрек түтiкшелерiндегi жасушалар, кеңiстiгiндегi белоктарды ұстап алып, амин қышқылдарына дейiн ыдыратып, қайтадан қанға қайтарады, ал қалқанша без жасушалары белок матрицасынан йод сақтайтын гормондарды бөлiп алып, қайтадан қанға сiңiрiлуiне қатысады. Бұл құбылыстың бәрi ағзалар қызметiнiң күрделi бұзылуына жеткiзедi.

Лизосома мен аутофагосома қосылуынан аутофаголизосома түзiледi. Ол бұзылатын жасушаның құрамбөлiктерiн сақтайтын жарғақшалы көпiршiктен тұрады. Бұл материалдарды қорыту процессi аутофагия деп аталады. Кейiнгi митохондрий, рибосома шоғырларын, жарғақша бөлшегiн қорытатындықтан жасуша құрылымын тұрақты жаңартуды қамтамасыз етедi. Жасуша құрамбөлiктерiн қоршауға арналған жарғақшаларды түйiршiктi ЭПТ бередi.



Мультивезикулярлы денешiк iрi (диаметрi 200-800 нм) шартәрiздi жарғақшалармен қоршалған - вакуоль, құрамында жарық, орташа тығыздықты матрикске батырылған ұсақ (40-80 нм) көпiршiктер болады. Денешiк матриксi ыдырату ферменттерiн сақтайтындықтан аталған ұсақ көпiршiктердiң бiртiндеп бұзылуын қамтамасыз етедi.

Қалдық денешiктер деп, цитоплазмада ұзақ болатын, жасушадан тысқа шығарылатын қорытылмай қалған материалды сақтайтын лизосомаларды айтады. Кейбiр жасушалар (нейрон, кардиомиоцит) қартайған кезiнде лизосомаларында липофусцин түйiршiктерiн көп жинайтындықтан «қартаю пигменттерi», «тозғандар» деп те аталады.

Пероксисомалар (микроденешiктер) құрылысы жағынан лизосомаларға ұқсас, жарғақшалы шартәрiздi, ұзынша көпiршiктер, диаметрi 0,05-1,5 мкм, iшiнде өзегi (нуклеоид) бар, кристальды құрылысы, талшық, түтiкшелерден тұратын бiркелкi, ұсақ түйiршiктi құрылым (матриксi, құрамы өзгермелi 15 ферменттер, iшiндегi ең маңыздыларына–пероксидаза, каталаза, Д амин қышқылының оксидазасы, уратоксидаза жатады). Диаметрi 0,05-0,25 мкм ұсақ пероксисомалар жасушаларда, диаметрi 0,3-1,5 мкм iрiлерi–гепатоциттерде, макрофагтарда, бүйрек түтiкшелерiнiң жоғарғы жағындағы жасушаларда кездеседi. 5-6 күнде бiр жаңарып тұрады. Пероксисомалар митохондрийлермен бiрге жасушада оттегiнi қайта пайдаланудың басты орталығы болып келедi. Тотыққан амин қышқылдары, көмiрсулар, басқа қосындылар жасушаларда өте күштi сутек қос тотығын құрып, пероксисома каталазасы көмегiмен оны ыдыратып, оттегiн және суды бөледi. Пероксисомалар жасушаны сутек қос тотығы жарақаттануынан қорғайды. Бүйрек пен бауырда iрi пероксисомалар көптеген заттарды залалсыздандыруда басты рөл атқарады.

Рибосоманы электронды микроскоп көмегiмен 1953 жылы румын ғалымы Паладе Джордж Эмиль ашып, 1958 жылы Робертс оны «рибосома» деп атаған. Ол ұсақ (диаметрi 15-30 нм), тығыз жарғақшасыз тұрақты қосынды, амин қышқылдары полипептид тiзбегiнде қосылып, белок түзiлуiн қамтамасыз етедi. Әр рибосома қос ассимметриялы бiрлiктен (субъединица) тұрады. Кiшiсi телефон трубкасы тәрiздi, РНҚ-ны байланыстырады, үлкенi ожау тәрiздi, пептид тiзбегi қосылуын катализдейдi. Рибосомалар цитоплазмада жалқы кездесуi, шоғырлар (полирибосомалар, полисомалар) құруы мүмкiн. Рибосоманың белок түзуi кiшi бiрлiктiң иРНҚ үлескiсiмен байланысынан басталады. Одан кейiн рибосома иРНҚ тiзбегiн бойлай жылжиды, әр кезеңде рибосомаға тРНҚ молекулалары антикодон иРНҚ кодонына сай комплементтi болатындықтан, арнайы қосылуы жүредi. Полипептидке 20-ға жуық амин қышқылдары 1 секундте қосылады. Орташа көлемдi белок молекуласы 20-60 секундте түзiледi. Белок тiзбегi аяқталысымен, бiрлiктер ыдырайды, иРНҚ-дан босайды. Бiр рибосома белок түзiлуiнде болған кезде, жаңа рибосома бос иРНҚ орын алады. Белсендi тасымалдаудағы иРНҚ полисомаларда орналасады.

Жасуша орталығы (цитоцентр, центросома, лат. орталық, дене; бұл атауды 1888 ж. Бовери ұсынған) қос қуыс цилиндр тәрiздi, ұзындығы 0,3-0,5 мкм, диаметрi 0,15-0,2 мкм құрылым–центриольден (центросома құрайтын екi денешiк) құралған. Олар бiр-бiрiне жақын өзара перпендикулярлы жазықтықта орналасады. Әр центриоль (лат. орталық нүкте, орталық) жартылай бiрлескен микротүтiкшелерден, көлденең белок көпiршесi бар 9 триплеттен тұрады. Центриольдер ортасында микротүтiкшелерi болмайды. Әр центриоль триплетi шар тәрiздi диаметрi 75 нм денешiктермен–серiктермен (сателлиттер) байланысқан. Одан таралған микротүтiкшелер орталық сфераны (лат. орталық, грек. шар) құрады. Бөлiнбеген жасушада қос центриольдер (диплосома) байқалып, ядроға тақау орналасады. Жасуша бөлiнер алдында кезеңаралықтың түзiлу кезеңiнде қос центриольдiң екi еселенуi жүрiп, әр жетiлген центриольге тiк бұрыш құрып, жас жетiлмеген процентриольдер қалыптасады. Алғашқы процентриольде 9 жалқы микротүтiкшелер болып, кейiн олар триплеттерге айналады. Одан соң қос центриоль жасуша бетiне тарап, митозда бөлiну ұршық микротүтiкшелерiн құратын орталық болып есептеледi. Сонымен центросома жасушаның күрделi бөлiну процесiне қатысады.

Цитоқаңқаны өте күрделi микротүтiкшелер, микро,- аралық өскiндер, микроперделiктер жүйесi түзедi. Жарғақшасыз тұрақты, басқа күрделi құралған қосындылар (кiрпiкшелер, талшықтылар, жасуша орталығының микробүрлерi), жасуша байланыстары (десмосома, жартылай десмосома, белдеу десмосомы) оның құрамына кiрiп, жасушалар түрiн сақтап, қажет болса өзгерте алады; жасушалар құрамбөлiктерiн бөледi, жылжытады; жасушаға одан заттарды тасымалдайды; жасушалардың қозғалысын қамтамасыз етедi, жасушааралық қосындыларға қатысады.

Микротүтiкшелер цитоқаңқаның ең iрi құрамбөлiгi. Қуыс цилиндр тәрiздi құрылым, түрi ұзын (бiрнеше мкм) түтiк тәрiздi, диаметрi 24-25 нм-ге жуық, қабырғасының қалыңдығы 5 нм, кеңiстiгiнiң диаметрi 14-15 нм. Жасушалар түрiн, беттерiнiң қарама-қарсылығын сақтап, құрамбөлiктердi бөлу, жасушааралық тасымалдауды, митозда кiрпiкшелер, хромосомалар қозғалысын қамтамасыз етедi, басқа тұрақты қосындылардың (центриолилер, кiрпiкшелер) негiзiн құруға қатысады.

Микроөскiндер жұқа белок жiпшелерi, диаметрi 5-7 нм, цитоплазмада жеке, тор, шоғыр тәрiздi орналасады. Қаңқа бұлшықетте жұқа микроөскiндер тәртiпке келтiрiлген шоғырлар құрады, қалың миозин өскiндерiмен өзара iс-қимыл жасайды. Көптеген жасушаларға, плазмолемма астында орналасқан ақтық тор қоюланған аймаққа тән. Микроөскiндер бұлшықет жасушаларының жиырылуын, цитоплазма мен плазмолемма ақтық торы байланысын қамтамасыз етiп, цитоплазма iшiндегi тұрақты қосындылар тасымалдайтын көпiршiктердi, басқа құрылымдарды ауыстырып отырады; жасушалардың белгiлi қаттылығын қамтамасыз етедi; цитоплазманы бөлу үшiн жиырылғыш тартылуын қалыптастырады; кейбiр тұрақты қосындылардың негiзiн құрады; жасушааралық қосындылар құрылымын құруға қатысады.

Аралық өскiндер химиялық жағынан берiк, орнықты, қалыңдығы 10нм-ге жуық белок жiпшелерi, құрылысы әр түрлi жасушаларда ұқсас болғанымен, басты айырмашылығын молекулалық массасынан, химиялық қасиетiнен көруге болады. Иммуноцитохимиялық әдiс антиденешiктермен аралық өскiндердiң әр түрлi класстарын көрсетедi. Аралық өскiндер класында ұқсастық табылып, қатерлi iсiк жасушалары қай ұлпаға жататыны белгiленiп, оны емдеу, диагноз қою жолдары анықталды. Олар мына негiзгi қызметтердi атқарады: құрылымдық - ұстап тұру, тiректiк, цитоплазмада белгiлi орындарға тұрақты қосындыларды бөлудi қамтамасыз етедi; ұлпалар жасушалары арасында пiшiн бұзылуы күшiн бiркелкi бөлудi қамтамасыз етiп, кейбiр жасушалар бұзылуын тежейдi; мүйiз заттар құруға қатысады; нейрон өсiндiлерi түрiн бiрқалыпты, бұлшық ет мысжiпшелерiн (миофибриллы) ұстап тұрады, оларды плазмолеммаға бекiтедi, ол оның жиырылуын қамтамасыз етедi.

Әдебиеттер

  1. Бет. 99-181. 2. Бет. 77-128. 3. Бет. 40-106. 5. Бет. 128-200. 6. Бет. 97-141.

8 дәріс тақырыбы – Жасушаның тіршілік әрекеттері.

Жалпы сұрақтары: Жасушаның қызметтік жүйелері: қозғалыстық, сіңіру, бөліп шығару, энергетикамен қамтамасыз ету, белокты синтездеу.

Дәрістің қысқаша жазбасы. Жасушаның тiршiлiк әрекеттерi белгiлерiне - заттек алмасуы, қозғалысы, көбеюi, өсуi, тiтiркенгiштiгi, тозуы, өлуi, түзiндi (секрет) бөлуi (секрециясы), бейiмделуi, бөлiнуi жатады.

Жасуша ашық жүйе, себебi ол сыртқы ортамен зат, қуатпен алмасады. Алмасудың сыртқы, iшкi түрi болады. Сыртқы алмасуда-заттардың сiңiруi, шығарылуы, iшкi алмасуда-жасушада бұл заттардың химиялық өзгеруi жүредi.

Заттек алмасуы (метаболизм-лат. өзгеру) тiрi организм құрамбөлiгiнiң үздiксiз түзiлiс процесiн (анаболизм-грек. көтiрiлу), жартылай ыдырау процесiн (катаболизм-грек. төмен түсу) қосады. Организм тiршiлiк ету үшiн әр уақытта қуат (қолдаушы, қызмет) қажет. Оны аса қуатты қоспа-аденозинтрифосфат (АТФ) жеткiзедi. Ол қуат қорын ассимиляцияда құралатын органикалық заттардың (көмiрсу, май, белок) ыдырауынан (диссимиляция) алады. Ассимиляция-заттарды жасуша бойына сiңiру. Ол екi жолмен жүредi. Алғашқыда бейорганикалық заттардан (СО2, Н2О, NН3) органикалық заттар-қоректер түзiледi. Мұндай қабілетi бар жасушалар автотрофты деп аталып, жасыл өсiмдiктерде кездеседi. Екiншiсiнде бейорганикалық заттардан органикалық түрi түзiлмейдi. Жасуша дайын басқа көмiрсу, май, белоктармен қоректенедi. Бұл құбылыс жануарлар жасушаларына тән. Оларды гетеротрофты деп атайды. Заттек алмасуы арқасында жасуша ортадан қоректi заттарды қабылдап, ыдыратып, бойға сiңiрiп, қажетсiзiн жасушадан шығарып отырады. Заттек алмасуынсыз тiршiлiк болуы мүмкiн емес. Ол-химиялық реакциялар жиынтығы болып, организмдегi заттар, қуат өзгерiсiн туғызады.

Заттек алмасуы-осмос, диффузия, фагоцитоз, пиноцитоз, сiңiрiлумен iске асады. Осмос - шалаөткiзгiш жарғақ арқылы ерiтiндiнiң өтуi. Диффузия - екi зат түйiскенде бiрiне-бiрiнiң араласуы. Осмос, диффузия жолдары жасуша қабығының көмегiмен жүредi.



Фагоцитоз атауын 1882 жылы И.И. Мечников ашты. Жануарлар организмiнiң қорғануға бейiмдiлiгi. Фагоциттер бөгде бөлшектер мен микробтарды, бұзылған жасушалар қалдығын тұтып қалып, қорытады. Фагоцитоз қарапайым бiр (жасуша цитоплазмасы қоректiк заттарды толық орап алады), көпжасушалы организмдерде қоректену және ас қорыту қызметiн атқарады. Онда қоректiк заттар жасуша қабығына жанасады. Жанасқан жерде ойыс пайда болады. Ол бiрте-бiрте iшiне қарай тереңдеп, жасуша қабығынан үзiлiп, жасуша цитоплазмасына түседi. Жасуша цитоплазмасына жарғағымен қоршалып түскен құрылымды-фагосома деп атайды. Оның тағдыры жасушаның тұрақты қосындысы - лизосомаға байланысты болады.

Пиноцитоз - сұйықты жұту. Бұл атауды 1931 ж. Люис бердi. Оның екi - эндоцитоз және экзоцитоз түрiн ажыратады. Эндоцитоз түрiнде жасушаны қоршап жатқан ортадағы ерiтiндi бөлшектер ұсталады, ал экзоцитозда жасуша түйiршiктi, көпiршiктi секреция түрiнде сұйық бөлiп шығарады.

Сiңiрiлу ащы iшектiң кiлегейлi қабығындағы, бүйрек өзекшелерiндегi жасушаларда өтедi. Олардың бос жоғарғы бетiнде көптеген микробүрлер болады. Олар сiңiру бетi көлемiн екi есе ұлғайтады.

Жасушаның қозғалысы организм iшiндегi заттарды тасымалдауда байқалады. Оның белсендi және енжар түрлерi болады. Белсендi қозғалыс жасушаның ерекше түзiлiстерi-жалған аяқтар, қыл, шыбыртқы, кiрпiкше, жасушаны жиырылтатын фибриллдерге байланысты жүредi. Енжар қозғалыс жасушаның тiршiлiк қасиеттерiмен байланыссыз, механикалық себептер әсерiнен болады. Оған қан ағымымен қатар жүретiн қан жасушаларының қозғалысы жатады.

Жасушаның көбеюi - организмнiң өзiне ұқсас ұрпақ беру процесi. Ол екi: вегетативтi және жыныстық тәсiл арқылы жүзеге асады; вегетативтi көбеюде организм денесiнiң бiр бөлiгi үзiлiп, жаңа дарақ бередi, ал екiншi жыныстық жолмен көбейген кезде жыныс жасушасынан жаңа организм пайда болады.

Жасушаның өсуi организмде ассимиляция диссимиляциядан басым болғанда жүредi. Жасушаның саны көбейсе, организмнiң массасы артады. Жасушаның өсуi организмде бүлiнген жасушаларды алмастыруға, санын арттыруға байланысты өтетiн өзгерiс.



Тiтiркенгiштiк - жасушаның қалыпты тыныштық күйден күштi қызмет ету күйiне өтуi. Оны тудыратын және организм күйiне әсер ету арқылы өзгертетiн факторды - тiтiркендiргiш деп атайды.

Тiтiркендiргiштiң сыртқы түрлерiне: дыбыс, жарық, қараңғы, иiс, химиялық, электр тогы, ыстық-суық; ал iшкiсiне-ағзалар қызметтерiнiң өзгеруi, тағы басқалар жатады. Жасушаның тiтiркендiргiшке керiсiнше жылжу реакциясын - таксис деп атайды. Жарыққа берген әсерi - фотосинтез, ылғалға - гидротаксис, электр тогына - электро (гальвано) таксис, химиялық затқа - хемотаксис, қатты затқа - тигмотаксис, сәулеге - гемотаксис, сұйық затқа - реотаксис деп аталады. Жасушаны қатты, ұзақ тiтiркендiрсе, қабығы түрлi заттарды босатып, қалыпты қызметiн атқармайды. Митохондрийлерi бұзылып, жасушаның тыныс алуы бүлiнедi. Ол қуатты ферменттер арқылы ыдырау - гликолизден ала бастайды. Сондықтан толық қышқылданбаған өнiмдер (сүт қышқылы) жиналады. Жасушада қышқылдану басталады, ол нәрсiздендiру туғызады. Протеин ыдырауы жүредi. Жасуша құрылымын бұзады. Белоктар ыдырауы аммиак бөлiнуiн, қалыпты күйге қарағанда, 10 есе көбейтедi. Ол жасуша түгiлi бүкiл организмге зиянын тигiзедi. Жасушаға су жиналып, жасуша iсiнедi. Жасушаның мұндай күйiн - жансыздану қасы (паранекроз) деп атайды. Бұл қайтымды процес. Тiтiркендiрудi тоқтатса, жасуша қайтадан өз қалпына келе алады, әйтпесе жасуша керi дамиды (дегенерация), өлi еттенедi (некроз). Әр түрлi күйзелiс (дене қызуының көтерiлуi, қуат алмасуына қысым көрсету, вирусты жұқтыру, оттегi, глюкозаның жетiспеуi, тотықтырғыш, химиялық препарат, ауыр металл, басқалармен зақымдану) әсерлерiне барлық жасушалар дағдылы реакциямен жауап қайтарады, ол ядроны, цитоплазма құрамбөлiктерiн қамтиды. Бұл реакция негiзiнде тектердiң күрт өзгеруi байқалады. Ол ерекше күйзелiстi қорғау белоктарын түзудi күшейтедi.



Жасуша тозуында ДНҚ еселену қасиетiн жоғалтады, тiршiлiк циклiнiң түзiлу алды кезеңi бөгеледi. Бұл әрекеттер белгiсi туралы бiрнеше ғылыми болжамдар бар. Алғашқылар, жасуша тозуы, ондағы биотүзiлудегi қателiктердiң өте көп жиналу нәтижесi десе, екiншiлері - жасушалар өсу мүмкiншiлiгiн шектеліп, организмдi қатерлi iсiктен қорғау жолы басталады, үшiншiлерi - жасуша тозуы организм көлемiн тұрақтандыру тетiгi болады деуде. Жасушаның тозу, өлу белгiлерiне, көлемiнiң азаюы, көптеген тұрақты қосындылардың өзгеруi, iрi лизосомалар сақталуының көбеюi, бояутек, май тұрақсыз қосындыларының жиналуы, жарғақша өткiзгiштiгiнiң ұлғаюы, цитолазма мен ядроның көпiршiктенуi жатады.

Жасушаның өлуiнде басты екi түрлi құрылым өзгерiстерi - өлi еттену, физиологиялық (жоспарлы) өлу – апоптоз байқалады.

Өлi еттену себепшарттарына-қызудың көтерiлуі (гипертермия) және төмендеуi (гипотермия), оттегiнiң жетпеуi (гипоксия), қан келуінің төмендеуі (ишимия), зат алмасуы, химиялық препарат, механикалық жарақаттану және басқалардың күрт бұзылуы әсерiнен пайда болады.

Апоптоз түрлi дерттану, ұрық дамуы, жетiлген ұлпаларда байқалады. Ол жасушалардың қалыпты жетiлуi, қызметтiк белсендiлiгiн қолдайтын реттеу әсерлерi теңгерiшi бұзылғанда, себепшарттар (гормон, өсу және кейбiр цитокиндер (реттеушi зат, гликопептид) жетiспегенде, басқа жасушалар, жасушааралық заттар құрамбөлiктерi, басқалармен жанасуы жоғалғанда, жасушаның қалыпты тозуы өзгерiстерiнде; физиологиялық демегiштер әсерiнен, қатерлi iсiктердiң өлi еттену себепшартынан және басқаларда көрiнедi. Мұнда көңiл аударатын жай, олардағы ұлпалар телiмдiлiгiн сақтайды. Ұлпалардағы кейбiр жасуша заттары апоптозды демесе, ал ол заттар басқа жерде апоптозды тежейдi. Физикалық, химиялық қарқыны орташа себепшарттар (гипертермия, гипоксия, оксидант, токсин, ишимия, сәулелену) олардың қарқындылығын жоғарылатса, онда ол өлi еттенуге жеткiзедi. Әдетте апоптоз бұзылуының себебiне қалыпқа келмейтiн ДНҚ, зат алмасуының күрт ығысуы жатады. Апоптоздың пайда болуы кейбiр жұқпалы ауруларға, әсiресе, олардың вирустарына да байланысты болады.

Жасушаның секрециясы
Кез келген тірі жасуша белокты түзуге қабылетті. Белокты синтездеу (түзу) қабылеті тек өсіп келе жатқан жасушаларға ғана тән қасиет емес. Кез келген жасуша тіршілігінде белоктарды тұрақты синтездей алады. Өйткені, қалыпты әрекеттің барысында белок молекулалары біртіндеп жарамсыз болып, олардың қызметі мен құрылымы бұзылады. Белоктардың осындай жарамсыз болып қалған молекулалары жасушадан шығып қалады. Олардың орнын толық жарамды жаңа молекулалар басады да, жасушаның құрамы мен қызметі бұзылмай қала береді. Белокты синтездеу қабылеті тұқым қуалау жолымен жасушадан – жасушаға ауысады. Ол жасушада өмір бойы сақталады. Белоктың үлкен де, күрделі молекуласының синтезделуі қалай жүреді, қажетті амин қышқылдары қалай сұрыптап алынады, олар қалайша орын – орнына қойылып, белгілі бір тәртіппен қосылады деген сұрақтар таяуда ғана шешімі жоқ жұмбақ сияқты еді. Қазір бұл мәселелер негізінен анықталып, олардың шешілуі 20 ғасырдағы биология, биохимияның аса зор табысы болып саналады. Белоктар синтезі цитоплазмада болатын рибосомаларда жүреді. Белок синтезделу үшін рибосомаларға синтездің бағдарламасы, яғни ДНҚ-да жазылып сақталып тұрған белок құрылымы жөніндегі хабар жеткізіліп берілуі қажет. Белокты синтездеу үшін рибосомаларға осы хабардың дәлме – дәл көшірмесі жіберіледі. Бұл ДНҚ-да синтезделіп, оның құрылымын айнытпай көшіріп алатын РНҚ арқылы жүзеге асырылады. РНҚ нуклеотидтерінің орналасу жүйелілігі ген тізбегінің біріндегі нуклеотидтердің орналасу жүйелілігін дәлме – дәл қайталайды. Сөйтіп, сол геннің құрылымындағы хабар РНҚ-ға көшіріп жазылғандай болады. ДНҚ-да жазылған генетикалық информацияны жұмсаудың алғашқы кезеңін – транскрипция (көшіріп жазу) деп атайды. Рибосомаларға белоктың құрамы туралы хабар жеткізуші РНҚ-ны хабарлаушы РНҚ деп атайды. хРНҚ молекулалары белок синтезі өтетін жерге, яғни рибосомаларға қарай бағытталады. Белок жасалатын материалдар, яғни амин қышқылдарының ағыны да цитоплазмадан шығып, сонда барады. Жасуша цитоплазмасында әрқашанда тамақпен келген белоктардың ажырауы жүреді, оның нәтижесінде түзілетін амин қышқылдары болады. Амин қышқылдары рибосомаларға өздігінен емес, тасымалдаушы РНҚ-мен ілесіп барады. Нуклеотидтердің жүйелі орналасуы түріндегі хРНҚ-да жазылған белок құрылымы туралы хабар, одан әрі синтезделетін полипептидтік тізбектегі амин қышқылдарының орналасу жүйелілігі түріне көшеді. Бұл процесті трансляция (ол хабарлаушы немесе матрицалық РНҚ молекулалардағы нуклеидтердің бірізділігі түрінде “жазып алынған” генетикалық хабарларды “есептеу” арқылы өтеді) деп атайды. Рибосомалардағы трансляция тіліндегі хабарды белоктар тіліне көшіруде – рибосомалар хРНҚ-ға тізіліп тұрған жұмыртқа тәрізді ұзын молекуласының сол жақ ұшынан кірісіп, белокты синтездей бастайды. Белок молекуласы жиналған кезде рибосома хРНҚ-ның бойымен ілгері жылжи береді. Рибосома 50-100 ангстрем алға жылжыған кезде, хРНҚ-ның сол жақ ұшынан екінші рибосоманың соңынан жылжиды. Бұдан кейін хРНҚ-ға 3, 4, тағы солай, рибосомалар біртіндеп қосыла береді. Олардың бәрі бір ғана қызмет атқарады: бәрі де осы хРНҚ-да алдын ала жоспарланған белоктың бір түрін синтездейді. Рибосома хРНҚ бойымен оңға қарай неғұрлым ұзақ жылжыса, белок молекуласының бөліктері де солғұрлым көбірек “құрастырылады”. Рибосома хРНҚ-ның оң жақ ұшына барып жеткен кезде синтез аяқталады. Рибосома түзілген белокпен қоса хРНҚ-дан сырғып түседі. Бұдан кейін рибосома кез келген хРНҚ-ға кетеді (ол белоктың қандайда болмасын түрін синтездец алады), белок молекуласы эндоплазмалық торға түседі де, соны бойлай отырып, жасушаның белокты қажет ететін жеріне жеткізеді.

Жасуша жетiлуi (нақтылануы) генетикалық, эпигеномды, ұрықтық индукция, сұйықтық, жүйкелiк және гормондар әсерiнiң себепшарттарына байланысты жүредi.
Жасушаның бейімделуі

Тiкелей бөлiну - амитоз. Бұлардан басқа жасушаның бөлiну түрлерiне митоз, мейоз және эндомитоз жатады.



Әдебиеттер

1.Бет. 99-181. 2. Бет. 77-128. 3. Бет. 40-106. 5. Бет. 128-200. 6. Бет. 97-141.

9 дәріс тақырыбы – Жасушаның тіршілік циклі

Жалпы сұрақтары: Дене және жыныстық жасушалардың бөлінуі (митоз және мейоз).

Дәрістің қысқаша жазбасы. Ұрпақ қалдыру қызметi, тектiк хабарды ұрпақтан ұрпаққа беру жасуша циклi кезiнде қамтамасыз етiледi. Жасушаның бiр бөлiнуiнен екiншi бөлiнуiне дейiнгi кезеңдi, немесе бөлiнгенiнен өлгенiне дейiнгi мезгiлiн тiршiлiк, жасушалық цикл (грек. киклос – шеңбер, ТЦ) деп атайды.

ТЦ - таза митоз бөлiнуiмен екi бөлiну аралығы - кезеңаралық фазадан тұрады. Кезеңаралық фаза митозға қарағанда ұзақ, үш: түзiлу алды (митоздан кейiнгi (G1), түзiлу (S), түзiлу соңы (митоз алды (G2) кезеңдерiне бөлiнедi.



Түзiлу алды кезең жасушаның митозбен бөлiнгенiнен кейiн басталып, жасушаның қарқынды өсуi, белокпен РНҚ түзiлуiмен сипатталады. Жасуша қалыпты мөлшерiне жетiп, қажеттi тұрақты қосындыларын бұрыңғы қалпына келтiредi. Кезең бiрнеше сағаттан бiрнеше күнге дейiн созылады.

Түзiлу кезеңде ДНҚ екi еселенiп (репликация), белоктар (цитоплазмадан ядроға түсетiн, қайта түзiлген ДНҚ орайтын нуклеосоманы қамтамасыз ететiн гистондар) түзiлуi жүредi. Хромосомалар, центриольдер саныда екi еселенедi. Кезең көптеген жасушаларда 8-12 сағат iшiнде өтедi.

Түзiлу соңы кезең митозға дейiн жүредi. Жасуша бөлiнуге дайындалады. Бөлiну процесiне қажет центриольдер пiсуi, қуат қоры жиналуы, РНҚ, белоктар (тубулин) түзiле бастайды. Кезеңнiң ұзақтығы 2-4 сағат құрады.

Жасушаның күрделi бөлiнуi, митоз (mitosis, грек.-жiп), кариокинез 1-3 сағат iшiнде аяқталып, жас жасушаларға материалдарының тең бөлiнуiн қамтамасыз етедi. Митозда (кариокинезде) негiзгi: про-, мета-, ана-, телофазалар болады.



Профаза (көрiну) хромосома конденсациясынан басталып, жарық микроскопта хромосома жiпше тәрiздi құрылымдар болып көрiнедi. Әр хромосома қос паралель жатқан хроматидтерден (грек. түс, тәрiздi, ұқсас) тұрып, центромерлер (бөлiк) аймағында байланысады. Ядрошықпен ядро қабығы кезең соңында жоғалып кетедi, кариоплазма цитоплазма құрамымен араласып, миксоплазма (аралас) түзедi. Центриолилер жасушаның қарама - қарсы беттерiне ауысып, митоз ұршығы жiпшелерiн бере бастайды. Центромера аймағында ерекше белок кешендерi-кинетохорлар құрылады. Кинетохорларға ұршықтың кейбiр микротүтiкшелерi жабысатындықтан - кинетохорлар микротүтiкшелерi деп, жасушаның бiр полюсiнен екiншi полюсiне дейiн созылып орналасқан ұршық микротүтiкшелерiн - полюс микротүтiкшелерi, ал ұршықтан тыс жатып, жасуша ортасынан плазмалеммаға бағытталған микротүтiкшелердi - жұлдызша немесе нұр шашуы деп, атайды.

Метафазада хромосомалар конденсациясы ең жоғары деңгейге сәйкес, митоз ұршығы экватор аймағына шоғырланып, метафаза тақташасын немесе аналық жұлдыз бейнесiн құрады.

Анафазада хромосомалар бiр мезгiлде хроматидтерге бөлiне бастап, жасушаның қарама-қарсы полюстерiне 0,2-0,5 мкм/мин. жылдамдықпен ұршық микротүтiкшелерi бойымен беттейдi.

Телофаза кезiнде жас жасушалар ядролары қайта құрылып, бөлiнуi тоқтайды. Жас жасушалардың конденсияланған хромосомалар айналасына көпiршiктер жарғақшаларынан кариолемма қайтадан қалпына келедi. Онымен қалыптасудағы ламина байланысады, қайта ядрошықтар пайда болады. Ядро бiртiндеп үлкейiп, хромосома шиыршықсыздануы күшейiп, хроматинге айналады. Сөйтiп жасуша цитоплазмасы екiге бөлiнiп (цитотомия-грек. қақ айыру; цитокинез-грек. қозғалыс деп аталады), қос жас жасуша пайда болады.

Жасуша негiзiнен екi түрлi әдiспен бөлiнiп (митоз, амитоз), көбейедi. Митозды жоғарыда сипаттадық, екiншiсi, тiкелей бөлiну - амитоз. Бұлардан басқа жасушаның бөлiну түрлерiне мейоз, эндомитоз жатады. Амитоздағы бөлiну ұршықтың түзiлуiнсiз жүредi. Хромосома шиыршықтанбайды, ядро ұзарып, ортасы жiңiшкерiп, тiкелей екiге бөлiнедi. Одан кейiн жасуша цитоплазмасы бөлiнiп, бiр жасушадан екi жасуша пайда болады. Кейде жасуша ядросы бiрнеше рет тiкелей бөлiнiп, ал цитоплазмасы бөлiнбей қалады. Онда жасушаның бiрнеше ядросы болады.

Амитоздың - өндiру (генаративтi-жасап шығару; пайда болған жас жасушалар қайтадан митоз жолымен бөлiнiп, қалыпты қызметiн толық атқара алады), керi даму (өзгеру-дегенеративтi, жасушаның ыдырау, өлу процестерiне байланысты), қайта әсерленген (жауап, реактивтi-организмге қандай да болмасын әсерлер ықпалынан туады) түрлерi болады.

Мейоз жыныс жасушаларының бiрiнен соң бiрi жылдам жалғасатын екi–жою, теңестiру бөлiнуi. Онда қысқа кезеңаралық болып, түзiлу кезеңi болмайды. Сондықтан екiншi бөлiну алдында ДНҚ қосарлануы жүрмейдi.

Әр бөлiнуде про-, мета-, ана-, телофазалар болады. Мейоз митозға қарағанда өте ұзақ жүредi. Бiрiншi мейоз профазасының түрленуi өте күрделi өтiп, ұзақ уақыт алады. Кейiнгi бiрнеше күндерден жылдарға созылуы мүмкiн.

1-профазада ДНҚ молекуласының жекелеген бөлiгiнiң жаңадан пайда болған тiркестерiмен, бiр жұпқа жататын хромосомалар арасында үлескiлер алмасуы, рРНҚ, иРНҚ түзiлулерi, ядрошықтар белсендiлiгiмен сипатталады. Мұнда кариолемма сақталады. 1-профазада бес саты: лептонема, зигонема, пахинема, диплонема және диакинез болады.

Лептонемада (грек. жiңiшке, жiп) хромосомалар екi еселенген (қосплоид) күйде, жiңiшке, ұзын жекеленген жiп тәрiздес, ұшы жуан (оны хромомерлер деп атайды) болады.

Зигонемада бiр жұп хромосомалары бiр-бiрiне жанасып, ұзына бойы бiрiккен қос жiп тәрiздi қосылады. Бұндай қосылу - конъюгация деп аталады. Ол хромосоманың шетiнен, центромерлерден бастала алады.

Пахинемада (жуан) бiрiккен бiр жұп хромосомалар жұптасып-бивалент түзедi. Хромосомада екi хроматида, бивалентте екi хромосома болатындықтан, бұл бейне - тетрада деп аталады. Конъюгация бiтiп, хромосомалар ажырасуы басталады.

Диплонемада конъюгация соңындағы хромосомалар бiр-бiрiмен кейбiр нүктелерде ғана байланысады. Осы қиылысқан жерлердi - хиазмалар деп атайды. Оның тұсындағы айқасулар биваленттер құрамына кiретiн хромосомалардың бiр-бiрiнен толық ажырасуына бөгет жасайды. Осы кездегi тұқым қуалау ерекшелiктерiн, алмасуын - айқасу (кроссинговер) деп атайды.

Диакинезде (қозғалыс) биваленттер қысқарып, хромосома хроматидтерi болар-болмас қана байқалады. Жекеленген хромосомалар саны азайып, хиазмалар олардың ұшына ығысады.

1-метафаза ядро қабығының ыдырауынан басталады. Ядрошықтары жойылып, бөлiну ұршығының дамуы басталады. Хромосомалар экватор тақташасына шоғырланатындықтан, санауға қолайлы жағдай туады.

1-анафазада тек хиазмалар жоғалып, олар биваленттер ұшынан сырғып түседi, не болмаса метафазаның соңында үзiлiп қалады. Бұл кезең соңында хромосомалар саны әр полюсте гаплоидты болады.

1-телофазада хромосомалар полюске жетедi, ядро қалыптасады да, цитотомия басталады. Жас жасуша пайда болады.

Қысқа кезеңаралықта мейоздың екiншi бөлiнуiне дайындық басталады. Мұнда ДНҚ, белок-гистондардың түзiлуi жүрмейдi, бiрақ қуат жиналады, бөлiну ұршықтарына қажет белок–тубулиндер түзiледi. Одан кейiн мейоздың екiншi бөлiнуi басталады, ол митозға ұқсас өтедi.

Мейоздың митоздан айырмашылығы, бiрiншiден-кезеңаралығы қысқа, тiптi жоқ десе де болады; екiншiден-ядросы қатар екi рет бөлiнетiндiктен жасушадағы хромосомалар саны екi есе азаяды. Мейоз жолымен пайда болған төрт жыныс жасушадағы хромосомалар гаплоидты, олардың әр қайсысында бiр жұпқа жататын хромосомалар конъюгациясынан өзара бөлiктерiмен айқасуынан тұқым қуу қасиетi де әр түрлi болады. Эндомитоз митоздың бiр түрi, бұзылмаған ядро қабығы iшiнде бөлiну ұршығы құрылмай-ақ, хромосомалар саны көбейедi. Эндомитоз жиi қайталанса, хромосомалар саны айтарлықтай көбейедi, онда сақталатын ДНҚ екi есе өсiп, көпплоидты болады, ядро көлемi ұлғаяды. Көпплоидтылық митоз аяқталмай, қос ядролы жасуша цитотомиясы жүрмесе де болуы мүмкiн. Бұл жасуша қызметiнiң белсендiлiгiн көрсетедi. Жасушаның көпплоидтылығы бауыр, қуық эпителийi, ұйқы және сiлекей бездерiнiң соңғы бөлiмдерiндегi жасушаларға тән.



Әдебиеттер

1.Бет. 99-181. 2. Бет. 77-128. 3. Бет. 40-106. 5. Бет. 128-200. 6. Бет. 97-141.



10 дәріс тақырыбы – Жасушалардың жіктелуі (тұрақталуы), дерттануы.

Жалпы сұрақтары: Жасушалардың жіктелуі, оның себепшарттары (факторлары – генетикалық және эпигеномдық, ұрықтық демеуші, сұйықтық, жүйкелік және гормоналды)

Дәрістің қысқаша жазбасы. Ұрықтық ұлпада, мысалы өсімдіктің түзуші ұлпасында (меристема) немесе жануарлардың қалпына келу түзілімінде (бластеме), барлық жасушалар бірдей болады. Олардың бәрі түрлі заттектерді, әсіресе белоктар түзілуін үдетіп, өсуге, бөлінуге арнайы мамандануға бағытталған. Кейін олар дамудың әр жолына түсіп, атқаратын қызметтеріде өзгеше болады. Мұндай жасушалар арасындағы өзгешеліктердің пайда болуы жасушалардың жіктелуі деп аталады. Ал, ұрықтық жасуша тіпті ерекшеленіп, басқа жасушаларға айналады. Жасушадағы барлық процестер, оның ішіндегі жіктелуіде, ондағы (жасушадағы) генетикалық хабарларға орай жүреді. Ұрықтанған жұмыртқаклеткасы тектердің (ген) толық жиынтығын сақтайды, онымен бірге онда барлық хабарларда болады. Сондықтан ол келешек организмнің барлық қабылеттігіне (потенция) ие болғандықтан – омнипотентті (тотипотентті) деп аталады. Митоз бен жіктелудің арқасында олардан дененің барлық жасушалары құрылады. Митоз кезінде жас жасушаларға барлық тұқымқуалаушы хабарлар беріледі және жасушалар жіктелуі де бар қабылеттіліктерін жоғалтпайды. Организмдегі эксперимент арқылы тексерілген тірі жасушалардың бәріндегі ДНҚ құрамы немесе ондағы генетикалық хабарлар жұмыртқаклеткасындағыдай. Сондықтан олар өзара омнипотентті. Мысалы, сәбіз тамыры үлпершегінен бір жасушаны бөліп алып, одан жетілген өсімдік – сәбізді өсіруге болады. Бұлшық ет жасушасының ядросын немесе бақашабақ ішек эпителийі жасушаларын алып, оны алдын ала ядросы алынған белсендірілген жұмыртқаклеткасына ауыстырып салса, олардың кейбіреулері қалыпты бақашабақты түзеді. Бұл үлпершектегі, бұлшық еттегі және эпителийдегі жасушалар жіктелуінің қабылеттілігі организмдегі барлық жасушалардың құрылуына мүмкіндігі барын көрсетеді, олар бір-біріне омнипотентті. Сондықтан жасушалардың жіктелуінде қабылеттілік жоғалмайды, олар тек шектеледі. Генетика тұрғысынан бір дарақтағы біркелкі жасушалар арасындағы морфологиялық, физиологиялық ерекшеліктер тек түрлі қабылеттіліктерді іске асыруға байланысты болады. Мысалы, өсімдік жасушасы жасыл түсті алу үшін, оған қажет хлорофиллді құруға қатынасатын, ондағы ферменттерді түзуге жауапты тектер, ал сүректенетін жасушаларда – легнинді түзуге жауапты тектер қосылады. Мұндай бір хабардың бір мезгілде алынып тасталған (қабылеттілігі тежелген) басқа хабарға қосылуын жіктелудегі тектің айқындалуы деп атайды. Мұның негізінде жатқан молекулалардың ауыстырып қосылу механизмдері әлі нашар зерттелген. Оларда реттеу процестері немесе хромосомалардағы гистондар (өсімдіктер мен жануарлар жасушаларының ядроларындағы белоктар) және гистонсыз белоктар, әлде генетикалық ақпаратты иРНҚ тілінен белоктағы амин қышқылының тіліне аудару, яғни белок синтезі механизмдерін басқаруының қатысуы мүмкін. Қандайда болмасын жасушалар жіктелуінің жолын белгілеу – айқындалу немесе айқындау немесе анықтау деп аталады. Мұнда көптеген қабылектіліктер (тектер, ақпараттар) тектің айқындалуын қамтамасыз ету үшін таңдалады. Жасушаның айқындалуы генетикалық түрде жоспарланып, көрші жасушалардың, гормондардың немесе түрлі сыртқы себепшарттардың әсерінен және олардың ықпалынан анықталуы мүмкін. Айқындалудың екі: ақтық немесе тұрақты және құбылмалы түрлері болады. Басталған айқындалуды тек тәжірибе жүргізгенде ғана байқауға болады. Мысалы, қандайда болмасын ұрықтың бөлігін басқа ортаға ауыстырып салғанда, ол айқындалуда болса, онда сөзсіз өз орнындағыдай дами береді. Ал, ауыстырып салған ұрық бөлігінде айқындалу басталмаған болса, онда ол орналасқан жерге байланысты дамиды. Мысалы, егерде саламандраның ерте гаструласындағы ішкері эктодерманы (келешек іш терісі) ұрық дамуының сол сатысында арқа бөліміне ауыстырып салса, онда бұл эктодерма мыдың құрылуына қатысады (бұл жаңа орналасқан жердегі даму). Егерде осы тәжірибені 2 күн кейін, гаструляция аяқталғаннан кейін жүргізсе, онда қондырым арқа жақта өзінің шығу тегіне сай, іш терісі ретінде дамиды. Гаструляция кезінде, арқа эктодермасына алғашқы ішек төбесі төселсе, онда эктодерманың айқындалуы жүреді. Егерде бұл төселісті жүргізбесе, онда эктодерма айқындалмай қалады. Екінші жағынан, егерде бластопордың жоғарғы ернінің бөлігін басқа ұрықтың бүйіріне ауыстырып салса, онда ол бөлік өзінің шығу тегіне орай дамып, қоршап жатқан эктодермаға енеді. Ол хорда ұлпасына айқындалады да, қоршап тұрған эктодерманы жүйке түтігін құруға жұмылдырады. Мұндай айқындалған ұлпаның айқындалмаған түріне ықпал етуін ұрықтық демеу, жігердендіру, ынталандыру (индукция) деп атайды. Мұндай демеуге екі ұлпа арасындағы байланыс қажет. Бластопордың жоғарғы ерні ұйымдастырушы (оның орталығы) рөлін атқарды. Мысалы, бақа ұрығының ұйымдастырушысы саламандра ұрығына да, тауықтың ұрық дискісіне де ықпал ете алады. Бұл кезде организм ұлпасы ұйымдастырушы ықпалына әсер ете отырып, өзінің гистологиялық, морфологиялық түр ерекшелігін сақтай алады. Демегіш тек “не істеу керек”, “қалай істеу керек” екенін көрсетеді, басты өзгеріс ұлпаның бұған жауап беруіне байланысты болады. Ұлпаның демегіш тітіркендіруіне жауап беру қабылеттілігі – оның құзыры (компетенция) тек белгілі сезім кезеңінде жүреді. Ұрықтық дамуды біртіндеп қабылеттілікті шектеу деп сезінген жөн. Жұмыртқаклеткасы немесе ұрық жасушалары тобы айқындалуына дейін реттелуге қабылетті. Басқаша айтқанда, жетіспеген материалдарды толықтыруға немесе артығын қосып ала алады. Ол жұмыртқаклеткаларында өтеді. Реттеуге қабылетті жұмыртқаклетканы реттеуші, ал қабылетсіз немесе нашар қабылеттіні – өрнекті (мозаикалық) деп атайды. Олардың бір-бірінен айырмашылығы сол, екінші біріншіден бұрын реттеу қабылеттілігінен айырылады. Бақа жұмыртқаклеткасы реттеуші түріне жатады. Егерде қос жасушалы сатысында бластомераларды бөлсе, онда екі қалыпты ұрық алуға болады. Бір жұмыртқадан жаралған егіздердің пайда болуы адам ұрығының жоғары реттелу қабылеттілігін көрсетеді. Өрнекті түрге түрлі еспелілер, құрсақаяқты ұлулар, асцидийлер және басқа жануарлар жұмырқалары жатады. Еспелілерден екіжасушалы сатысында алынған бластомерлері қалыпты жануардағы 8 қатар емес, тек 4 қатар түзеді, 4 жасушалы сатысында алынған бластомерлер 2 қатарлы табақшалар, ал 8 жасушалы – тек 1 қатар ғана береді. Көптеген организмдер жоғалтқан жасушаларын, ұлпаларын немесе ағзаларын қалпына келтіре алады. Мұндай жоғалту кезеңді немесе үздіксіз болады. Онда жасушалар митоз жолымен бөлініп, ұлпада жаңа жасушалар түзіле ұлғайып, өсуі нәтижесінде жүреді. Оны физиологиялық қалпына келу деп атайды. Кейде зақымданған жағдайда немесе тәжірибе жасағандағы қалпына келуді – бүлінуден кейінгі (репаративтік) қалпына келу дейді. Қалпына келудің әр ұлпадағы қарқындылығын өсу факторлары, гормондар, жасуша қызметінің асуы, цитокиндер бақылап отырады. Организмдегі барлық ұлпа жасушалары қалпына келу деңгейіне орай, 3 топқа бөлінеді: тұрақты қабылетті – ұзақ тіршілік ететін, бөлінбейтін жасушалар (нейрон, кардиомиоцит); өсуге қабылетті – ұзақ тіршілік ететін, арнайы қызметтер орындайтын, ширатуда бөліне алатын, ядросында хромосома санының көп болуына ұшырайтын жасушалар (бүйрек, бауыр, ұйқы, қалқанша, қуық бездеріндегі эпителийлер); жаңартуға қабылетті – тұрақты, жылдам жаңаратын жасушалар (ішек, эпидермис эпителийлері, қан жасушалары). Жасуша ішіндегі қалпына келуде жасуша құрамбөліктерінің құрылымы қалыпты жағдайда немесе бүлінуден кейінгі жолдармен үзіліссіз қалпына келуі қамтамасыз етіледі. Ол әмбебапты, организмдегі барлық ұлпаларға тән. Тұщы су жыланы, планарий немесе немертинді 100, оданда көп бөліктерге бөлседе, олардың әр қайсысынан жетілген организмдер қалпына келеді. Сол сияқты өсімдіктерде қалемше (черенок) арқылы көбейеді. Өсімдіктер тіпті жеке жасушаларданда көбейіп, жетіледі. Домалақ паразит құрттар, сүлік және теңіз кірпісінде қалпына келу болмайды. Қалпына келу ұрық жасушалары арқылы – түзуші ұлпа жасушалары (өсімдіктерде), археоциттер (губкаларда), интерстициальді жасушалар (ішекқуыстыларда), неопластар (жалпақ құрттарда) жүреді. Бұл жасушалар бүлінген жерге қоныс аударады (жануарларда), бластема құрады. Бластема өсу кезеңінен және нақтыланудан өтеді. Нағыз ұлпалардың қайта жасалуы (метаплазия) өсімдіктерде кең таралған. Өсімдіктер мен көптеген жануарлардағы қайтадан қалпына келу гормондардың бақылауында болады.

Әдебиеттер

1.Бет. 99-181. 2. Бет. 77-128. 3. Бет. 40-106. 5. Бет. 128-200. 6. Бет. 97-141.



11 дәріс тақырыбы – Омыртқасыз, омыртқалы жануарлар ұлпаларының құрылымындағы жалпы ерекшеліктер, дамуы, іс - әрекеті және шығу тегі.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет