Києво-могилянська академія


Проблема оцінки канцерогенного ризику впливу хімічних забруднень навколишнього середовища



бет3/5
Дата19.07.2016
өлшемі423.5 Kb.
#210875
1   2   3   4   5

2.4.Проблема оцінки канцерогенного ризику впливу хімічних забруднень навколишнього середовища.

В останні роки у вітчизняних та закордонних дослідженнях впливу факторів навколишнього середовища на здоров‘я населення велика увага приділяється характеристиці ризику, під якою розуміють якісну, кількісну та напівкількісну оцінку вірогідності розвитку певних змін у стані здоров‘я людей у популяції, що аналізується за певний період експозиції. Методологія оцінки ризику, розроблена у США та ряді інших країн, передбачає диференційований підхід до характеристики канцерогенних та неканцерогенних факторів, що обумовлено існуючими науковими уявленнями про механізм дії канцерогенів [43,46,49,60,62].

На відміну від хімічних речовин, що здійснюють загальнотоксичний вплив, оцінка ризику впливу канцерогенів не може базуватися на величинах порогових доз та концентрацій. Вважається, що навіть невелика кількість молекул хімічної сполуки здатна викликати зміни у одиничній клітині з наступною неконтрольованою клітинною проліферацією та розвитком у віддалений період після впливу клінічних ознак злоякісних новоутворень.

У відповідності з методологією оцінки ризику канцерогенних ефектів, розробленою Агенцією з охорони навколишнього середовища США (US.EPA) [59,60,62], характеристика хімічного канцерогену здійснюється у 2 етапи:



  1. віднесення речовини до однієї з груп класифікації канцерогенів, що базуєтсья на вагомості доказів наявності канцерогенної дії;

  2. розрахунок фактору нахилу залежності доза (концентрація)- відповідь.

У наш час у різних країнах та міжнародних організаціях використовується ціла низка класифікацій хімічних канцерогенів, наприклад, Агенції з охорони навколишнього середовища США (US.EPA), Національного інституту професійної безпеки та здоров‘я (NIOSH), Американської спілки урядових промислових гігієністів (ACGIH), Національної токсикологічної програми США (NTP) [43], Міжнародної агенції з вивчення раку (IARC). Агенція професійної безпеки та захворювань (OSHA) виділяє лише 2 категорії промислових канцерогенів: для речовин 1-ї категорії розробляються спеціальні стандарти, що регламентують усі контрольні та профілактичні заходи, необхідні при роботі з конкретним канцерогеном; речовини 2-ї групи регламентуються з урахуванням їх канцерогенної активності, однак величини допустимих концентрацій (PEL) входять до загального списку нормованих речовин без спеціальної відмітки про можливий канцерогенний вплив [12]. У країнах Європи нерідко використовується німецька класифікація канцерогенів, розроблена для характеристики канцерогенної небезпеки промислових шкідливих речовин при встановленні їх максимально допустимих концентраціі (МАК), а також класифікація Комісії європейського співтовариства (ЕЕС) [48]. Приблизні співвідношення між групами у вищеперерахованих класифікаціях наведені у табл. 1.

В Україні відмітки про канцерогенний вплив на виробництві присутні лише у переліках ГДК для повітря робочої зони. Крім того, у 1997 р. був прийнятий “Перелік речовин, продуктів, виробничих процесів, побутових та природних факторів, канцерогеннних для людини” [21], що вміщує в основному речовини та фактори, що відносяться до 1-ї групи за класифікацією IARC. Лише 5 речовин з цього переліку регламентовані у повітрі робочої зони на Україні за їх канцерогненною дією: бенз(а)пірен, азбест, миш‘як, вінілхлорид, возгон кам‘яновугільних смол та пеків [21].

Важливо відмітити, що існуючі класифікації відбивають в основному повноту та достовірність епідеміологічних та експериментальних даних, що існують на даний момент, але не характеризують вираженість та потенційну небезпеку канцерогенів. Приналежність речовин до групи 2В або 3 зовсім не означає, що вона насправді не має вираженого канцерогенного потенціалу, тим більше, що орієнтація лише на одну з вищенаведених класифікацій може призводити до невірної оцінки вагомості доказів канцерогенності- найбільш адекватною слід вважати оцінку, отриману з використанням останніх епідеміологічних та експериментальних даних. Саме часовим періодом проведення оцінки обумовлені багаточисельні розбіжності у характеристиці вагомості ряду речовин, що відмічається у різних класифікаційних схемах.

Необхідно також відмітити наявність принципових відмінностей у гігієнічному нормуванні канцерогенів, оцінці канцерогенних ризиків та системі управління цими ризиками. У відповідності з рекомендаціями експертів ВООЗ [17], канцерогенна дія повинна враховуватися при гігієнічному нормуванні речовин групи 1, 2А, а за наявності додаткових показників- речовин групи 3В. У США обгрунтовуються фактори канцерогенного потенціалу та розраховуються ризики для хімічних сполук груп А, В1, В2 та С [57,61 ,62].

При нормуванні хімічних речовин у питній воді у США та ВООЗ [58,66] наявність канцерогенів або зовсім не припускається, або їх концентрації встановлюються на рівні канцерогенного ризику 10-6 - 10-5 (один додатковий випадок раку у популяції з чисельністю відповідно 1 млн. або 100 тис. чоловік). Для атмосферного повітря ВООЗ не дає рекомендацій про безпечні рівні впливу канцерогенів та наводить лише величини канцерогенних потенціалів, необхідні для розрахунку канцерогенного ризику [65]. При цьому вважається, що на відміну від будь-яких інших медико-біологічних рекомендацій гігієнічні нормативи завжди враховують економічні, технологічні, соціальні та політичні особливості конкретної країни. У зв‘язку з цим встановлення величини прийнятного на даний момент та на даній території канцерогенного ризику є завданням уповноважених органів, що враховують при прийнятті остаточного рішення усю сукупність медико- біологічних вимог, технологічних та економічних аргументів, а також думку населення та зацікавлених суспільних організацій.

При проведенні досліджень з оцінки ризику впливу факторів навколишнього середовища на здоров‘я населення обов‘язковим етапом роботи є розрахунок канцерогенних ризиків для усіх потенційно канцерогенних хімічних забруднень. У наш час для оцінки канцерогенного ризику використовуються 2 кількісних параметри: фактор канцерогенного потенціалу або фактор нахилу залежності доза-відповідь (CPS або SF), а також одиничний ризик (UR) для питної води (URo) та атмосферного повітря (URi).

CPS характеризує кут нахилу у нижній лінійній частині залежності доза-відповідь та являє собою 95% верхній довірчий інтервал для вірогідності відповіді на одиницю дози потенційного канцерогену. Одиницею виміру цього показника є величина: мг/(кг*доб)-1 . CPS встановлюється окремо для умов інгаляційного (CPSi) та перорального/ надшкірного (CPSo) впливу. Нерідко одна з цих величин розраховується на основі екстраполяції даних з одного шляху надходження на інший [63,57,61,62].

Поряд з величиною CPS при оцінці канцерогенного ризику використовується одиничний ризик (unit risk - UR), що характеризує значення ризику для однієї одиниці концентрації речовини у об‘єкті навколишнього середовища: 1 мкг на 1 л води. UR розраховується шляхом поділу CPS на масу тіла людини (70 кг) та множення на об‘єм добової легеневої вентиляції (20 м3/доб) або об‘єм добового споживання води (2л/доб):

URi=CPSi*1/70кг*20м3/доб*1/1000,

URo=CPSo*1/70кг*2л/доб*1/1000,

де 1/1000- коефіцієнт переведення мг в мкг.

Інформація про значення CPS та UR наводиться у комп‘ютерній базі даних US.EPA-IRIS [61], таблицях HEAST [57], ряді видань US.EPA [11], публікаціях Каліфорнійської агенції з охорони навколишнього середовища [43,44], а також у декотрих банках даних, зокрема SARETbase [22].

Значення CPS та UR дозволяють прогнозувати величини ризику розвитку раку за конкретних значень експозиції. Наприклад, якщо середня денна концентрація речовини, що впливає на людину протягом усього життя, складає С (у мкг/л для води або у мкг/м3 для повітря), то індивідуальний (додатковий до фонового) ризик розвитку раку буде складати:

IR=UR*C.


Якщо відома чисельність (N) популяції , що підлягає впливу речовини у концентрації С, то можна розрахувати і популяційний ризик - число додаткових (до фонового) випадків раку у даній популяції:

PR=IR*N.


Для нестандартних умов впливу, наприклад виробничого, у вищенаведені фармули вносять поправки, що відбивають відмінності у факторах експозиції. Так, для 8-годинного робочого дня та 40-річного виробничого стажу (за умов 240 робочих днів на рік та середній величині легеневої вентиляції за зміну 10м3) одиничний ризик складе [46]:

URo(м3/мкг)=URi*240/365*40/70*10/20=0,188*URi.

Звідси індивідуальний ризик розвитку раку за виробничий стаж буде дорівнювати:

IR=C*URoc,

де С- середня концентрація хімічної речовини за весь період виробничої діяльності.

Отримані у процесі оцінки ризику впливи факторів навколишнього середовища на здоров‘я кількісні показники канцерогенного ризику є одним з важливих критеріїв для планування дій з вилучення та зниження шкідливих експозицій. У США для планування та контролю ефективності профілактичних заходів використовуються так звані концентрації, що базуються на ризику (RBC)- концентрації хімічної речовини у об‘єкті навколишнього середовища, потенційно пов‘язані з певним визначеним ризиком (звичайно 10-6, а в декотрих штатах 10-5) [58,64,61], у випадку ж нашої країни цей ризик встановлено на рівні 10-2 -10-3.

. Для виробничих впливів аналогом RBC є “рівень експозиції, що грунтується на здоров‘ї” (HBEL). Даний рівень розраховується, виходячи з ризику 10-6 [46] та розглядається як цільова величина, яку необхідно прагнути досягти шляхом проведення профілактичних заходів. Важливим аспектом практичного застосування канцерогенних ризиків є також їх використання у якості сигнальних рівнів при контролі ефективності природоохоронних та очисних робіт. У США прийнята система, що включає 3 сигнальних рівні: за ризиків менше 10-6 (низька пріоритетність) додаткових втручань не потребує; за ризиків від 10-6 до 10-4 (середня пріоритетність)необхідно оповіщати усіх зацікавлених осіб та організацій та рішення питання про зниження рівня ризику; за ризиків більше 10-4 (висока пріоритетність) потрібним є проведення поглиблених досліджень з оцінки ризику для здоров‘я та одночасне здійснення термінових заходів з зниження ризику.

За допомогою наведеного вище математичного методу розрахунку ризку ми провели аналіз 30 найнебезпечніших хімічних канцерогенів, нормованих у атмосферному повітрі населених місць, ми встановили, що у випадку нашої країни майже не існує сполук з канцерогенним ризиком у 10-5. В табл. 6 наведені хімічні сполуки з найбільш високими канцерогенними ризиками. Поряд з величинами ризиків у табл. 6 представлені значення RBC за рівнів ризику 10-5 , а також їх співвідношення з існуючими ГДК. При аналізі отриманих даних звертають на себе увагу надзвичайно високі співвідношення ГДК/RBC у таких канцерогенів, як акрилонітрил, бензол та особливо 1,3-бутадієн, що розглядається у наш час у США як достовірний канцероген для людини. Слід відмітити, що у речовин, канцерогенні ефекти котрих були прийняті до уваги при гігієнічному нормуванні (бенз(а)пірен, берилій), ризик розвитку несприятливого ефекту знаходиться на рівні 10-5 .

Такий самий аналіз ми провели серед найнебезпечніших канцерогенів, нормованих у воді водойм. Речовини з відносно високими канцерогенними ризиками наведені у табл.7. Тут також, як і у попередньому випадку спостерігаються надзвичайно високі співвідношення ГДК/RBC у канцерогенів та величиною ризиків порядку 10-1-10-4.

Така сама ситуація спостерігається і при аналізі хімічних речовин, нормованих у повітрі робочої зони. ми встановили, що при цьому у відносно більшої частини сполук канцерогенні ризики вище 10-3 (табл.8).

У табл. 9 наведені зведені дані про розподілення нормованих хімічних сполук за значеннями їх канцерогенних ризиків. Наведені величини свідчать про наявність ряду серйозних проблем в гігієнічному нормуванню потенційних канцерогенів у різних об‘єктах оточуючого середовища для нашої країни. У першу чергу це стосується законодавчого встановлення величин прийнятного канцерогенного ризику та критеріїв для термінового перегляду декотрих з попередньо встановлених гігієнічних нормативів. З урахуванням досвіду закордонних країн, вірогідно, необхідно також розробити переліки канцерогенних речовин для усіх основинх об‘єктів навколишнього середовища, включаючи до їх складу не лише речовини 1-ї групи за класифікацією IARC, але й сполуки, що регламентуються у різних закордонних переліках канцерогенних речовин (так званий супераркуш, що відбиває усі основні надійні джерела інформації про канцерогенність).

Таким чином, проаналізувавши усе сказане вище, можна сказати про неминучість існування протиріч між оцінками якості оточуючого середовища, сформованими на основі співставлення з існуючими гігієнічними нормативами, та результатами, отриманими з використанням традиційної методологій оцінки ризику для здоров‘я. У зв‘язку з цим поряд з переглядом ГДК окремих пріоритетних хімічних забруднень необхідна підготовка та видання українського Керівництва з оцінки канцерогенних ризиків з включенням в нього кількісних значень канцерогенних потенціалів та цільових концентрацій, що базуються на ризику для здоров‘я .Слід сказати, що методологія оцінки канцерогенних ризиків, хоча і потребує свого подальшого наукового вдосконалення, у той же час є достатньо потужним інструментом для характеристики якості навколишнього середовища та її можливого впливу на здоров‘я людини, встановлення пріоритетності та оцінки ефективності профілактичних заходів, що плануються та/або здійснюються. Разом з тим, ми вважаємо, що для більш достовірної оцінки одиничного ризику (UR) та фактору канцерогенного потенціалу (фактору нахилу залежності доза-ефект) (CPS) та концентрацій, що базуються на ризику (RBC) (концентрації хімічної речовини у об‘єкті навколишнього середовища, потенційно пов‘язані з певним ризиком ) для нашої країни обов‘язково потрібно враховувати метеорологічні, геохімічні та гідрогеологічні характеристики (середня температура повічря, глибина залягання грунтових вод та прикореневої зони грунту, швидкість та спрямування вітру та таке ін.), характерні саме для нашого регіону; ретельного аналізу потребують розрахункові рівняння, що використовуються для прогнозу невідомих фізикохімічних та кінетичних характеристик, а також резорбцію канцерогенних речовин через шкіру. Такі процедури будуть сприяти можливості створенню більш достовірної оцінки ризику за існуючих на даній території номативів.



Розділ 3. Сучасний стан проблеми профілактики онкозахворювань.

3.1.Проблеми профілактики раку.

На сьогодні синтезовано понад 5 млн. хімічних речовин і сумішей, з яких 60 тис. знаходять своє практичне застосування. Щорічно розробляється від 500 до 1000 нових хімічних речовин з широкою перспективою застосування. Це зумовлює небезпечність виникнення безпосередніх і віддалених ефектів хімічного впливу. Усунення можливого несприятливого впливу хімічних речовин на людину та навколишнє середовище досягається профілактичною роботою органів та установ державного санітарного нагляду, яка грунтується на токсикологічному експерименті та клініко-гігієнічних (епідеміологічних) дослідженнях.

Профілактика раку- це усунення причин виникнення злоякісних новоутворень.

Учені вважають, , що рак можна у значному проценті випадків попередити.

Теоретично найбільш розроблена та широко застосовується на практиці гігієнічна профілактика. Її суть полягає у захисті організму від канцерогенних забруднень оточуючого середовища. Біохімічна профілактика ставить перед собою ціль розшифрувати природу раку та розробити методи, що перешкоджають його виникненню та розвитку. Видатний вітчизняний онколог Р.Є.Кавецький намітив декілька принципових можливостей у цьому напрямку: заміняти пошкоджені гени у пухлинних клітинах на нормальні, повертати клітини до висхідних функцій, щоб вони втрачали ознаки злоякісності і т. ін. Ця програма майбутнього уже зараз набуває свої реальні обриси.

Ось декотрі біохімічні підходи, розроблені за останній час. Так, американський вчений Л. Ваттенберг прийшов до висновку, що багато сполук, що входять до складу овочів та фруктів, наприклад, флавони, підвищують ефективність ферментів, що знешкоджують бензопірен та інші канцерогенні сполуки. Аналогічний ефект здійснюють індоли, що знаходяться у декотрих овочах, наприклад, в брюсельській капусті. Їх включення у їжу сприяє виведенню канцерогенів з організму. Цьому ж сприяють і антиоксиданти- речовини, що перешкоджають окисленню жирів.

Оскільки канцерогени в організмі взаємодіють з ДНК та білками та сприяють росту пухлин, у дослідників виникла ідея пов‘язати їх та знешкодити, для чого використовувати природні сполуки, які або входять до складу тканин організму, або знаходяться у їжі. І дійсно, коли ці сполуки, наприклад, молочний білок- казеїн, фенольні антиоксиданти і т. ін., вводили тваринам разом з канцерогенами, то пухлини у них або не виникали взагалі, або з‘являлись значно рідше.

Важливу роль у боротьбі з раком відіграють декотрі вітаміни. Взаємозв‘язок між раком та низьким рівнем вітаміну А доведений тепер не лише для тварин, але й для людини. Дефіцит цього вітаміну порушує нормальну діяльність усієї імунної системи. Застосування вітаміну А при профілактичному лікуванні передракових станів порожнини рота, гортані, сечового міхура та піхви, вже давно дає хороші результати. Дослідження, що проводились під керівництвом доктора Р. Клаузнера з Національного інституту раку (Бетезда, США) і які продовжувалися цілих 12 років, показали, однак, що бета-каротинові добавки анітрохи не охороняють від раку легенів. Швейцарські дослідники винайшли, що у затятих курців у слизовій оболонці бронхів з‘являються передпухлинні зміни. Після того, як групі курців кожен день давали кожен день протягом 6 місяців таблетки, що вміщують похідні вітаміну А, ці зміни зникли, у той час як у бронхах тих, що просто покинули палити схожі зміни зберігались ще два роки.

За пониженої кислотності у шлунку з‘являються мікроорганізми, наприклад, геліобактер пілорі, що викликають запалення слизової оболонки шлунка та дванадцятипалої кишки, готуючи грунт для виникнення злоякісних пухлин. Вчені шукають такі комбінації ліків та вітамінів, що б покінчили з такими інфекціями. Онкологи вивчають профілактичну дію вітаміну Е та мікроелементів. Безсумнівно, що ліквідація дефіциту у організмі вітамінів А,С,Е підвищує його протипухлинну стійкість. У Аризонському університеті працює центр з вивчення харчових речовин, що попереджують розвиток раку.

Таким чином, експериментальні та клінічні спостереження переконуюче показують, що вже сьогодні можлива ефективна комплексна профілактика багатьох форм раку.

Роботи академіка Л.М.Шабада та його учнів показали, що хімічні канцерогенні речовини можуть бути присутніми у забрудненому повітрі, воді, оселі. Таким чином, проблема гігієнічної профілактики злоякісних пухлин найтіснішим чином переплітається з проблемою захисту оточуючого середовища. Незважаючи на те, що умови гігієни праці на більшості шкідливих виробництв усюди змінилися на краще, з‘явились нові загрозливі фактори, пов‘язані з постійним отруєнням оточуючого середовища. З великої кількості потенційних хімічний канцерогенів лише у відношенні тридцяти підтверджена безпосередня небезпека для людини. Розроблені методи оцінки канцерогенного ризику забруднення оточуючого середовища та їх гранично допустимі концентрації у повітрі та у водоймах. Вчених цікавлять не лише джерела утворення канцерогенів, але й шляхи їх знешкодження, кругообіг у природі. На основі таких досліджень можуть проводитись великі заходи у державних масштабах, зокрема, раціональне планування забудов, окремих будинків, регулювання роботи підприємств, контроль за викидами відходів у воду та атмосферу. Щоб захистити водний та повітряний басейн від забруднення, важливо вдосконалювати технології, переводити промисловість на замкнені цикли.

Боротьба з забрудненням навколишнього середовища канцерогенними домішками включає комплекс різноманітних заходів, спрямованих як на ізоляцію цього середовища від попадання в нього промислових шкідливостей, так і на знешкодження та видалення забруднень, що вже надійшли у навколишнє середовище. Тут необхідно відмітити перед усе, що саме у останні роки спостерігається плідна співпраця онкологів та гігієністів; введення заходів профілактики канцерогенних шкідливостей у систему загальногігієнічних заходів набуло практичного значення [55]. Видається досить цікавою, наприклад, можливість зменшення вмісту канцерогенних продуктів через регламентування вмісту канцерогенів у виробничому середовищі, що є діючим напрямком у профілактиці раку, зокрема в умовах виробництва.; певну обробку палива, заміну режиму згоряння палива [39]; заміну вмісту канцерогенів у вихлопних газах автомашин при зміні способу запалення [39]; руйнування канцерогенних продуктів, що є у маслах, опромінення останніх ультрафіолетовим світлом [41]; застосування різних систем фільтрів, що утримують канцерогенні продукти на фабриках та заводах, водопровідних станціях; очистку вихлопних газів автомашин [52] та інших двигунів (що працюють на рідкому нафтовому та твердому паливі), нарешті використання мілких фільтрів, що застосовуються для очистки диму сигарет; затримку та екстракцію канцерогенів з восків, що йдуть на пакування продуктів харчування [54]; через вдосконалення методології гігієнічного нормування факторів навколишнього середовища з урахуванням їх комбінованої та комплексної дії на організм [65] та його дотримання.

Також велике значення має озеленення міст. За даними вчених, існують породи дерев, наприклад, ялина, здатних вилучати з грунту канцерогенні речовини, навіть такі активні, як бензпірен, нітрозосполуки, розкладати їх та використовувати у процесі власного обміну речовин. Немає сумніву, що гігієнічна профілактика раку, пов‘язана з заходами з захисту організму від канцерогенних агентів, вже дає відчутні практичні результати.


    1. Деякі аспекти індивідуальної схильності до раку у світлі задач онкологічної профілактики.

Метаболізм (біотрансформація) сторонніх сполук (ксенобіотиків) здійснюєтья тим ж шляхом, якими біотрансформуються природні для організму речовини. Потрапляючи в організм, нові класи хімічних сполук, з якими організм раніше ніколи не зустрічався, включаються в уже сформовані біохімічні реакції, вироблені в процесі філогенезу. Процеси біотрансформації спрямовані в основному на знешкодження (детоксикацію) отрут і є одним із захисно-пристосувальних механізмів, які врівноважують взаємовідносини організму з навколишнім середовищем.

Метаболізм сторонніх речовин здійснюється шляхом окиснення, відновлення, гідролізу, синтетичних реакцій, внаслідок чого утворюються лише токсичні полярні водорозчинні речовини, які виділяються з організму з сечею.

В окремих випадках можливе утворення сполук, які більш токсичні порівняно з вихідними. Це явище називається летальним синтезом.

Основним органом, який метаболізує шкідливі хімічні речовини, є печінка, хоча здатність до детоксикації властива також ниркам, стінкам шлунку та кишок, легеням та іншим органам та тканинам. Безпосереднім місцем знешкодження сторонніх речовин є клітинні органоїди, зокрема ендоплазматичний ретикулум, який містить мікросомальні ферменти, що спонукають реакції біотрансформації.
Схема 5

Шляхи надходження (абсорбції), розподілу та виведення токсичних хімічних речовин.

Однак, будучи другою за важливістю причиною смерті дорослої людини, рак та інші злоякісні новоутворення (ЗН) усе ж відносяться до захворювань, що вражають лише невелику частину населення, і навіть в умовах інтенсивного канцерогенного впливу, характерного для декотрих галузей виробництва, істотно підвищений ризик розвитку НЗ реалізується лише у окремих осіб. Аналіз багатьох онкоепідеміологічних досліджень у області професійного раку свідчить про те, що така вибірковість ураження, як при ряді інших хронічних професійних захворюваннях, у значній мірі визначається реальними кількісними відмінностями. Разом з тим, навіть при максимальних експозиціях переважна кількість робочих не захворює раком, у той час як навіть при істотно менших впливах вірогідність його розвитку значно вища, ніж у неекспонованих, тобто особи, для котрих таке знижене навантаження видається, нажаль, ефективним.

При цьому виникає думка про важливе значення індивідуальної схильності до ЗН, обумовленої тими або іншими біологічними характеристиками організму, включаючи генетичні особливості організму, або фактори середовища, включаючи шкідливі звички, умови харчування, фонові незлоякісні захворювання і т. ін.

Виявлення основних факторів індивідуальної схильності дало б можливість виявити осіб, що є особливо схильними (або навпаки, особливо стійкими) до розвитку злоякісних новоутворень, що може стати основою для цілеспрямованого планування медико-біологічної профілактики раку у якості важливого доповнення до технічних заходів профілактики . Зокрема, це зробило б можливою відповідну професійну орієнтацію, професійні рекомендації по корекції способу життя, концентрацію зусиль онкологів на ранній діагностиці ЗН у першу чергу у осіб з підвищеною вірогідністю захворювання, а також проведення різноманітних оздоровчих заходів перед усім у групі особливо підвищеного онкологічного ризику.

Слід виділити декотрі істотні особливості схильності до ЗН порівняно з декотрими професійними захворюваннями.

Перша особливість пов’язана з тим, що рак, індукований впливом будь-якого професійного фактору, не відрізняється від свого “двійника”, що розвинувся під впливом інших екзогенних факторів (наприклад, паління) або спонтанно. Це означає, що при аналізі індивідуальних особливостей тих, хто захворів раком, ми маємо справу з особою, у котрої професійна етіологія хвороби лише більш або менш вірогідна. Таким чином, отримана інформація не обов‘язково характеризує фактори схильності до розвитку саме того ЗН, що пов‘язане з впливом канцерогену, що нас цікавить.

З цими труднощами пов‘язане принципово важливе питання про те, що саме потрібно виявити та що грає вирішальну роль: індивідуальна чутливість до дії конкретного канцерогену або ж схильність клітин даного організму до малігнізації під впливом багатьох або навіть будь-яких потенційно канцерогенних стимулів. У першому випадку можна подумати про індивідуальні відмінності фізіологічних та біологічних механізмів, що контролюють токсикокінетику канцерогенної речовини, тобто можливість утворення критичної концентрації його в клітині-мішені за заданих умов експозиції, а також метаболічну детоксикацію, або, навпаки, метаболічну активацію цієї речовини, тобто біотрансфармацію його в продукт, що безпосередньо має канцерогенну активність. У другому випадку можна припустити ті або інші особливості молекулярних механізмів репресії онкогенів, репарації пошкодженої ДНК і т. ін.

Відмінність механізмів не може не означати принципової відмінності факторів індивідуальної схильності. Якщо у першому випадку основну роль повинні грати фактори, більш або менш специфічні для чутливості до певного канцерогену або групі канцерогенів, то у другому- фактори загальні для усіх раків або, можливо, для раків певних органів, незалежно від фактору, що їх індукує. Так, N-гідроксилювання є, за певними даними, основним ланцюгом метаболічної активації ароматичних амінів, що викликають розвиток раку сечового міхура, у той час, як ацетилювання- найістотнішим ланцюгом метаболічної детоксикації. Є дані про те, що фенотип “повільного ацетилятору” збільшує схильність до утворення цих пухлин, у тому числі професійних. Є підстави очікувати, що фенотип високої здатності до N-гідроксилювання грає також роль, що веде до схильності. У той же час немає особливих підстав пов‘язувати з цими метаболічними фенотипами відмінності сприйняття дії інших канцерогенів, що підлягають біотрансформації за іншим шляхом. Наприклад, у біотрансформації канцерогенних ПАВ ключову роль грає активність арилгідрокарбонгідроксилази, що вказує на можливий напрямок пошуку відповідного маркеру чутливості до їх дії.

Певні пухлини, що рідко зустрічаються, мають конкретні генетичні риси. Однак, для таких пухлин, як рак легень, шлунку, шкіри, грудної залози ..., що дають найбільшу частину випадків ЗН та більшість з котрих є важливими також у структурі виробничо-обумовленої онкологічної захворюваності, значно більш важливим є питання чи залежить ризик їх виникнення від широко розповсюджених варіантів “нормального” фенотипу людини. Маркерами таких варіантів можуть бути, наприклад, групи крові, антигени тканинної гістосумісності HLA або характеристика дерматогліфів. Така робота була проведена на базі Науково-інженерного центру екологічної безпеки Уральського відділення РАН [24]. Отримані ними дані свідчать про те, що: 1)між хворими на рак легень або шлунку промислового міста та не хворими раком жителями того ж міста (при вирівнюванні груп за статтю, віком, національністю, шкідливими звичками та професією) існують певні генетичні відмінності; 2)показано, що розпізнавання цих відмінностей з ціллю прогностичної вірогідності онкологічного захворювання більш надійне за особливостями дерматогліфіки, ніж за антигенами системи HLA. Але результатів такого типу існує ще дуже мало, тому не можна використовувати такі судження як певний постулат.

Висновки.

Узагальнюючи усе вище сказане, слід зазначити, що детальний аналіз літературних джерел з даної проблеми та оцінка ситуації з різних питань та сторін даної проблеми у світі та на Україні вказує на те, що на сьогодення надзвичайно актуальним є дослідження канцерогенної дії потенційно-токсичних хімічних речовин, засобів та заходів щодо її профілактики.

Особливої уваги людство приділяє знаходженню адекватних швидких та порівняно недорогих шляхів виявлення хімічних речовин, що мають канцерогенні властивості; встановленню адекватних ГДК та ГДД для канцерогенних сполук, що будуть враховувати природно-кліматичні та промислово-економічні властивості відповідних регіонів; намагається вирішити нові проблеми розгляду підходів до нормування хімічних забрудників навколишнього середовища з точки зору медичної екології; вивчає сумарне навантаження на організм канцерогенних та неканцерогенних агентів навколишнього середовища і перед усе хімічних сполук, що модифікують процес канцерогенезу. На даному історичному етапі виявляється доцільним вести подальші широкі дослідження, що будуть розвивати ці напрямки.

Виявлення основних факторів індивідуальної схильності (як вже зазначалось вище) дає можливість виявити осіб, що є особливо схильними (або навпаки, особливо стійкими) до розвитку злоякісних новоутворень, що може стати основою для цілеспрямованого планування медико-біологічної профілактики раку у якості важливого доповнення до технічних заходів профілактики [24].

Серед проблем, що постали зараз перед фахівцями з вирішення проблем професійного раку на Україні , основними слід вважати:

- удосконалення обліку та реєстрації випадків злоякісних новоутворень з урахуванням канцерогенонебезпечних технологій та хімічних канцерогенів;

- встановлення критеріїв ранжування підприємств основних галузей народного господарства з позицій їх канцерогенної небезпечності;

- розробку науково обгрунтованих рекомендацій по удосконаленню профілактичних медичних оглядів робітників онконебезпечних виробництв та інших заходів профілактики професійного раку з урахуванням рівнів канцерогенного ризику.



Для цього слід проводити. вивчення сучасного стану проблеми професійного раку у населення України; розробити з урахуванням міжнародного досвіду науково обгрунтований перелік онконебезпечних виробництв та професій;. розробити клінічні та епідеміологічні критерії для вдосконалення переліку професійних онкологічних захворювань; розробити та спробувати спільно з національним канцер-реєстром систему виявлення та реєстрації професійного раку; провести оцінку умов праці як факторів ризику виникнення злоякісних пухлин для обгрунтування заходів первинної профілактики професійного раку.

Список використаної літератури.


  1. Бабенко Г. Металоканцерогенез та металотерапія раку // Медична газета.- серпень, 1994.- №25.-С.4

  2. Беджер Г.М. Химические основы канцерогенной активности.-М.:Медицина,1966.-124с.

  3. Боговский П.А. Модифицирующие факторы канцерогенеза и антиканцерогенеза. Направления и задачи исследования. 4 Всес. Съезд онкологов: тез. докл., Л., 1986.-С.422-424.

  4. Вопросы гигиенического нормирования при изучении отдаленных последствий воздействия промышленных веществ / Под. Ред. И.А.Саноцкого.-М.:Медицина,1972.-190с.

  5. Долл Р., Пито Р. Причины рака.- Киев,1984.-C.116-123.

  6. Елизарова О.Н. Определение пороговых доз промышленных ядов при пероральном введении.-М.:Медицина,1971.-С.163-168

  7. Ильин Л.А., Книжников В.А. Гигиенические проблемы радиационного и химического канцерогенеза. М.,1979.-С.20-33

  8. Канцерогенные вещества в окружающей человека среде / Под. ред. Л.М.Шабада и А.П.Ильницкого.-Budapest,1979.-499с.

  9. Конвенции и Рекомендации, принятые Международной конференцией труда с 1967 года.- Женева:международное бюро труда,1983.-С.113-116

  10. Конвенции и Рекомендации, принятые Международной конференцией труда с 1967 года.- Женева:международное бюро труда,1983.-С.349-353

  11. Корєва В.Кому найбільше загрожує канцероген? // Вісник НАН України.-1997.- №1-2.-С23-27

  12. Косой Г.Х., Хесина А.Я. Полициклические ароматические углеводороды (ПАУ) в загрязнениях атмосферного воздуха крупного промышленного центра // Довкілля та здоров’я.-1997.-№2.-С.28-32

  13. Курляндский Б.А., Невзорова И.К. Методика гигиенического регламентирования химических бластомогенов в различных средах // Гиг. и сан.-1978.-№9.-С.99-102

  14. Литвиненко О.М. Гігієнічне значення утворення нітрозамінів з їх попередників в атмосферному повітрі // Довкілля та здоров’я.-1997.-№2.-С.36-38

  15. Литвинов Н.Н., Воронин В.М., Казачков В.И. К характеристике анилина, нитрата свинца, четырёххлористого углерода и формальдегида как модификаторов химического бластомогенеза. Вопросы онкологии.-1984.-т.30.-№4.-С.56-60

  16. Методические рекомендации экспериментальному обоснованию гигиенического регламентирования химических канцерогенных веществ / Москва: Минздрав СССР.-1985.-19с.

  17. Методология и формат для обновления нормативов по качеству воздуха для Европы: Отчёт рабочей группы ВОЗ.-Копенгаген,1995.

  18. Модификация химическими факторами окружающей среды бластомогенеза, индуцированного нитрозодиметиламином. Н.Н.Литвинов, В.И.Казачков, В.И.Воронин, В.С.Журков. Гигиена и санитария.-1983.-№3.-С.19-21.

  19. Общая онкология: Руководство для врачей / Под ред. Н.П.Напалкова.-Л.:Медицина,1989.-648с.

  20. Онкология. Словарь-справочник / И.В.Касьяненко, В.Г.Пинчук, Д.В.Мясоедов и др.-Киев:Наук.думка,1992.-264с.

  21. Перелік речовин, продуктів, виробничих процесів, побутових та природніх факторів, канцерогенних для людини. Державний гігієнічний норматив.-К.,1997.

  22. Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека (ГН 1.1.029-95.Изд. офиц.).-М.,1995.

  23. Перечень веществ, производственных процессов, бытовых и природных факторов, канцерогенных для человека (ГН 1.1.029-95. Изд. официальное).-М.,1995.

  24. Ползик Е.В., Кацнельсон Б.А. Некоторые аспекты индивидуальной предрасположенности к раку в свете задач онкологической профилактики // Медицина труда и промышленная екология.-1993.-№5-6.-С38-40.

  25. Проблема оценки канцерогенного риска воздействия химических загрязнений окружающей среды. С.М.Новиков, Г.И.Румянцев, З.И.Жолдакова и др. Гиг.и сан.1998-№1.-С.29-33.

  26. Проблемы прогнозоривания химической нагрузки на организм человека. С.М.Новиков, В.В.Поройков, С.Н.Тертичников и др.//Гиг. и сан.-1995.-№1.-С.29-33.

  27. Проблемы прогнозирования и оценки общей химической нагрузки на организм человека с применением компьютерных технологий.С.М. Новиков, З.И.Жолдакова, Г.И. Румянцев и др.// Гиг. и сан.-1997.-№4.-С.3-8.

  28. Радионова Г. К., Лебедева Н.В., Жаворонок Л. Г. К проблеме прогнозирования инвалидности вследствие профессиональных заболеваний //Мед. труда и пром. Екология.-1995.-№10.-С.1-4.

  29. Райхман Л.Г. Развитие канцерогенной ситуации. Изд. Рост-ГУ.1989.С.53

  30. Руководство по краткосрочным тестам для выявления мутагенных и канцерогенных химических веществ.-Женева,1989.-212с.

  31. Сердюк А.М., Янышева Н.Я., Черниченко И.А., Баленко Н.В. Закономерности модифицирующего влияния химических факторов окружающей среды на канцерогенез // Довкілля та здоров’я.-1997.-№2.-С.18-22

  32. Смулевич В.Б. Важный этап в подходе к регламентированию канцерогенов // Медицина труда и промышленная екология.-1993.-№5-6.-С.41-43

  33. Смулевич В.Б.,Соленова Л.Г. Производственные канцерогены и здоровье населения.Гиг.и сан.-1997.-№4.-С.22-25.

  34. Тимченко О.І. Мутагенез та антимутагенез: межі можливого відновлення від пошкоджень // Довкілля та здоров’я.-1996.-№1.-С34-36

  35. Трахтенберг И.М., Коршун М.Н. Нормирование химических загрязнителей окружающей среды, гигиеническое, екологическое или еколого-гигиеническое // Актуальные проблемы медицинской екологии / Под.ред. В.А.Павлова, Л.В.Гербильского.-Днепропетровск,1995.-С.28-31

  36. Федоренко З.П., Войкшнарас О.П., Гуселетова Н.В. Злоякісні новоутворення в Україні- динаміка, тенденції, прогноз // Довкілля та здоров’я.-1997.-№2.-С.4-7

  37. Худорлей В.В. Эволюция, экология и рак. Экспериментальная онкология.-1993. Т.15, № 2.-С.3-10.

  38. Чернышов С., Николаенко А., Кучмий И. На очереди- реформирование льготного пенсионного обеспечения // Человек и труд.-1994.-№4.-С.67-75.

  39. Шабад Л.М. О циркуляции канцерогенов в окружающей среде.-М.:Медицина,1973.-368с.

  40. Экспрессные методы определения токсичности и опасности химических веществ.-Л.:Медиицна,1978.-182с.

  41. Bidault P. et all. Elimination of cancerogenic hydrocarbons from medicinal white oils. Fr.1.300,283, Aug. 3, 1962, Appl. June 21.-Vol 161.- 7p.




  1. 7-th Annual Report on Carcinogen. National Toxicology Prograam.-Washington,1994.

  2. California Environmental Protection Agency. Criteria for Carcinogenes.- Sacrsmento,1994.

  3. California Environmental Protection Agency’s Risk Assessment Practices, Policies, and Guidelines.-Sacrsmento,1996.

  4. Carnevale F., Montesano R. Guidelines for Regulation and Haelth Advisories // Am. J. Industr. Med.-1987.-#11.-P.453-475

  5. Chemikal Exposure Guidelines. Version 9. Santa Clara Center Occupational Safety and Health.- San Jose,1995.

  6. Cooc W.A. The List of Regulated Potential Carcinogenes// Am. J. Industr.Hyg.Ass.-1989.-#50/-P.680-684

  7. European Chemical Industry Ecology and Toxicilogy Centre.- A Guide to the Classification of Carcinogenes, Mutagenes and Teratogenes under the Sixth Amendement. Techn. Rep.#21.-Brussels,1986.

  8. Health Effects Notebook for Hazadous. Air Pollutants.-Washington,1994.

  9. IARC Monographs on carcinogenic risks to humams.-V.V. 1-53.-Lion,1972-1991

  10. IARC Monographs the evaluation of carcinogenic risks to humams,Suppl.7,29-55.-Lion,1987

  11. Kuehn M. Zentr. Biol. Aerosol. Forsch.,1961.-Vol 9.-P.431-447.

  12. OSHA. Identification, Classification and Regulation of Potential Carcinogenes 20 CFR 1990, Chapter17, OSTP.1985. Chemical Carcinogen’s: A Review of the Science and its Associated Princsples //Fed. Reg.-1985.-Vol.50.-P.10372-10444.

  13. Shubik et all. Toxicol. Appl. Pharmacol., 1962, Suppl.,#4.-62 p.

  14. Sula J. P. Cancer Protection // Neoplasma, 1963.-Vol 10,#6.-P.571-579.

  15. Swanson G.M.Cancer Prevention in the Workplace and Natural Environment.// Canaer.- 1988.-Vol.62,#8.-P.1725-1746.

  16. US.EPA. Health Effects Assassment Summary Tables (HEAST).-Cincinnati,1995.

  17. US.EPA.Drinking Water Regulations and Health Advisories.-Washington,1996

  18. US.EPA.Guidelines for Carcinogen Risk Assesssment // Fed.Reg.-1986.-Vol.51,#185.-P.33992-34003.

  19. US.EPA.Guidlanes for Carcinogen Risk Assassment Draft.-Washington,1996.

  20. US.EPA.Integrated Risk Information System (IRIS).-Cincinnati,1997.

  21. US.EPA.IRIS Background document 2. EPA Approach for Assessing the Risks Associsted with Chronic exposure to Carcinogens.-Cincinnati,1997.

  22. US.EPA.Methods for Derivation of Inhalation Reference Concentration and Application of Inhalation Dosimertry. EPA/600/8-90/966.-Washington, 1994.

  23. US.EPA.Soil Screening Guidance. User’s Guide. Publ.-9356,4-23.-Washington,1996.

  24. WHO. Air Quolity for Europe. WHO Regional Publ.#23.-Copenhagen.1987.

  25. WHO. Guidelines for Drinking-Water Quality.2-nd Ed. Vol.1.Recommendations.Geneva,1993

Додатки
Т
Короткострокові тести для виявлення мутагенних та канцерогенних хімічних речовин
аблиця 1



Методи, що широко використовуються

Загальні стислі дані про метод

Переваги тесту


Недоліки тесту

Маркети мутагенної дії хімічних речовин, що тестується

Тести на мутагенність з використанням бактерій

Використ. Salmonella typhimurium/ або Escherichia coli/ мікросоми.

.Існує 3 класи бактеріальних тестів:

1)ті, що дозволяють виявити зворотні мутації;

2)ті, що дозволяють виявити прямі мутації;

3)ті, що мають недостатність по репарації ДНК.


1)швидкий поділ одноклітинних організмів; 2) добре вивчена генетика та біохімія бактерій; 3)високий ступінь доступності геному бактерій; 4)позитивний результат свідчить про те, що речовина є потенційно мутагенною або канцерогенною для ссавців

1)відсутність безумовної кореляції між мутагенністю та кнцерогенністю факторів;

2)нездатність виявити хімічні речовини, що викликають рак не в результаті пошкоджень ДНК;

3)не виявляє геномні порушення;

4)штучність методу, що проходить у пробірці та з застосуванням S9, що не відображають реальної метаболічної ситуації в печінці.



Мутація his- до his+ для Salmonella typhimurium та trp- до trp+ для Escherichia coli: 1)заміна пар основ; 2)зсув рамки зчитування

Дослідження генотоксич-ності з вико-ристанням дріжджів

Застосовуються дріжджі Saccharomyces cerevisiae та Saccharomyces pombe

1) еукаріотична організація хромосом; 2)можливість оцінки багатьох кінцевих подій; 3)низька вартість тесту при високій ефективності

1)потреби моделювання метаболічних процесів, що проходять у клітинах ссавців;2) зваження на особливості будови клітини дріжджів

Генетичні події:1)точкові мутації в хромосомах та мітохондріальних генах; 2)рекомбінація (як між-, так і внутрішньогенна); 3)анеуплоідія в процесі мейозу та мітозу-при цьому виникають візуальні зміни кольору колоній, що легко виявляються

Позаплано-вий синтез ДНК у клітинах ссавців, що тестуються

Метод полягає у культивуванні клітин ссавців (частіше гепатоцити щурів або первинні фібробласти + мікросомальні ферменти печінки) на предметних шкельцях, обробка їх ДНК пошкоджуючим агентом у середовищі, де є Н3-тимідин і наступним спостереженням за включення радіоактивної мітки в процесі ПСД (позаплановий синтез ДНК при ексцизійній репарації) в клітині

1)швидке наглядне виявлення уражень геному клітин ссавців; 2) швидкість та зручність проведення тесту

1)не дозволяє виявити початкові порушення; 2)не дозволяє встановити наслідки репарації

ПСД (позаплановий синтез ДНК при ексцизійній репарації та включенні радіоактивної мітки)- візуалізація зерен, що отримують при певній обробці препарату та проведенні ауторадіографії

Цитогенетичні порушення та сестринські хроматидні обміни in vitro

Використовується СНО-первинна лінія фібробластів, виділених з яєчників китайського хом‘ячка або лімфоцити периферійної крові людини

1)швидкість проведення тесту; 2) наочність

1)велика залежність від кваліфікації персоналу; 2) велика залежність від якості препаратів

Ідентифікація хромосоминх аберацій, підрахування СХО

Тести на індукцію мутацій у клітинах in vitro

Використовують багато типів клітин (клітини людини, щура, миші, хом‘ячка) та різні селективні системи.

1)швидкість проведення тесту; 2)можливість проведення тесту безпосередньо на клітинах людини

Складність відтворення в умовах in vitro- як у якісному, так і в кількісному відношенні- метаболічної активації, що відбуається у тканинах in vivo.

Прямі та зворотні мутації

Використання вищих рослин для виявлення мутагенних хімічних речовин

Частіше застосовується 10 видів вищих рослин у 25 різних тест-системах:1)тести на індукцію пошкоджень мітотичних хромосом (соматичні клітини кінців корінців або пилкових трубок ячменю, кінського бобу, цибулі, традесканції); 2)тести на індукцію аберацій мейотичних хромосом (материнські клітини пилку)3)тести на індукцію генних мутацій у специфічних або множинних локусах (мутації локуса «восковидності» у Zea mays, мутації недостатності за хлорофілом Hordeum vulgare, соматичні мутації у Tradescantia)

1)цитогенетичні тести на рослинах характеризуються швидкістю та дешевизною; 2)вони не потребують складного лабораторного обладнання; 3)дозволяють виявити різноманітні генетичні порушення

1)значна частина протестованих хімічних сполук проявила свою мутагенну дію лише у якійсь одній рослинній тест-системі;2)немає достатніх даних про немутагенні речовини; 3)мало даних про метаболізм ксенобіотиків у рослині; 4)наявність фундаментальних відмінностей у будові клітин рослин та клітин ссавців (наявність міцної целюлозної оболонки у клітинах рослин); 5)відмінність протікання мейозу та гаметогенезу у клітинах рослин та клітинах ссавців

Пошкодження мітотичних хромосом (соматичні клітини кінців коренців або пилкових трубок), аберації мейотичних хромосом (материнські клітини пилку), мутації у специфічних або множинних локуах (мутації локуса «восковидності» у Zea mays, мутації недостатності за хлорофілом Hordeum vulgare, соматичні мутації у Tradescantia

Тест на зчеплені зі статтю рецесивні летальні мутації у дрозофіли

У Drosophila melanogaster проводиться тест на зчеплені з Х-хромосомою рецесивні леталі, при котрому враховують

1)критерій, за котрим визначається виникнення мутацій є дуже об‘єктивним: висновки грунтуються на тому, чи присутній чи відсутній один з класів самців у поколінні F2; 2)летальні мутації виникають значно частіше, ніж негенетичні порушення інших типів; 3)даний тест є багатолокусним та охоплює велику частину геному Drosophila

1)проведення тесту потребує багато часу, порівняно з тестами на бактеріях та нижчих еукаріотах; 2)можлива помилкова класифікація речовин у результаті невірно проведених тестів

Підрахування індукованих летальних мутацій

Цитогенетичні тести in vivo: метафазний аналіз клітин кісткового мозку та мікроядерний тест

Дослідження проводять з використанням кісткового мозку китайського хом’яка, мишей, щурів молодих статевозрілих тварин

1)умови дослідження in vivo значно ближче до ситуації, що є у людини; 2) немає потреби моделювання метаболічних процесів, що проходять у клітинах ссавців.

1)мікроскопічинй аналіз хромосомних аберацій у метафазних клітинах до декотрого ступеню суб‘єктивний; 2)методи in vivo не мають такої високої чутливості, як тести in vitro

1)хромосомні аберації в метафазах мітотичного поділу клітин тканин, що проліферують; 2)мілкі ядра в інтерфазі, що утворилися з ацентричних фрагментів хромосом або цілих хромосом

Тест на індукцію домінантних летальних мутацій

Запліднені яйцеклітини від самок, що спарюють з молодими статевозрілими мишами-самцями, які обробляються хімічними речовинами, що тестуються

1)летальні мутації виникають значно частіше, ніж негенетичні порушення інших типів; 2)даний тест є багатолокусним та охоплює велику частину геному Drosophila

1)проведення тесту потребує багато часу, порівняно з тестами на бактеріях та нижчих еукаріотах;

1)аналіз постімплатанційної смертності; 2)врахування пост- та доімплатанційних втрат


Достарыңызбен бөлісу:
1   2   3   4   5




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет