Матвей Бронштейн Атомы и электроны


Периодическая таблица элементов, опубликованная в 1869 г. Д. И. Менделеевым



бет4/8
Дата01.07.2016
өлшемі3.04 Mb.
#169152
1   2   3   4   5   6   7   8

Периодическая таблица элементов, опубликованная в 1869 г. Д. И. Менделеевым.

Кроме того, они сочли схему Ньюлендса с ее одинаковыми строчками чрезмерно узкой и допустили, что строчки (периоды) могут становиться длиннее к концу таблицы. Мы приводим «периодическую таблицу элементов», которую опубликовал Д. И. Менделеев в 1869 году в немецком журнале «Zeitschrift fur Chemie» (таблица приводится в несколько измененном виде, но так, что все идеи Менделеева, содержащиеся в его статье, переданы правильно).

В этой таблице курсивом даны те элементы, которые были поставлены Менделеевым неправильно вследствие познания их атомных масс или по другим причинам (в 1870 году Менделеев исправил большую часть этих ошибок). Уже в четвертой строке таблицы классификация потребовала оставления пустых мест. На этих пустых местах должны находиться какие то еще не открытые элементы, а именно должен быть один элемент между кальцием п эрбием (впрочем, эрбий здесь поставлен по ошибке, и уже в 1870 году Менделеев правильно поставил вместо эрбия титан) и два элемента между цинком и, мышьяком. Этим элементам Менделеев дал следующие названия: элементу, который должен стоять после кальция, он дал имя экабор, а двум элементам, которые должны идти за цинком,  имена экаалюминий и экакремний (экабор, как видно из таблицы, должен быть аналогичен бору, а экаалюминий и экакремний   алюминию и кремнию). Менделеев был настолько убежден в своей классификации, что имел смелость заранее описать свойства этих трех элементов, прежде чем их откроют. Чтобы предсказать свойства, например, экакремния, он сообразил, что экакремний по своим свойствам должен быть чем то средним между цинком и мышьяком (но заметно ближе к мышьяку) и что, с другой стороны, он должен иметь много сходства с кремнием и с элементом под ним, т. е. с оловом, будучи чем то средним между кремнием и оловом. (Все это читатель легко поймет, пользуясь приведенной таблицей.)

И что же? Предсказания Менделеева блестящим образом сбылись. Летом 1875 года французский химик Лекок де Буабодран, исследуя найденный в Пиренейских горах кусок руды (цинковой обманки), обнаружил в этой руде новый химический элемент, который но своим свойствам был совершенно таким же, как предсказанный Менделеевым экаалюминий. Найденному им элементу Лекок де Буабодран дал название галлий (от латинского слова Галлия, что значит Франция). В 1879 году шведские химики Нильсон и Клеве нашли в одном редком норвежском минерале эвксените предсказанный Менделеевым экабор и назвали его скандием (по латыни Скандия значит Швеция), И наконец, в 1885 году немецкий химик К. Винклер, исследуя только что открытый в фрейбургских рудниках в Саксонии минерал аргиродит, нашел в нем предсказанный Менделеевым экакремний. Продолжая тот же ряд патриотических названий, Винклер назвал экакремний германием.

Чтобы убедиться, насколько точны были предсказания Менделеева, сравним свойства экакремния и германия:
Свойства экакремния (обозначался Es), предсказанные Менделеевым в 1871 г.

Экакремний   серый металл, плавится с трудом, атомная маска   72.

Плотность экакремния должна быть 5,5 г/см3.

Окись экакремпия должна иметь формулу EsO2 и плотность 4,7 г/см3. Под действием водорода из нее должен выделяться экакремний.

Хлористый экакремний EsCU должен иметь плотность 1,9 г/см3 и кипеть при 90° С.

Фтористый экакремний EsF4 не летуч.

Сернистый экакремний EsS2 должен растворяться в сернистом аммоппи.

Экакремний этил Es(C2H5)4 должен иметь плотность 0,96 г/см3 и кипеть при 160° С.


Свойства германия (обозначается Ge), изученные К. Винклером в 1886 г.

Германий   серый, трудно возгоняющийся металл, атомная масса   72,6.

Плотность германия 5,409 г/см3.

Плотность окиси германия GeO2 4,703 г/см3. Под действием водорода из нее выделяется германий.

Хлористый германий GeCl4 имеет плотность 1,887 г/см3 и кипит при 86° С.

Фтористый германий GeF4 3Н2O  твердое белое вещество.

Сернистый германий GeS2 растворяется в сернистом аммонии.

Германий этил Ge (С2Н5)4 имеет плотность 0,991 г/см3 и кипит при 160° С.


Пожалуй, можно сказать, что Менделеев предвидел в этом элементе все, кроме его названия.

После такой блестящей победы никто уже не мог сомневаться в том, что «периодический закон» Менделеева действительно выражает какое то весьма глубокое свойство химических элементов и что атомы химических элементов могут быть расположены в какой то «системе родства». Но что означает это, родство химических элементов, эти связи между разными атомами, не имеющими, казалось бы, ничего общего друг с другом,  этого в те времена еще никто   в том числе и сам Менделеев   не сумел бы сказать.

Периодический закон Менделеева, как выразился один историк химии, «среди многочисленных зданий научных теорий, воздвигнутых в XIX веке, был похож на обелиск, покрытый непонятными письменами; расшифровать эти письмена   вот великая задача, которую девятнадцатый век оставил в наследство двадцатому».

Приведем еще периодическую таблицу элементов в том виде, который она имела в тридцатых годах. Заметим, что предсказания свойств новых элементов на основании периодического закона неоднократно делались и впоследствии; так, например, У. Рамзай, после открытия (им и Дж. У. Рэлеем) аргона и гелия, предсказал существование неона, криптона, ксенона, которые он потом и открыл вместе с Траверсом в 1898 году.

Нет ничего невозможного в том, что в природе существуют и элементы, обладающие большей атомной массой, чем уран.
Периодическая таблица элементов Менделеева (первая половина 30 х гг. XX века).

Эти элементы, если они существуют, должны были бы в нашей таблице попасть на места, идущие после урана. Но до сих пор эти элементы еще не были обнаружены в природе [ 8]).

Таково, в общих чертах, учение об атомах химических элементов, созданное Дальтоном и определившее все дальнейшее развитие химии в XIX столетии. Но если гипотеза об атомах и молекулах оказалась такой важной и такой полезной для химии, то какую роль она сыграла в физике, занимающейся гораздо более широкой областью явлений природы, чем химия? Следует заметить, что в физике гипотеза атомов существовала и играла очень большую роль задолго до той поры, когда Дальтон сделал учение об атомах и молекулах необходимым для того, чтобы хоть что нибудь понимать в химических явлениях. Ведь мы уже говорили о том, как и к теории атомов относился такой гениальный и авторитетный физик, как Исаак Ньютон. Представление об атомах служило физикам для того, чтобы составить ясное понятие о целом ряде физических явлений. Мы нагреваем тело   это тело расширяется. С точки зрения атомной гипотезы это значит, что атомы несколько отошли друг от друга   пустые промежутки между ними увеличились. Как можно было бы наглядно представить себе такое простое явление, как расширение тел при нагревании, если считать вещество не состоящим из атомов, а непрерывный и сплошным? Все газы обладают гораздо меньшей плотностью, чем жидкости и твердые тела,  это значит, что атомы (или молекулы) газов находятся на очень больших расстояниях друг от друга; поэтому то так легко сжать газ, т. е. уменьшить пустые промежутки между его атомами или молекулами. Сжать сколько нибудь заметно жидкость или твердое тело очень трудно, а уменьшить посредством сжатия объем жидкого или твердого тела в несколько раз вовсе невозможно. Что это значит? Это значит, что в жидких и твердых телах между атомами почти нет пустых промежутков; атомы почти соприкасаются друг с другом, как дробинки в мешочке с дробью, если его хорошенько встряхнуть.

Всякий газ давит изнутри на поверхность стенок того сосуда, в котором этот газ заключен. Как это понять? Очень просто: стоит только предположить, что атомы (или молекулы) газа не находятся в покое, а, напротив, все время очень быстро движутся. Если это так, то они должны все время наталкиваться на стенки сосуда и отскакивать от них, как отскакивают бильярдные шары от борта бильярда; стенки сосуда, в котором заперт газ, должны все время испытывать изнутри целый град толчков, целую бомбардировку со стороны молекул газа. Если увеличить объем сосуда, отодвинув в нем крышку или поршень, или если открыть перед молекулами газа дверь, ведущую в соседнее пустое пространство, то быстро движущиеся молекулы сейчас же начнут проникать в предоставленный им новый объем, пока весь сосуд не заполнится газом равномерно и целиком. Вот почему всякий газ всегда стремится расшириться и заполнить весь предоставленный ему объем. Легко понять, что будет, если сжать газ, находящийся в каком нибудь сосуде с поршнем: молекулы газа, занимавшие раньше большой объем, теперь вынуждены будут сконцентрироваться в меньшем объеме, а поэтому на каждый квадратный сантиметр поверхности стенки будет приходиться в течение секунды больше ударов молекул, т. е. молекулярная бомбардировка на каждый квадратный сантиметр стенки возрастает. Давление газа, запертого в сосуде, увеличивается при уменьшении объема этого сосуда. Если нагреть газ, запертый в сосуде, не изменяя его объема, то давление газа, как показывают опыты, возрастает. Так как число атомов и молекул осталось тем же самым, то для того, чтобы понять, почему молекулярная бомбардировка увеличилась, необходимо допустить, что при повышении температуры молекулы и атомы начинают двигаться быстрее: вследствие увеличившейся скорости их движения возрастет и число ударов в секунду о стенку (ведь при возросшей скорости каждая молекула успевает в течение секунды большее число раз слетать от одной стенки сосуда до другой и обратно) и, кроме того, возрастет и сила каждого отдельного удара. Это допущение о том, что при повышении температуры скорость движения атомов и молекул растет, должно относиться не только к газам, но и к жидкостям, и к твердым телам: без этого невозможно понять, каким образом при нагревании происходит испарение.

В самом деле, как должны мы наглядно представлять себе твердые тела и жидкости? Жидкости очень подвижны и текучи; это значит, что атомы и молекулы жидкостей, все время тесно соприкасаясь друг с другом, вместе с тем легко и быстро скользят, перемещаясь по всему объему жидкости (иногда бывает, что молекула какой нибудь жидкости так же легко и просто может перемещаться среди молекул другой жидкости; вот почему так быстро происходит, например, перемешивание воды и спирта, если спирт налит поверх воды в какой нибудь сосуд).

Твердые тела, наоборот, имеют некоторую упругость, т. е. стремятся все время сохранить свою форму; поэтому приходится заключить, что атомы твердых тел всегда находятся в каких то определенных положениях равновесия и могут только совершать около этих положений более или менее быстрые колебания. Быстрота движений, совершаемых молекулами и атомами жидких и твердых тел, должна, как и в газах, возрастать при увеличении температуры. Этим объясняется испарение при нагревании, так как более быстро движущиеся молекулы жидкости могут преодолеть притяжение со стороны окружающих молекул той же жидкости и выскочить из жидкости наружу. Пар, насыщающий пространство над поверхностью данной жидкости,  это и есть тот газ, который состоит из таких «сбежавших из жидкости» молекул. Из жидкости выскакивают, правда, все новые и новые молекулы, по молекулы пара, падающие на жидкость, проникают туда вновь, и поэтому в конце концов устанавливается равновесие между жидкостью и ее паром, когда в каждую секунду столько же молекул выскакивают из жидкости («испаряется»), сколько их падает в жидкость обратно.

Из всего сказанного видно, какие простые и ясные представления вносит гипотеза атомов и молекул в физику. Основным в этой атомно молекулярной картине газов, жидкостей и твердых тел является представление о том, что с возрастанием температуры растет и скорость движения атомов. Это представление сыграло очень большую роль в истории атомистического учения.

До XIX столетия среди физиков господствовало мнение, что теплота есть какое то невесомое вещество   «теплород», которое может соединяться с обычными веществами. Нагретое тело, согласно этой точке зрения,  это такое, в котором много теплорода; при охлаждении тела теплород и з него уходит. Это широко распространенное представление о вещественности тепла было опровергнуто, как только физики стали изучать связь между теплотой и движением. Наличие этой связи очевидно: при трении, которым сопровождается движение, возникает тепло,  этим издавна пользовались для добывания огня народы, стоящие на низких ступенях культуры,  с другой же стороны, теплота, выделяющаяся при сжигании угля в топке парового котла, является основной причиной возникающего в паровой машине движения поршня в цилиндре, махового колеса, шатуна и т. д.

В 1798 году некий Бенджамин Томпсон, американец, авантюрист, прежде сражавшийся на стороне Англии во время войны за независимость Соединенных Штатов, а затем поступивший на службу к баварскому королю, от которого, он получил титул графа Румфорда, наблюдал в мюнхенском арсенале сверление пушечных жерл. Сверление сопровождалось выделением очень большого количества тепла. Когда Румфорд погружал просверливаемую металлическую болванку вместе с работающим в ней сверлом в воду, то вода через два с половиной часа начинала кипеть. Пораженный этим огромным выделением тепла, Румфорд подробно исследовал все условия, при которых тепло возникает. Оказалось, что если просверлить в болванке жерло острым сверлом, а затем заменить его тупым сверлом, которое уже не может отделять от металла стружки, но все же поворачивается с большим трением, то дальнейшее вращение сверла позволяет извлечь из болванки любое количество тепла   стоит только вращать сверло достаточно долго. Это было несовместимо с представлением о вещественности тепла: если бы теплота была веществом («теплородом»), то из данной болванки нельзя было бы извлечь больше тепла, чем в ней в действительности содержалось. Поэтому Румфорд решил, что теплота не вещество, а движение. Теплота   это движение невидимых глазу атомов, из которых состоит любое вещество. Нагреть какое нибудь тело   это значит привести его атомы в более быстрое движение, чем то, в котором они находились раньше. Охладить тело   значит замедлить движение атомов. Так возникла механическая теория тепла (термодинамика), получившая свое окончательное обоснование уже только в последней четверти XIX века   в работах Людвига Больцмана и Уилларда Гиббса, которые доказали, что все законы тепловых явлений могут быть выведены теоретически, если применять теоремы механики к движению невидимых глазу атомов. Это был такой же триумф атомистической теории, как и тот, который ей доставили работы Дальтона в химии: не только химические, но и физические явления легко объяснялись с помощью предположения, что все тела состоят из мельчайших, невидимых глазу атомов.

И все же атомистической теории в это время (к концу XIX столетия) еще не хватало многого. Представление об атомах все еще не было достаточно конкретным. Пусть мы знаем, что существуют такие то и такие то атомы   атомы кислорода, железа, фосфора, серы и т. д.,  но много ли мы знаем о самих этих атомах? Мы можем только сравнивать их друг с другом, можем говорить, что масса атома кислорода в 16 раз больше массы атома водорода, а масса атома серы в два раза превышает массу атома кислорода, но о каждом из этих атомов в отдельности мы ничего не можем сказать. Мы не можем сказать, какова масса атома водорода и каковы его размеры; мы знаем, что капелька воды состоит из молекул Н2O, но не можем сказать, из скольких молекул, и т. д. И постепенно у многих начинало складываться впечатление, что этого мы так таки никогда и не узнаем и что ничего, кроме отношений химических элементов друг к другу, в природе нет, а те атомы   атомы водорода, кислорода, азота, которые Дальтон так ясно представлял себе и рисовал на бумаге в виде кружочков,  те атомы являются чистейшей фантазией   мы никогда не сумеем их взвесить, измерить и понять их настоящие свойства. Жесточайшим нападкам подвергалась атомистическая теория со стороны многих философов. Артур Шопенгауэр утверждал в своем сочинении «Мир как воля и представление», что химические атомы Берцелиуса являются лишь формой выражения тех относительных количеств, в которых вещества вступают друг с другом в химические соединения; поэтому следует считать атомы, по существу, лишь арифметическими понятиями, лишь «расчетными единицами» (Rechenpfennige). В другом сочинении   «О философии естествознания»   он бранит химиков, называя их «невежественными аптекарями, занимающими профессорские кафедры», и говорит, что они «с таким детским самомнением и с такой уверенностью толкуют об эфире и его колебаниях, об атомах и о прочих глупостях, как если бы они все это видели и трогали руками». В конце XIX столетия возникла целая школа физиков и философов, которая осуждала все попытки атомистической теории проникнуть во внутренний механизм явлений: эти философы признавали достойным изучения только непосредственное ощущение предметов внешнего мира и отвергали всякие стремления объяснять их наблюдаемые свойства (их цвет, твердость, температуру и т. п.) при помощи атомов, которые настолько малы, что наши органы чувств не могут их наблюдать непосредственно. (Уничтожающую критику учений этой философской школы можно найти в книге В. И. Ленина «Материализм и эмпириокритицизм».) Выдающиеся представители этой школы (Мах, Дюгем, Оствальд) выставляли против теории атомов те же самые возражения, какие в свое время выставил Шопенгауэр. Все они единодушно сходились в том, что «атомистической теории следовало бы уже давно истлеть в пыли библиотек», как выразился Вильгельм Оствальд в своих лекциях по философии природы, которые он читал в Лейпцигском университете летом 1901 года.

Но сторонников атомистической теории не смущали злые нападки философов. Они упорно стремились найти убедительные доказательства реальности атомов. Увидеть атом, взвесить его, измерить его размеры   вот что стало заветной мечтой атомистов. Но как это сделать, если атомы настолько малы, что ускользают не только от наших невооруженных органов чувств, но и от самых усовершенствованных микроскопов! Жигмонди и Зидентопф построили и усовершенствовали так называемый «ультрамикроскоп», позволяющий обнаружить в коллоидном растворе золота золотые частички, масса которых чуть ли не в миллиард раз меньше грамма. Но в том же растворе присутствуют и более мелкие частички золота   значит, атом золота весит еще меньше. Каким же образом можно взвесить атом? Не следует ли отказаться от этой задачи, признать ее принципиально неразрешимой? Если мы признаем эту задачу принципиально неразрешимой, т. е. если мы признаем атомы принципиально ненаблюдаемыми, то тогда Оствальд и компания окажутся нравы, потому что принципиально ненаблюдаемое не может служить объектом изучения в физике и должно считаться лишь результатом неправильного образования понятий. Вот почему атомисты не хотели примириться с таким решением вопроса и не захотели утверждать, что «атомы существуют, но их наблюдать, взвесить и измерить никогда не удастся». Если бы они это утверждали, то это означало бы капитуляцию перед философами, считавшими, что книги по атомистической теории должны сгнить в пыли библиотек.

И в конце концов атом действительно удалось взвесить. Этому помогло одно странное явление, которое было открыто еще в первой половине XIX века и на которое физики в свое время не обратили должного внимания. Это явление называется броуновским движением.

В 1828 году знаменитый английский ботаник Роберт Броун проделал одно в высшей степени интересное наблюдение. Испытывая только что присланный ему новый усовершенствованный микроскоп с ахроматическим объективом, Роберт Броун вздумал рассмотреть с помощью этого микроскопа ничтожную каплю жидкости, содержащейся в крохотных зернышках пыльцы растений. В такой жидкости всегда имеется большое количество микроскопических твердых частиц. Как удивлен был Броун, когда увидел, что эти частицы не остаются на месте, а движутся, движутся непрерывно, точно исполняя какой то фантастический танец! Когда в поле зрения микроскопа было видно много таких частиц, то получалось такое же впечатление, как от тучи каких то мельчайших мошек. Твердые частицы микроскопических размеров, находящиеся в жидкости, движутся, как если бы они были живыми, и, действительно, у наблюдателя остается именно такое впечатление. Но уже Роберт Броун, который первым наблюдал это хаотическое движение микроскопических частиц, получившее свое название от его имени, пришел к другому заключению: частицы движутся не потому, что они живые. Частицы мертвого вещества, обладающие такими же размерами, тоже должны совершать аналогичное движение, если только они окружены со всех сторон жидкостью. Так утверждал Броун, и это было полностью подтверждено многочисленными последующими наблюдениями.

Можно было бы думать, что броуновское движение микроскопических частиц вызывается какими то потоками в самой жидкости, связанными с разностью давления в различных точках жидкости. Каждому приходилось наблюдать движение пылинок в воздухе, освещенном падающими сбоку солнечными лучами. Это движение действительно связано с токами воздуха, но броуновское движение имеет совершенно другой характер. В самом деле, если внимательно наблюдать за движением пылинок в солнечном луче, то легко заметить, что соседние пылинки, попавшие в небольшую струю воздуха, движутся в одну и ту же сторону. А если наблюдать за броуновским движением микроскопических частиц, то оказывается, что между направлением движения соседних частиц нет решительно ничего общего: частицы движутся совершенно независимо друг от друга, даже если им случится подойти друг к другу на самое крохотное расстояние, равное диаметру отдельной частички. Значит, совсем не от токов жидкости происходит это непостижимое и фантастическое движение микророскопических твердых частичек.

Во второй половине XIX века броуновское движение подробно исследовал французский физик Гуи. Он проделал целый ряд опытов, которые убедили его в том, что причина броуновского движения скрыта в самой жидкости. Не от внутренних токов жидкости, вызванных ничтожными разностями температур, и не от внешних толчков и сотрясений происходит броуновское движение. Гуи пробовал сравнивать броуновское движение в лаборатории, расположенной на шумной улице, по которой проезжают тяжелые экипажи, с тем же броуновским движением, наблюдаемым ночью в глухом подвале, в деревне,  разницы не получалось никакой. Толчки от экипажей заметны, но они сказываются не на хаотическом движении броуновских частиц, а на движении всей капельки жидкости в целом: двигаясь как целое, капелька увлекает за собой все частицы в одном и том же направлении, н это движение очень легко отличить от накладывающегося на него хаотического движения броуновских частиц, происходящего по всем возможным направлениям. Гуи убедительно доказал, что броуновское движение, как уже предполагал и сам Броун, нисколько не связано с тем, что жидкость, в которой оно наблюдается, взята из живого существа   из растений: искусственно приготовленные жидкости с взвешенными в них микроскопическими частицами, в которых нет ничего живого, тоже обнаруживают броуновское движение.

В 1881 году польский физик Бодашевский показал, что броуновское движение происходит и в газах, а не только в жидкостях. Для того чтобы наблюдать броуновское движение, он рассматривал при боковом освещении микроскопические частички, образующие табачный дым. Крохотные частички угля, из которых состоит дым, плясали во все стороны совершенно таким же образом, как плясали твердые частички, наблюдавшиеся Робертом Броуном в жидкости.

Настоящую причину броуновского движения угадал в 70 х годах прошлого столетия бельгиец Карбонель. Его объяснение, гениальное по своей простоте, состоит в следующем: микроскопические частицы движутся потому, что они испытывают толчки со стороны невидимых молекул и атомов окружающей их жидкости. Рассматривая движение броуновских частичек, мы получаем некоторое представление о том, как движутся невидимые молекулы жидкости,  совершенно таким же образом, как мы узнаем о волнении на море, когда, стоя далеко от берега, видим качание лодки, швыряемой волнами во все стороны. Броуновское движение является поэтому мостом, соединяющим невидимый мир атомов и молекул с миром, доступным восприятию при помощи наших органов чувств.

Почему броуновское движение можно наблюдать только в том случае, когда частички очень малы? Очень просто, отвечает на этот вопрос Карбонель: если поверхность частицы велика, то количество толчков, получаемых ею справа, всегда окажется приблизительно равным количеству толчков, получаемых ею же слева, и ничтожное различие в количестве толчков будет совершенно недостаточно для того, чтобы сдвинуть с места большую и тяжелую частицу. Если же частица имеет ничтожный вес и ничтожные размеры, то в хаосе молекулярных движений жидкости  всегда может случиться, что с одной стороны частицы будет в данный момент случайно больше толчков, чем с другой, а поэтому легкоподвижная частица двинется в ту сторону, куда ее толкнут молекулы. Через какой то очень короткий промежуток времени избыток молекулярных толчков будет сдвигать броуновскую частицу уже по другому направлению, еще через какой то короткий промежуток времени   по третьему и т. д., и т. д. Вот почему броуновская частица и совершает свое движение, напоминающее пляску дикарей.

Если это, предложенное Карбонелем, объяснение правильно, то чем частицы легче и мельче, тем броуновское движение должно быть интенсивнее. Так и есть в действительности   уже Броун сумел это заметить. Кроме того, ведь мы знаем, что движение молекул жидкости происходит тем быстрее, чем выше температура, и, в самом деле, Гуи нашел из своих опытов, что при повышении температуры броуновское движение делается все интенсивнее и интенсивнее. Когда Жигмонди изобрел свой ультрамикроскоп и смог наблюдать ничтожнейшие частицы золота в коллоидном растворе (диаметр частиц меньше миллионной доли сантиметра), то броуновское движение этих частиц оказалось таким быстрым, что получилось какое то сплошное мелькание: частицы двигались с такой скоростью, что их иногда удавалось видеть только в точках поворота их пути, где скорость несколько уменьшалась. Жигмонди описывает первое впечатление так: «Это какое то непрерывное прыганье, скакание, столкновения и раздевания, так что трудно разобраться в этой путанице».

Шведский физик Сведберг, изучавший после Жигмонди броуновское движение частиц в коллоидном растворе золота, придумал для устранения этого мелькания следующий способ: он открывал поле зрения ультрамикроскопа с помощью моментального фотографического затвора, регулируя продолжительность того времени, в течение которого затвор открыт. Уменьшая этот промежуток времени, можно добиться того, что мелькание исчезает, а при дальнейшем его уменьшении частицы начнут казаться неподвижными, как летящая птица на моментальном фотографическом снимке. Чем быстрее броуновское движение, тем более коротким должен быть тот промежуток времени, в течение которого затвор открыт. И Сведберг нашел из своих опытов   в полном согласии с теми теоретическими выводами, о которых мы говорили,  что при повышении температуры коллоидного раствора приходится открывать фотографический затвор на все более и более короткое время для того, чтобы мелькание прекратилось.

Мы переходим теперь к рассказу о классических работах, которые сделал французский физик Жан Перрен (1908 г.). В этих работах было окончательно проверено и установлено, что броуновское движение в жидкостях вызвано движением молекул, и тем самым дано решающее доказательство действительного существования молекул и атомов.

Перрен брал кусочки резиновой смолы «гуммигута» (желтая краска) и растирал их рукой в воде, как растирают кусочек мыла. Гуммигут постепенно растворялся в воде, пока она не становилась ярко желтого цвета. После этого Перрен брал немножко такой жидкости под микроскоп. Под микроскопом оказывалось, что гуммигут на самом деле совсем не растворился в воде, а распался на множество шаровидных мелких зернышек, которые разбрелись по всему объему воды. Зернышки эти очень различны по размерам. А Перрену хотелось иметь такую жидкость, в которой были бы совершенно одинаковые по размерам частицы гуммигута. Для этого он воспользовался «центрифугой» (центробежной машиной), такой же, какой пользуются на крупных молочных фермах для отделения сливок от молока или же в медицинских лабораториях  для удаления кровяных шариков из крови, после чего остается однородная жидкость   кровяная сыворотка. Центрифуга Перрена делала 2500 оборотов в минуту, и возникающая при этом центробежная сила выбрасывала из жидкости зернышки гуммигута  Перпендикулярно к оси центрифуги были расположены стеклянные пробирки, в которых содержалась эмульсия гуммигута (так называется вода со взвешенными в ней частичками гуммигута). Центробежная сила, возникавшая при вращении центрифуги, была настолько велика, что на расстоянии 15 см от оси она превосходила силу тяжести в тысячу раз. Эта центробежная сила стремилась прижать частицы гуммигута ко дну пробирки, расположенному подальше от оси: частицы «выпадают» из эмульсии на дно пробирки под влиянием центробежной силы совершенно таким же образом, как грязь и муть выпадают из речной воды под влиянием силы тяжести,  разница лишь в том, что в опытах Перрена частицы выпадали не вниз, а вбок, в ту сторону, в которую действовала центробежная сила.

Первыми выпадали тяжелые частицы, а вслед за ними и легкие. Это давало возможность отделить частицы друг от друга по массе (а значит, и по размерам, потому что все частицы сделаны из одного и того же материала, и поэтому, чем больше их масса, тем больше и размеры). Разумеется, разделение происходило не сразу, а постепенно: задумав получить однородную эмульсию с частицами какого то совершенно определенного размера, Перрен сперва получил эмульсию, в которой частиц такого размера было больше, чем частиц других размеров, затем эту эмульсию он снова подвергал центрифугированию и выделял из нее часть, в которой процент частиц заданных размеров был еще больше, и т. д., и т. д., пока, наконец, не получилась порция эмульсии, в которой были зернышки только нужных размеров. Это очень кропотливая и тяжелая работа: приходится работать целый месяц для того, чтобы из одного килограмма гуммигута получить несколько десятых или даже сотых долей грамма круглых зерен нужной величины. Перрен сумел получить несколько порций эмульсии с диаметром зерен в 0,50, 0,46, 0,37, 0,21 и 0,14 микрона[ 9] (микрон   это тысячная доля миллиметра).

С помощью таких эмульсий Жан Перрен произвел множество замечательных опытов, о которых мы здесь и расскажем. Он поместил каплю эмульсии с определенным диаметром зерен в плоскую ванночку (кюветку) с глубиной 0,1 мм. Кюветка была вслед за тем покрыта тонким покровным стеклышком, края которого были залиты парафином: таким образом капля оказалась размазанной в сосуде, в котором она герметически заперта, так что никакое испарение уже невозможно.

Перрен сперва поставил свою кюветку на бок и стал смотреть на нее в микроскоп. В поле зрения микроскопа оказалась тонкая вертикальная водяная стенка, внутри которой распределились зернышки гуммигута.


Рис. 3. Распределение зернышек гуммигута по высоте: а) рисунок воспроизводит фотографию, полученную Перреном в его лаборатории;

Рис. 3. Распределение зернышек гуммигута по высоте: б) рисунок составлен из пяти наложенных друг на друга фотографических снимков.
Распределение зернышек сперва было однородным (это произошло, как потом выяснилось, вследствие неизбежного встряхивания препарата при его установке под микроскоп), но потом, с течением времени, распределение изменилось и в конце концов стало таким: очень много зернышек внизу, а по мере продвижения вверх их становится все меньше и меньше. Число зернышек в одном кубическом микроне уменьшается с увеличением высоты, и притом по некоторому вполне определенному закону.

Этот закон уменьшения плотности эмульсии с высотой Перрен захотел исследовать. Для этого он положил кюветку на донышко и стал смотреть на нее сверху в микроскоп, имевший очень маленькую глубину поля зрения: в.микроскоп было видно все, что происходит в тонком слое глубиной в один микрон. Передвигая микроскоп вверх и вниз, можно было смещать этот слой то выше, то ниже. Перрен стал работать так: поставил микроскоп на какой то высоте и начал считать, сколько зернышек виднеется в поле зрения па этой высоте, затем передвинул микроскоп на новую высоту и снова сосчитал число зернышек и т. д. Заметим, что при этом числом зернышек считается среднее из нескольких наблюдений, потому что зернышки движутся совершенно хаотически и, следовательно, их число в поле зрения микроскопа бывает то больше, то меньше, в зависимости от случая. Поэтому на одной и той же высоте Перрен производил подсчет зернышек много раз и затем уже определял среднее значение, характерное для каждой такой высоты.

Казалось бы, можно было производить под микроскопом моментальные фотографические снимки, а затем уже на досуге спокойно сосчитать, сколько имеется зернышек в поле зрения на данной высоте. Но моментальные фотографические снимки в этих условиях плохо получаются, потому что не удается осветить зернышки достаточно ярко (Перрену удавалось получать моментальные снимки в случае частиц с диаметром больше чем 0,5 микрона, для меньших же частиц фотографии получались чересчур не отчетливые.) Поэтому Перрену пришлось сильно сузить поле зрения микроскопа, помещая между микроскопом и препаратом кружочек фольги, проколотый иголкой: в микроскоп было видно только то, что происходило на площади, равной отверстию, сделанному иголкой. Препарат освещался очень короткое время   для этого на пути лучей, освещавших препарат, ставился фотографический затвор,  и каждый раз в поле зрения было видно сравнительно небольшое число зернышек: не больше пяти. Для этого то и должен был Перрен сузить поле зрения микроскопа: если бы каждый раз в поле зрения получалось много частиц, то наблюдатель никак не успевал бы их сосчитать. Сосчитать же зернышки, если их число не превышает пяти, легко. Зато приходилось компенсировать это уменьшение поля зрения тем, что в одном таком поле зрения делалось очень много отсчетов, и затем уже из полученных результатов вычислялось среднее арифметическое.

Приведем результаты одного из опытов Перрена. Глубина кюветки была, как мы уже говорили, 100 микрон (т. е. 0,1 мм). Отсчеты производились на высотах 5, 35, 65 и 95 микрон над уровнем донышка кюветки. Оказалось, что среднее число частиц на высоте 35 микрон составляет половину того, которое было на высоте 5 микрон; число частиц на высоте 65 микрон было равно половине числа частиц на высоте 35 микрон, а число частиц на высоте 95 микрон равнялось половине числа частиц на высоте 65 микрон. Иными словами, при подъеме вверх на каждые 30 микрон число частиц в данном объеме (соответствовавшем глубине и ширине выбранного поля зрения) уменьшалось вдвое. Поэтому математический закон убывания плотности (числа зерен в данном объеме) с высотой может быть выражен так: если высоты образуют арифметическую прогрессию, то числа зерен образуют геометрическую прогрессию.

Такой закон убывания плотности зерен с высотой должен был сильно поразить и заинтересовать Перрена: ведь по такому же самому закону спадает плотность при подъеме в нашей атмосфере. Блэз Паскаль, знаменитый французский ученый, живший в XVII столетии и впервые применивший к изучению атмосферы барометр, изобретенный итальянцем Торричелли, обнаружил закон, по которому спадает с увеличением высоты плотность атмосферного воздуха. Этот закон, получивший название барометрической формулы, гласит то же самое: плотность каждого из газов, составляющих атмосферу, убывает вместе с увеличением высоты в геометрической прогрессии. Так, например, при подъеме на 5 км количество кислорода, находящегося в кубическом сантиметре, уменьшается вдвое; при подъеме на следующие 5 км оно уменьшается еще вдвое и т. д., и т. д. Это   тот же самый закон, по которому уменьшается с высотой число зернышек гуммигута в кубическом сантиметре эмульсии, но только здесь иные масштабы   вместо 30 микрон здесь мы имеем 5 км. Отчего же получаются другие масштабы? Достаточно посмотреть, что будет, если вместо кислорода исследовать какой нибудь другой газ атмосферы, например углекислый газ или азот. Для того чтобы количество углекислого газа на кубический сантиметр уменьшилось вдвое, нужно подняться не на высоту 5 км, а всего только на высоту 3,6 км, т. е. на высоту, в 1,37 раза меньшую. Но во столько же раз (в 1,37 раза) масса молекулы углекислого газа (СО2) больше массы молекулы кислорода (O2). Совершенно такое же соотношение получается, если сравнивать кислород не с углекислым газом, а, например, с азотом или с аргоном. Высота, на которую нужно подняться, чтобы плотность уменьшилась вдвое, обратно пропорциональна массе молекулы данного газа. Например, масса молекулы гелия (состоящая только из одного атома Не) в 8 раз меньше массы молекулы кислорода. Поэтому, для того чтобы количество гелия в одном кубическом сантиметре уменьшилось вдвое, нужно подняться не на 5 км, как в случае кислорода, а на 40 км (т. е. в 8 раз выше).

Слой гуммигутовой эмульсии в 100 микрон   это, в сущности, такая же атмосфера, но только состоящая не из молекул кислорода или азота, а из зернышек гуммигута, которые уже достаточно велики, чтобы их можно было видеть в микроскоп. Вследствие большой массы этих зернышек (по сравнению с молекулами газа) уменьшение плотности с высотой происходит быстрее, чем в обыкновенной атмосфере, окружающей нашу Землю, а именно (в случае гуммигутовых зернышек с диаметром 0,21 микрона) плотность уменьшается вдвое при подъеме на 30 микрон. «Эмульсия,  говорит Перрен,  это атмосфера в миниатюре, тяготеющая к Земле. В масштабе такой атмосферы Альпы представлялись бы несколькими микронами, а отдельные холмы стали бы равны молекулам». Для нас всего важнее, что молекулы этой миниатюрной «атмосферы»   зернышки гуммигута   могут быть взвешены, а это позволяет вычислить и массы молекул обыкновенного газа. Так Перрен сумел сделать то, что казалось совершенно невозможным,  взвесить молекулы и атомы.

Проделаем этот нехитрый расчет. Высота, на которой плотность кислорода уменьшается вдвое,  5 км. Высота, на.которой плотность гуммигута уменьшается вдвое,  30 микрон. 5 км в 165 миллионов раз больше, чем 30 микрон. Значит, масса гуммигутового зернышка с диаметром в 0,21 микрона превышает массу кислородной молекулы в 165 миллионов раз.

Сколько же весит такой гуммигутовый шарик? Это нетрудно рассчитать, если измерить предварительно, сколько весит кубический сантиметр гуммигута. При этом расчете не следует забывать, что в опытах Перрена зернышки гуммигута находились в воде, а значит, по закону Архимеда, каждый кубический сантиметр гуммигута терял в весе ровно столько, сколько весит кубический сантиметр воды, т. е. 1 грамм. Значит, каждый кубический сантиметр гуммигута в воде весил на один грамм меньше, чем в воздухе. В результате всех расчетов (которые мы пропускаем) получается, что масса зернышка (с поправкой на закон Архимеда) равна 0, 000 000 000 000 01 г.

И это зернышко в 165 миллионов раз превосходит по массе молекулу кислорода. Значит, молекула кислорода весит 0,000 000 000 000 000 000 000 05 г.

А так как масса молекулы кислорода в 32 раза больше массы атома водорода, то масса атома водорода   этого самого легкого из всех атомов – равна 0,000 000 000 000 000 000 000 0016 г.

В грамме водорода содержится, следовательно, 600 000 000 000 000 000 000 000 атомов.

Эти цифры, найденные Перреном, позволили связать употребительную единицу атомной массы   массу атома водорода   с граммом. Масса атома водорода, выраженная в граммах, получается настолько малой, что ее никак невозможно себе представить,  тем не менее ее удалось определить. Атом был взвешен. Важнейшая задача атомной физики была разрешена.

Немыслимо все время писать в виде десятичных дробей все эти ничтожно малые цифры. Поэтому физики придумали иной, более короткий способ их написания. Вместо того, чтобы писать 0,1, пишут 10 1, вместо того, чтобы писать 0,01, пишут 10 2, вместо 0,001 пишут 10 3, вместо 0,0001 пишут 10 4 и т. д., и т. д. Поэтому можно сказать, что масса атома водорода[ 10] в граммах есть произведение числа 1,6 на число 10 24, или, короче, масса атома водорода = 1,6 10 24 г.

Таким образом, вместо 100 пишут 102, вместо 1000 пишут 103, вместо 10000 пишут 104 и вообще вместо единицы c n нулями пишут 10n. Поэтому число атомов водорода в одном грамме = 6 *1023.

Вот какой результат получил Перрен, изучая распределение зернышек в гуммигутовой эмульсии в зависимости от высоты. Но всего любопытнее то обстоятельство, что точно такой же результат был выведен с помощью тех же гуммигутовых шариков, но совершенно иным путем, о котором мы также скажем несколько слов.

Броуновское движение в гуммигутовой эмульсии совершается необыкновенно быстро. Нет никакой возможности проследить за движением отдельного гуммигутового зернышка. Поэтому Перрен и не пытался этого делать, а поступил следующим образом: он отмечал на чертеже положение гуммигутового зернышка через определенные промежутки времени, например через каждые 30 секунд, и полученные точки соединял прямыми линиями (хотя на самом деле гуммигутовое зернышко за это время двигалось не по прямой линии, а также по причудливой ломаной кривой). Полученные рисунки дают возможность судить о беспорядочности и хаотичности броуновского движения вообще. Но Перрен снимал эти рисунки не только для того, чтобы получить наглядную иллюстрацию к броуновскому движению. Его интересовала количественная сторона дела. Знаменитый Альберт Эйнштейн, бывший тогда еще молодым человеком, написал (в 1905 1906 годах) замечательные работы, в которых он математически вывел формулу, определяющую для заданного промежутка времени среднее смещение гуммигутового зернышка относительно его первоначального положения в жидкости. Мы не станем здесь приводить эту формулу; заметим только, что в эту формулу входит величина, равная числу атомов водорода в одном грамме. Поэтому, сопоставляя формулу Эйнштейна с рисунками Перрена, определяющими перемещение частицы за каждые 30 секунд, можно вычислить эту величину. Так и сделал Перрен, и у него получилось, что число атомов водорода в одном грамме равно 6*1023, т. е. получилось такое же число, как и раньше.

Совпадение между двумя числами, которые были получены совершенно различными способами, является лучшим доказательством правильности всех сделанных предположений. Значит, молекулы и атомы действительно существуют, а не только являются удобной для химиков выдумкой. Такое заключение были вынуждены сделать даже те, кто долго и упорно не хотел признавать существования атомов. И даже Оствальд в конце концов должен был в предисловии к своему курсу химии написать следующие слова:

«Теперь я убежден, что в последнее время мы получили опытное доказательство прерывного, или зернистого, строения материи   доказательство, которого тщетно искала атомистическая гипотеза в продолжение сотен и тысяч лет. Совпадение броуновского движения с требованиями этой гипотезы дает право самому осторожному ученому говорить об опытном доказательстве атомистической теории вещества. Атомистическая гипотеза сделалась, таким образом, научной, прочно обоснованной теорией».

Вековой спор между сторонниками и противниками существования атомов закончился, таким образом, победой сторонников атомной теории. И в настоящее время мы можем с уверенностью утверждать, что все вещи на свете   и вода, и камни, и растения, и животные, и воздух, и железо, и т. д., и т. д., и т. д.  все это состоит из мельчайших, невидимых глазу атомов.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет