Николай Анатольевич Курчанов Поведение: эволюционный подход



бет3/15
Дата14.06.2016
өлшемі5.08 Mb.
#134644
1   2   3   4   5   6   7   8   9   ...   15

Глава 2. Эволюция



Путь от амебы к человеку казался философам очевидным прогрессом. Хотя неизвестно, согласилась бы с этим мнением амеба.

Б. Рассел (1872–1970), английский философ, лауреат Нобелевской премии 1950 г.
Теория эволюции – это не только общебиологическая теория, но и мировоззренческая система, уровень разработанности которой имеет решающее значение для развития естествознания. Без анализа эволюционных истоков нельзя адекватно понимать любой аспект поведения. Тема эволюции поведения и психики неотделима от общетеоретических вопросов эволюционной теории.

2.1. Становление и основные положения синтетической теории эволюции

Эволюционизм возник как альтернатива учению о неизменности видов. Вопросы, связанные с возникновением и развитием жизни, прошли через всю интеллектуальную историю человечества. Количество литературы, посвященной истории эволюционных учений, огромно (Завадский К. М., Колчинский Э. И., 1977; Колчинский Э. И., 2002).

Термин «эволюция» впервые был предложен швейцарским натуралистом Ш. Боннэ (1720–1793), который рассматривал ее как процесс развертывания возможностей, заложенных в материю Творцом. В Новое время первые, весьма несовершенные, концепции эволюции мы находим у французского натуралиста Ж. Бюффона (1707–1788) и деда Ч. Дарвина – Э. Дарвина (1731–1807).

Большую известность (правда, уже после смерти автора) приобрела теория французского естествоиспытателя Ж. Б. Ламарка (1744–1829). Свое эволюционное учение он изложил в знаменитой книге «Философия зоологии» (1809), где развивал взгляды о постепенном повышении уровня организации живых существ от простейших до человека.

Ж. Б. Ламарк выделил три основных фактора эволюции: упражнение органов, наследование благоприобретенных признаков, внутреннее стремление организмов к прогрессу. Хотя наследование благоприобретенных признаков во времена Ламарка считалось само собой разумеющимся, его теория не получила признания среди современников. Многие обоснования Ж. Б. Ламарка были неубедительны и явно натянуты. Большинство биологов того времени, в том числе и крупнейший авторитет – французский палеонтолог Ж. Кювье (1769–1832), стояли на позициях креационизма и неизменности видов.

Следует заметить, что эволюция не обязательно должна противопоставляться креационизму. Креационизм постулирует только акт творения жизни, но может допускать ее последующую эволюцию, что мы видим уже у Ш. Боннэ.

В трудах последователей Ж. Б. Ламарка его теория получила развитие, став влиятельным течением эволюционизма. Однако адекватному пониманию его идей часто мешал идеологический фактор. Только сейчас мы начинаем постигать их значение. Несмотря на ошибки, объяснимые уровнем развития биологии того времени, мысли Ж. Б. Ламарка оказались исключительно глубоки.

Из других эволюционистов того времени нельзя не отметить работы французского естествоиспытателя Э. Жоффруа Сент-Илера (1772–1844).

Однако крупнейшее событие в науке XIX в. – это эволюционная теория Ч. Дарвина (1809–1882). Суть теории Ч. Дарвин изложил в своей эпохальной книге «Происхождение видов», напечатанной в 1859 г. С этой даты многие историки науки ведут отсчет современной биологии. Книга произвела настоящую революцию и в научном мировоззрении, и в умах людей того времени. Дарвинизм быстро стал господствующим течением эволюционизма.

Основными факторами эволюции Ч. Дарвин выдвинул изменчивость, наследственность и отбор. Главным фактором у него выступает естественный отбор. О механизмах наследственности и изменчивости Ч. Дарвин, как и Ж. Б. Ламарк, имел самые смутные представления. Однако, вне зависимости от механизма, изменчивость у него не была привязана к «желаниям» организма или к «высшим силам». Непрерывный ряд мелких изменений от первоначальной формы и составляет материал эволюции. Ч. Дарвин снял мистический ореол таинственности с эволюционного процесса.

Существенно потеснив креационизм в общественном сознании, дарвинизм не остался единственной эволюционной теорией. Дав мощный толчок эволюционному подходу в науке, он одновременно породил альтернативные версии. Одним из самых известных критиков дарвинизма XIX в. был русский зоолог Н. Я. Данилевский (1822–1895), который провел скрупулезный анализ работ Ч. Дарвина.

Начало XX в. отмечено периодом долгой конфронтации дарвинизма с нарождающейся генетикой. Это породило обилие антидарвиновских концепций, предрекающих «скорую смерть» теории Ч. Дарвина. Наиболее уязвимой стороной дарвинизма в то время считалась природа наследственности. Поэтому рождение синтетической теории эволюции (СТЭ), которая базировалась на синтезе популяционной генетики и дарвинизма, стали рассматривать как вторую революцию в истории эволюционной биологии.

Теоретические положения популяционной генетики были разработаны С. Райтом (1889–1988), Р. Фишером (1890–1962), Дж. Холдейном (1860–1936) в 1930–1931 гг. Они изложены в классических работах «Генетическая теория естественного отбора » (Fisher R., 1930) и «Факторы эволюции » (Haldane J., 1932).

Контуры целостной эволюционной теории впервые были очерчены в работе Ф. Добжанского «Генетика и происхождение видов » (Dobzhansky Th., 1937). Часто называют шесть главных «архитекторов» СТЭ: Т. Добжанский (1900–1975), Э. Майр (1904–2005), Б. Ренш (1900–1990), Н. В. Тимофеев-Ресовский (1900–1981), Дж. Симпсон (1902–1984), Дж. Хаксли (1887–1975). Однако на самом деле в создание нового направления весьма весомый вклад внесли более тридцати биологов разных специальностей, что отмечают в своих работах и сами «отцы-основатели». Можно вспомнить таких известных ученых, как К. Дарлингтон (1903–1981), Англия, Г. Хеберер (1901–1973), Германия, Дж. Стеббинс (1906–2000), США. Достойное место в этом ряду занимает наш соотечественник И. И. Шмальгаузен (1884–1963). Сам термин «синтетическая теория эволюции» вошел в употребление после выхода книги Дж. Хаксли «Эволюция. Современный синтез » (Huxley J., 1942).

С точки зрения СТЭ, эволюция – это процесс постепенного ненаправленного изменения частот и видов аллелей во многих локусах.

Элементарной единицей эволюционного процесса в СТЭ была признана популяция – изолированная группа особей одного вида, связанная общностью территории и происхождения. Этот термин был предложен В. Иоганнсеном в 1908 г. Совокупность аллелей популяции называется генофондом, а процессы, изменяющие генофонд, получили название элементарных эволюционных факторов. По поводу числа факторов среди эволюционистов нет единодушия. Наиболее часто в СТЭ выделяют как эволюционные факторы мутационный процесс, поток генов, дрейф генов и естественный отбор.



Мутационный процесс – процесс образования новых генетических вариантов. Исключительно важным аспектом СТЭ является положение о случайном, ненаправленном характере мутаций. Поскольку мутации – редкое событие, то они изменяют генофонд чрезвычайно медленно.

Поток генов – обмен генами между разными популяциями. Основной источник потока генов – миграции особей, которые способны изменять генофонд значительно быстрее, чем мутации. Диапазон интенсивности миграций различен. Обмен генов между популяциями может вообще отсутствовать. В таком случае мы наблюдаем изоляцию – важнейший фактор видообразования.

Дрейф генов – случайные изменения частот аллелей в популяции. Это понятие в генетику ввел С. Райт (Wright S., 1931). Оно служит предметом долгих дискуссий. Дрейф генов относится к явлениям, во многом обусловленным ошибкой выборки: чем меньше выборка популяции, тем больше будет ошибка выборки.

Естественный отбор – важнейший фактор эволюции в СТЭ. Кратким и удачным определением отбора может служить определение, данное И. Лернером: «отбор – это дифференциальное воспроизведение генотипов» (Lerner I., 1958). Данное определение подразумевает, что шансы передать свои признаки следующему поколению у разных генотипов не одинаковы. Один из основателей цитогенетики, английский генетик С. Дарлингтон (1903–1981) охарактеризовал естественный отбор как процесс переноса «…с химического уровня мутации на биологический уровень адаптации » (Darlington C., 1958). В СТЭ отбор рассматривается как единственный направляющий эволюционный фактор. Роль естественного отбора – это один из ключевых дискуссионных вопросов на всем протяжении истории эволюционизма после Ч. Дарвина.

Другим ключевым вопросом стал вопрос единства механизмов эволюции. В СТЭ принято различать разные уровни эволюционного процесса.

Микроэволюция – процесс адаптивного изменения популяций до возникновения новых видов. Все вышерассмотренные закономерности динамики популяций под действием эволюционных факторов разработаны именно по отношению к микроэволюции.

Макроэволюция – эволюция надвидовых таксонов. Это один из наименее разработанных разделов СТЭ, можно сказать, ее слабое место. Среди сторонников СТЭ преобладают взгляды о единстве механизмов микро– и макроэволюции, что во многом обусловлено представлениями «отцов-основателей» Дж. Симпсона, Б. Ренша, Дж. Хаксли. Это же относится и к пограничному явлению – видообразованию.

Видообразование – процесс образования новых видов. Оно обычно рассматривается как итог микроэволюции, но ряд эволюционистов предлагают считать видообразование самостоятельным разделом.

Таковы (в самом общем виде) основные положения синтетической теории эволюции. Ее становление, можно сказать, проходило триумфально. Середина XX в. знаменуется безраздельным господством идей СТЭ. Хотя и в это время выдвигались альтернативные теории, в целом ведущие эволюционисты проявляли редкое единодушие. Теоретические затруднения рассматривались как естественные аспекты развития науки.

Затем положение изменилось. Новые факты, порождая новые разногласия, поставили эволюционную биологию на порог третьей научной революции. Чтобы понять суть теоретических разногласий, необходимо кратко познакомиться с историей альтернативных концепций. Они возникли, как уже говорилось, почти одновременно с дарвинизмом.

2.2. Альтернативные теории эволюции

Многообразие альтернативных концепций эволюции обычно группируют в три ветви: ламаркизм, теории направленной эволюции и сальтационизм. Каждая ветвь имеет свою богатую историю. В настоящее время эти названия представляют скорее исторический интерес, поскольку все современные теории исповедуют синтетический подход. Мы рассмотрим этапы формирования каждой ветви.

В основе всех вариаций ламаркизма лежит принцип наследования приобретенных признаков. Большинство из этих вариаций сейчас являются достоянием истории. Из первых теорий широкую известность получила теория «психоламаркизма» американского палеонтолога Э. Копа (1840–1897), хотя на самом деле ее трудно отнести к ламаркизму, поскольку она содержит положения разных направлений. Э. Коп активно критиковал теорию естественного отбора, поддерживая как наследование приобретенных признаков, так и направленность эволюции. Он первый выдвинул версию несводимости механизмов микро– и макроэволюции. В области палеонтологии Э. Коп считался крупнейшим специалистом, открывшим ряд фундаментальных закономерностей.

Утверждение «центральной догмы» генетики как методологической основы биологии, казалось, навсегда покончило с проблемой наследования приобретенных признаков, но прогресс иммунологии и становление эпигенетики вновь вернули ее в сферу научного диспута, возродив интерес к идеям многократно похороненного ламаркизма.



Теории направленной эволюции исходят из признания у организмов предрасположенности к изменению в определенном направлении. Такие подходы начали появляться почти одновременно с теорией Ч. Дарвина, но они всегда представляли собой множество отдельных, очень разнообразных течений.

У истоков этого направления стояли такие известные ученые, как немецкий ботаник К. Нэгели (1817–1891), американский палеонтолог Г. Ф. Осборн (1857–1935), немецкий зоолог Т. Эймер (1843–1898). Т. Эймер является основателем влиятельного учения, названного им ортогенезом, в рамках которого он развивал идею изначальной целесообразности в природе, отрицая как положения ламаркизма, так и естественный отбор дарвинизма в роли ведущих факторов эволюции. Многие сторонники ортогенеза стояли на виталистических позициях.

Из концепций направленной эволюции наиболее разработанной представляется теория номогенеза российского ихтиолога Л. С. Берга (1876–1950). Даже принципиальные противники высоко оценили эрудицию автора, глубину его аргументации, гармоничность системы (Dobzhansky Th., 1975). В настоящее время термин «номогенез» стал определяющим для всего направления.

Естественному отбору Л. С. Берг придавал второстепенное значение «сортировщика вариаций». Главную роль он отдавал другому фактору – направленной динамике эволюционных изменений (Берг Л. С., 1977). Эта динамика представляет собой реализацию закономерностей, имманентных живой природе. Таким образом, номогенез отрицает случайность эволюционных изменений и постулирует ход эволюции в определенном направлении. Такая направленность особенно наглядно, по мнению Л. С. Берга, проявляется в явлении конвергенции.

Теоретические взгляды Л. С. Берга разделял А. А. Любищев (1890–1972) – один из последних российских «биологов-энциклопедистов». Близка им и теория биогенеза российского палеонтолога Д. Н. Соболева (1872–1949). Д. Н. Соболев стремился построить таблицу, отображающую эволюционные ряды живых существ. Другой вариант подобной таблицы пытался создать палеоботаник С. В. Мейен (1935–1987). За свои попытки совместить СТЭ и номогенез он «удостоился» критики и с той, и с другой стороны.

Сальтационизм постулирует «скачкообразное» возникновение новых форм путем редких единичных мутаций. Основателем этого направления можно считать выдающегося немецкого эмбриолога Р. Гольдшмидта (1878–1958). Его классический труд «Материальные основы эволюции » занимает почетное место среди основополагающих научных трудов эволюционной биологии (Goldschmidt R., 1940).

Сальтационизм хорошо объясняет главную трудность дарвинизма – почти полное отсутствие промежуточных форм. В его пользу были интерпретированы открытия в области молекулярной биологии, особенно работы, показывающие роль регуляторных генов (Britten R., Davidson E., 1969). Мутации регуляторных генов действительно способны вызвать быстрые и значительные изменения (King M.-C., Wilson A., 1975).

Описанные группировки альтернативных концепций характерны для первой половины XX в. Во второй половине XX в. попытки распределить конкретных авторов по данным направлениям всегда были искусственными, поскольку в своих теоретических построениях ученые обычно использовали самые разные идеи эволюционизма.

После непродолжительного периода безраздельного господства СТЭ, с 1970-х гг. начинается новый раунд конфронтации под знаком идей синтеза. Все чаще начинают звучать утверждения, что последние открытия в области генетики, цитологии, палеонтологии не вписываются в теоретические построения СТЭ. Острой критике подверглись «редукционистские» положения СТЭ об эволюции как изменении частот аллелей в популяции, универсальной роли естественного отбора, абсолютизации адаптивности, а также игнорирование структурных и функциональных ограничений в эволюции.

Возникновение теории прерывистого равновесия, предложенной в 1972 г. американскими палеонтологами С. Гулдом (1941–2002) и Н. Элдриджем (Gould S., Eldredge N., 1977; Gould S., 1982), спровоцировало новый виток дискуссии. Теория имела успех и нашла многочисленных приверженцев.

Согласно модели прерывистого равновесия, эволюция представляет собой чередование резких коротких скачков, когда и происходит видообразование, с долгими периодами стабильного состояния – стазиса. Важную роль сторонники нового направления отводили разграничению механизмов микро– и макроэволюции, в очередной раз подчеркивая, что внутрипопуляционная изменчивость не ведет к видообразованию. Авторы справедливо указывали на слабый обмен генами между популяциями вида. Ключевое значение в процессе видообразования они придавали изменениям в регуляторных генах. Последующие исследования генетиков подтвердили обоснованность этого положения. В рамках теории прерывистого равновесия было разработано понятие видового отбора как одного из основных факторов макроэволюции, который характеризует баланс образующихся и вымирающих видов (Stanley S., 1979).

Почти одновременно возникают концепции «недарвиновской» эволюции, предложенные молекулярными генетиками (Оно C., 1973; Кимура М., 1985). Правда, их авторы не отвергали дарвинизм, а рассматривали свои теории как его развитие и анализ на молекулярном уровне. Теория нейтральности М. Кимуры (1924–1994) постулирует нейтральный характер большинства мутаций. Только некоторые мутации полезны или вредны, а значит, подвержены действию естественного отбора. Споры вокруг «удельного веса» нейтральных мутаций не прекращаются до сих пор.

Еще раньше английским эволюционистом В. Винн-Эдвардсом (1906–1997) была выдвинута теория группового отбора, согласно которой объектом отбора является группа (Wynne-Edwards V., 1962). В СТЭ таким объектом является отдельная особь. Рождение теории сопровождалось бурными дискуссиями, но она не встретила поддержки большинства эволюционистов. Интересным примером сторонников концепции группового отбора является адаптивная ценность для группы процесса старения, поскольку он ограничивает численность группы и «очищает» ее от изношенных особей.

Исходя из теории группового отбора, тем же В. Винн-Эдвардсом была предложена концепция саморегуляции – способности группы регулировать свою численность на оптимальном уровне (Wynne-Edwards V., 1965). Эта концепция была подхвачена противниками СТЭ как опровергающая базовый постулат дарвинизма о тенденции к безграничному размножению и борьбе за существование. Особый резонанс имела экстраполяция концепции на человеческое общество. Была проведена аналогия между нашей цивилизацией и перенаселенной колонией бактерий, в которой включаются механизмы программированной гибели отдельных особей в интересах выживания остальных (Олескин А. В., 2001).

Однако наиболее радикальные изменения взглядов в эволюционной биологии произошли в конце XX в., после открытия эпигенетических закономерностей и распространенности в природе горизонтального переноса. Организация и функционирование генетического аппарата разных организмов оказались значительно более разнообразными и сложными, чем предполагалось ранее (Голубовский М. Д., 2000). Новую остроту приобрели старые «трудные» вопросы эволюционной теории. Это проблемы направленности эволюции, роли естественного отбора, природы адаптации, причин неравномерности темпов эволюции, неполноты палеонтологической летописи, вымирания крупных таксонов на границе геологических эпох и многие другие. Все эти проблемы вытекают из фундаментальных вопросов относительно механизмов макроэволюции, вызывающих острые разногласия. Не меньше споров вызывают механизмы видообразования и само понятие вида.

Кратко рассмотрим некоторые положения этих разделов эволюционной теории.

2.3. Вопросы макроэволюции и видообразования

Поскольку приспособительные изменения популяций (микроэволюция) разительно отличаются от картины разнообразия органического мира (макроэволюция), постоянно идет спор о наличии в макроэволюционных процессах особых факторов, не обнаруживаемых на микроэволюционном уровне. Именно взгляды на макроэволюцию изначально разграничивали конфликтующие стороны в эволюционной биологии. Среди эволюционистов, разделяющих положения СТЭ, преобладают взгляды о единстве механизмов микро– и макроэволюции. В лагере сторонников особых механизмов макроэволюции находятся практически все приверженцы альтернативных концепций. Однако ни одному направлению не удалось создать общепринятую теорию, связав воедино широкий круг вопросов.

Наиболее долгую историю среди вопросов макроэволюции имеет проблема взаимоотношения онтогенеза (индивидуального развития) и филогенеза.

Филогенез – историческое преобразование организмов (точнее, линия развития данного типа организации). О филогенезе таксона приходится судить на основании реконструкций изменений отдельных признаков. Поскольку филогенез крупных таксонов занимает десятки миллионов лет, экстраполяции столь продолжительных этапов неизбежно сопряжены с погрешностью.

Взаимоотношение филогенеза и онтогенеза было предметом самого пристального изучения в истории биологии. Можно отметить закон «лестницы существ» Ш. Боне (1720–1793), «теорию параллелизма» И. Меккеля (1781–1833), «закон зародышевого сходства» К. Бэра (1792–1876). Современные исследования в области генетики показали, что фенотип в ходе онтогенеза не строго детерминирован генетической программой развития. Почти в любом онтогенезе можно наблюдать возможность выбора путей. Сами морфогенетические пути представляют собой каскады индукционных взаимодействий. Хотя они исключительно устойчивы, изменения возможны на любой стадии развития. Чем на более ранней стадии онтогенеза возникают какие-либо изменения, тем больший фенотипический эффект мы наблюдаем. Конечно, при этом возрастает вероятность того, что такие изменения вызовут нарушения онтогенеза и образование нежизнеспособных зародышей. Зато в тех случаях, когда потомство оказывается жизнеспособным, возможны макроэволюционные события (Рэфф Р., Кофмен Т., 1986). Это положение имеет особое значение для формирования современных представлений об эволюционном процессе, и мы к нему еще вернемся.

Основной путь эволюционных преобразований в онтогенезе основан на явлении гетерохронии. Гетерохрония – это изменение относительных сроков развития. Все явления гетерохронии связаны с диссоциацией между скоростями развития соматических признаков и гонад. На этих принципах можно выделить два главных эволюционных следствия гетерохронии.

В первом случае у взрослых особей сохраняются признаки ранних стадий развития предков. Это явления педоморфоза и неотении.

Во втором случае признак взрослой предковой формы становится ювенильным признаком потомков. Это явления акселерации и гиперморфоза.

Разновидности внутри направлений выделяют исходя из основной области изменения скорости. Возможны как изменение скорости развития соматического признака при неизменной скорости развития гонад, так и, наоборот, изменение скорости развития гонад при неизменной скорости развития соматического признака. Часто эти разновидности понимают как синонимы, поскольку разграничить их трудно.

Гиперморфоз – обычный механизм увеличения размеров в эволюционном ряду. Общеизвестными примерами служат гигантские динозавры, третичные млекопитающие, современные киты, растение секвойя. Гиперморфозом объясняется и переразвитие отдельных органов, вроде клыков саблезубых тигров и бивней мамонта. Это явление нам придется вспомнить при анализе эволюции психики человека.

Классическим примером неотении служит излюбленный объект лабораторных исследований – аксолотль . Неотения и педоморфоз – это магистральные пути эволюции многих групп, в том числе и высокоорганизованных: травянистых растений, насекомых и человека.

В новом свете в современной биологии развития представляется старая проблема определенных «планов строения» в пределах систематических групп на протяжении эволюции. Их стабильность все больше привлекает внимание исследователей и начинает получать строго научные обоснования на базе генетических закономерностей.

Общность планов строения обусловливает явление гомологии – фундаментального понятия современной биологии. Это понятие было введено английским палеонтологом Р. Оуэном (1804–1892). Гомологичные органы – это органы, развивающиеся из сходных зачатков, другими словами, «занимающие одинаковые места у видов, с одинаковым планом строения » (Белоусов Л. В., 2005). Хотя рука обезьяны и крыло летучей мыши не похожи друг на друга, они являются органами гомологичными (рис. 2.1).


Рис. 2.1. Примеры гомологичных органов: а – рука обезьяны; б – крыло летучей мыши


Рис. 2.2 . Примеры конвергенции: а – форма тела акулы; б – форма тела дельфина
Возникновение в процессе эволюции сходных черт организации у неродственных групп организмов получило название конвергенции или параллелизма. В СТЭ конвергенция объясняется тем, что в одних и тех же условиях среды отбор вырабатывает сходные приспособления (рис. 2.2). Примеры конвергенции можно найти практически во всех эволюционных рядах, в том числе и в эволюции человека. Это явление оказалось важным аспектом дискуссий эволюционистов.

Одним из самых веских аргументов приверженцев направленной эволюции служило явление преадаптации. Преадаптация – это изменения, адаптивно реализуемые не у того организма, в котором они возникли, а у его потомков (иногда весьма отдаленных). Автором теории преадаптации был французский генетик Л. Кено (1866–1951) – убежденный сторонник направленной эволюции. Он проводил резкую границу между явлениями микро– и макроэволюции. Проблему преадаптации мы рассмотрим чуть ниже.

Неразрывно связаны с вопросами макроэволюции проблемы определения вида и механизмов видообразования, которые и сейчас представляют собой сложнейшую проблему. Невозможно изучать видообразование, не имея определения вида и критериев его выделения. Однако общепринятого определения вида нет, хотя существуют десятки концепций. Представления о том, что такое вид, менялись в истории биологии неоднократно.

Первым сформулировал представление о виде как особой категории английский естествоиспытатель Д. Рэй (1627–1705) еще в далеком 1683 г., и с тех пор споры по этой проблеме не утихают. Ж.-Б. Ламарк поставил перед биологией знаменитую дилемму: «либо виды без эволюции, либо эволюция без видов …». Аналогичные мысли высказывал и сам Ч. Дарвин: «Термин „вид“ я считаю совершенно произвольным, надуманным …».

В последующем развитии эволюционной биологии понятие вида становится одним из фундаментальных, хотя споры вокруг него не прекращаются по сей день. В СТЭ наибольшее признание получила концепция американского эволюциониста Э. Майра (1904–2005). Он дает определение вида как «группы скрещивающихся популяций, репродуктивно изолированных от других групп » (Майр Э., 1968). Под репродуктивной изоляцией подразумевается нескрещиваемость именно в природе – в экспериментальных условиях иногда возможна межвидовая и даже межродовая гибридизация. Поэтому решающим критерием служит не принципиальная невозможность межвидового скрещивания, а наличие природных изолирующих условий, исключающих (или резко уменьшающих) эту возможность. Изоляция служит решающей предпосылкой для процесса видообразования (Майр Э., 1974). Поскольку существует несколько видов изолирующих механизмов, в СТЭ выделяют несколько способов видообразования.

Разработанная в СТЭ совокупность критериев вида не всегда применима на практике, поэтому в каждом конкретном случае приходится пользоваться только доступными критериями. Кроме того, формирование генетической изоляции как итога видообразования является долгим процессом, который сопровождается прогрессивным уменьшением обмена генов между популяциями. Неясно, насколько малым может быть этот обмен генами, чтобы говорить о наличии генетической изоляции, какие популяции уже можно считать отдельными видами, а какие – еще входящими в один вид. Все это открывает широкие возможности для субъективизма. Неудивительно, что стали столь популярны поиски особых механизмов видообразования в разных теоретических подходах, отделение этих механизмов от внутрипопуляционных процессов, интерес к версии сальтационизма.

Таким образом, к концу XX в. эволюционная биология вновь оказалась захвачена борьбой мнений. Хотя необходимо напомнить, что эволюционизм никогда не был однородным течением. Иногда казалось, что дискуссии по данному вопросу закончились, но вот в каком-либо разделе биологии появлялись неожиданные результаты, и «побежденная» теория вновь возрождалась. Как писал известный российский антрополог В. П. Алексеев, «…вряд ли где еще сталкиваются столь противоречивые мнения, и столкновения бывают столь остры » (Алексеев В. П., 1984).

Что ждет эволюционную биологию дальше?



2.4. Конфронтация или новый синтез?

Наиболее оправданной позицией многим эволюционистам уже давно представлялся синтез положений СТЭ с концепциями направленной эволюции и сальтационизма на основе достижений генетики. Разные авторы говорили, что пора переходить от противостояния к синтезу идей, что разные подходы не отрицают, а взаимно дополняют друг друга (Алексеев В. П., 1984). Однако перспективы «нового синтеза» к началу XXI в. были весьма неоднозначными.

Многие сторонники СТЭ категорично заявляют, что эта теория уже давно доказала свою жизнеспособность, а последние открытия генетики можно аккумулировать без радикальных теоретических изменений. И добавляют, что сложные моменты не являются для теории непреодолимыми, а просто целенаправленно раздуваются в прессе ее противниками. Американский эволюционист Д. Деннет писал: «Идеи Ч. Дарвина наглядно доказали свою мощь » (Dennett D., 1995).

Сторонники альтернативных теорий, наоборот, непрерывно констатировали как свершившийся факт «смерть дарвинизма». Стало модным принижать роль Ч. Дарвина как ученого, доказывать, что он тенденциозно «подбирал факты» под свою «кабинетную» теорию, преподносить его как заурядную личность. Успех дарвинизма в XIX в. стали объяснять «удачным моментом», падением уровня религиозности в обществе. Наглядный пример сказанному мы находим в работах Ю. В. Чайковского: «Научное сообщество переходит к новому видению явлений не тогда, когда публикуется решающий факт, а тогда, когда оно готово принять объясняющую его теориюВ истории науки в качестве первопроходцев запоминаются не те, кто сказал нечто новое, а те, кто был впервые услышан обществом » (Чайковский Ю. В., 2006). Приверженцам СТЭ ставится в упрек игнорирование «неудобных» фактов, догматизация своих постулатов.

В таких условиях говорить о скором синтезе было весьма сложно. Если принятие идей сальтационизма все-таки ощущалось у многих сторонников СТЭ, рассматривающих «сальтации» как крайние случаи единого спектра, то диспуты вокруг проблемы направленной эволюции проходили более болезненно. Характерно высказывание одного из крупнейших российских биологов, убежденного дарвиниста Ю. И. Полянского (1904–1993): «Неоднократно приходится слышать призывы к „синтезу“ финалистических концепций эволюции с классическим дарвинизмом. Такой синтез никогда не может быть осуществлен, ибо в основе этих двух концепций лежат противоположные мировоззрения. Вся история науки и философии учит, что из эклектического объединения взаимоисключающих концепций ничего ценного получиться не может» (Полянский Ю. И., 1988). Автор даже взял слово «синтез» в кавычки.

Более «мягкую» позицию занял один из «отцов-основателей» СТЭ Дж. Симпсон (1902–1984). Он попытался подойти к антидарвинистским теориям в поисках «рационального зерна», рассмотрев с позиций СТЭ проблему преадаптации (которая была «козырной картой» сторонников направленной эволюции). Под преадаптацией Дж. Симпсон предлагал понимать нейтральные признаки предковой формы, которые, возникнув случайно, оказались полезными в новой адаптивной зоне. Свою версию, которая получила поддержку у многих эволюционистов, Дж. Симпсон назвал квантовой эволюцией (Симпсон Дж., 1948). Эта же теория стала ответом СТЭ сальтационизму, рассматривая «скачки» в палеонтологической летописи как феномен быстрой эволюции, обусловленной интенсивностью отбора.

Теория квантовой эволюции в рамках СТЭ активно разрабатывалась другими эволюционистами, которые выдвигали разнообразные ее варианты: квантовое видообразование (В. Грант), генетическая революция (Э. Майр), катастрофический отбор (Г. Льюис). Излюбленным примером такого подхода служит преобразование передней конечности в крыло у летучих мышей. Хотя Дж. Симпсон выступал против признания принципиальных различий механизмов микро– и макроэволюции, его теорию квантовой эволюции многие дарвинисты рассматривали как поддержку этих различий.

Дж. Симпсон также не отказывался от резких выпадов в адрес противников. Так, рассматривая случаи, свидетельствующие в пользу направленной эволюции, он говорил, что эта направленность объясняется адаптивно направленным отбором и «прямолинейностью ума ученых », а не тенденцией природы.

Проблема направленности эволюции столь важна для разработки эволюционной теории, что на ней необходимо остановиться подробнее.

СТЭ исходит из представлений о случайности мутаций – это один из важнейших ее постулатов. Однако многие факты говорят об обратном. Более того, в настоящее время некоторые авторы считают, что именно постулат случайности является самым слабым местом СТЭ.

Закономерный характер эволюционных преобразований демонстрирует принцип параллелизма. Он гласит, что функционально-аналогичные структуры (даже разных источников разных животных) часто эволюционируют в одном направлении. Классическими примерами служат проявления параллельных рядов форм разных групп млекопитающих на изолированных континентах, закон гомологичных рядов наследственной изменчивости растений Н. И. Вавилова (1887–1943), примеры эволюционной гистологии.

Можно даже заметить, что чем более радикальный ароморфоз мы наблюдаем, тем более широким веером групп он «апробируется» эволюцией, хотя в конце часто остается только один вариант. Это относится и к таким событиям, как возникновение амфибий, птиц, млекопитающих (Марков А., 2010). Безусловно, не является исключением и направление, ведущее к «носителям разума», которое мы рассмотрим в дальнейшем. Такие случаи сложно интерпретировать классическим объяснением СТЭ как схожесть отбора в сходной среде. С явлением параллелизма мы будем еще неоднократно встречаться на последующих страницах.

Для эволюционной биологии принципиальное значение имеет тот факт, что бесконечные генетические вариации реализуются только в пределах устоявшегося в ходе эволюции плана строения (Белоусов Л. В., 2005). Поэтому, сколь ни велик элемент случайности в эволюции, результаты эволюционного процесса достаточно закономерны. Направленный характер эволюционных изменений может быть обусловлен (без призыва на помощь витализма) сложностью взаимосвязи огромного числа составляющих, формирующих организм. Организм – целостная система, поэтому любые изменения обычно затрагивают все ее составляющие. Подавляющее большинство изменений для организма неприемлемо и сразу отсекается отбором. Причем чем более специализирован вид, тем меньше у него возможностей для эволюционных изменений. Такая ограниченность и придает эволюции определенную направленность.

Этот аспект эволюции в очередной раз демонстрирует взаимосвязь механизмов филогенеза и онтогенеза. Известно, что хотя в онтогенезе имеется выбор различных путей развития, число возможных направлений онтогенеза ограничено. Такую направленность онтогенеза известный английский эмбриолог К. Уоддингтон (1905–1975) назвал канализацией развития (Уоддингтон К., 1964). С точки зрения современной генетики, направленность развития определяется относительно небольшим числом регуляторных генов, выполняющих функции «переключателей». Такие гены контролируют срок тех или иных событий онтогенеза либо делают выбор возможных путей развития. Особенно наглядным примером этого положения могут служить различные касты общественных насекомых, имеющих одинаковый геном, но резко различающихся по своей морфологии.

Чем более раннюю стадию онтогенеза контролирует регуляторный ген, тем больший «каскад» взаимосвязанных процессов следует за ним, тем больший фенотипический эффект можно ожидать при его мутации. В случае появления жизнеспособного потомства возможны резкие филогенетические изменения в духе сальтационизма. Регуляторные гены прежних функций весьма консервативны, поэтому они могут долго сохраняться в геноме. В результате мутаций возможно восстановление старого типа развития, что подтвердили эксперименты по реактивации генов образования зубов у курицы (Рэфф Р., Кофмен Т., 1986). Оказалось, что геномы птиц до сих пор содержат генетическую информацию, необходимую для морфогенеза зубов, несмотря на то что последние зубатые птицы вымерли более 60 млн лет назад.

Предположение о ведущей роли в морфологической эволюции регуляторных, а не структурных генов было наглядно показано в работах группы А. Вильсона (Wilson A. [et al.], 1977). Но такой взгляд на эволюционный процесс заставляет признать обоснованными некоторые положения теорий «направленной» и «прерывистой» эволюции.

Вот что пишет ведущий российский специалист в области генетики развития Л. И. Корочкин: «Процесс онтогенеза не случаен. Он протекает направленно от стадии к стадии… Отчего же эволюция должна основываться на случайных мутациях и идти неведомо куда?.. Просматривая внимательно различные эволюционные ряды, у представителей которых имеются сходные структурные образования, можно увидеть наличие как бы предопределенного, генетически „запрограммированного“ в самой структуре ДНК филогенеза… » (Корочкин Л. И., 2002, с. 239).

Формирование нового регуляторного эффекта, когда в организме уже есть «заготовки», хорошо объясняет феномен преадаптации. Так, у губок уже есть белки, участвующие в образовании синапса, хотя еще нет нервной системы. Вероятно, эти белки участвуют в простой межклеточной коммуникации, что позволяет эволюции формировать синаптические контакты не на пустом месте. Эволюция создает новое из того, что есть «под рукой» (Марков А., 2010). На работу регуляторных генов, в свою очередь, влияют хромосомные перестройки (инверсии, транслокации) и внедрение транспозонов.

Не менее болезненно проходило в СТЭ рассмотрение положений, традиционно приписываемых ламаркизму. Некоторые из этих положений нашли подтверждения в открытиях иммунологов. Взаимосвязь эволюционных и иммунологических закономерностей впервые рассмотрел французский эмбриолог П. Вентребер (1867–1966), который был убежденным сторонником Ламарка. Интересно, что свой основополагающий труд «Живое – творец эволюции» П. Вентребер подготовил уже в возрасте 95 лет!

Иммунология в последнее время активно заявляет о себе построением новых моделей эволюции. Наука, которая возникла как прикладная область медицинской направленности, приобретает все большее общетеоретическое значение. Некоторые авторы, подчеркивая ее роль, уже поспешили назвать иммунологию новой «королевой» биологических наук (Чайковский Ю. В., 2006). Наиболее известная книга, посвященная взаимоотношению иммунологии и эволюции, называется «Что, если Ламарк прав?». Авторы допускают возможность передачи приобретенной информации половым клеткам при помощи ретротранспозонов (Стил Э. [и др.], 2002). В иммунологии также продемонстрированы убедительные доказательства версии направленной эволюции.

Рождение эпигенетики еще более изменило наши представления о наследственности, что было проанализировано в предыдущей главе. Современный взгляд на модификации показывает их обусловленность параметрами транскрипционных сетей. Сдвиг этих параметров может выражаться в феномене длительных модификаций, которые сохраняются при возвращении организма к исходным условиям внешней среды. Вероятно, транскрипционная сеть представляет собой самовоспроизводящуюся систему при делении клетки, хотя конкретный механизм этого процесса еще непонятен (Шаталкин А. И., 2009).

Споры вокруг проблемы видообразования поставили не менее важный вопрос об уровнях эволюции. Сторонники теории прерывистого равновесия выделяют три уровня эволюции: микроэволюция, видообразование и макроэволюция. Такое положение нашло поддержку и среди некоторых последователей СТЭ (Грант В., 1980; Старобогатов Я. И., 1988). Однако есть и другие взгляды.

Число выделяемых уровней неразрывно связано с другой ключевой проблемой эволюционной биологии – проблемой факторов эволюции. Активное изучение в последнее время горизонтального переноса, экологических закономерностей, эпигенетики, феномена симбиогенеза, широкое внедрение в биологию системного подхода, синергетики вызвали новый виток дискуссий по этой давней проблеме.

Противники СТЭ постоянно отмечали ложность веры во всемогущество естественного отбора как главного и направляющего фактора эволюции. Накапливалось все больше данных, демонстрирующих неадаптивность многих эволюционных изменений. Так, уже давно отмечена эволюционная тенденция к сохранению генетического разнообразия вида даже в ущерб адаптивности. Тема «странностей эволюции» стала излюбленным сюжетом научно-популярных книг. Не преувеличивалась ли роль естественного отбора последователями Ч. Дарвина? Часто особый интерес к одному фактору ведет к тому, что остаются без внимания другие аспекты.

Биологические механизмы саморегуляции, рассмотренные еще В. Винн-Эдвардсом, находят теоретическое обоснование в современных концепциях синергетики. Они также дают веские аргументы против главенствующей роли естественного отбора, постулируемой в СТЭ. По всей видимости, нам известны далеко не все факторы эволюции. Не исключено, что чем выше уровень перенаселенности, тем меньше роль естественного отбора. В действие вступают другие факторы. Этот момент имеет принципиальное значение для будущего цивилизации. Человек, исключив фактор естественного отбора в своей жизни, отнюдь не обезопасил себя. К этому вопросу мы еще вернемся в главе, посвященной социальному поведению.

Не утихают споры вокруг проблемы горизонтального переноса. Некоторые авторы уже давно объявили его главным фактором эволюции (Кордюм В. А., 1982). Сторонники СТЭ, наоборот, долго не придавали горизонтальному переносу большого значения. Однако углубление наших знаний о структуре генома все более убеждает ученых в распространенности этого явления, особенно на первых этапах эволюции. Если ключевая роль горизонтального переноса в эволюции эукариот будет окончательно доказана, то нас ждет радикальный пересмотр многих положений эволюционной биологии и систематики.

Не закрыт вопрос об эволюции самих эволюционных факторов. Являются ли они одинаковыми для всех царств живой природы? Оставались они неизменными с момента возникновения жизни или изменялись? Если изменялись, то как проходила «эволюция эволюции»? Идея многоуровневой эволюции поставила новый вопрос: возможно ли в принципе создать единую теорию эволюции с общими закономерностями? Не протекает ли она специфически на каждом уровне организации жизни? По этим вопросам в науке пока нет единого мнения.

Фундаментальные разработки в современной генетике не могли не отразиться на мировоззрении эволюционистов. Конфронтация сторонников и противников СТЭ исчезает. Все ощущают приближение новой парадигмы. Однако разногласия остаются.



2.5. Эволюционная биология и систематика

Теоретические положения эволюционной биологии имеют основополагающее значение для принципов систематики. Вне систематики нет биологии. Без учета систематики не может рассматриваться ни одна биологическая проблема, в том числе и проблема поведения. Систематика – самая «синтетическая» из биологических дисциплин, поскольку для своих задач она использует данные всех областей биологии.

Для систематизации огромного числа живых существ в биологии используются систематические категории, или таксоны. Они составляют свою иерархию соподчинения, где таксоны более низкого ранга входят в состав таксонов более высокого ранга. В настоящее время используются следующие основные таксоны:

1. Царство.

2. Тип.

3. Класс.



4. Отряд.

5. Семейство.

6. Род.

7. Вид.


В случае необходимости применяются многочисленные дополнительные таксоны – подтип, надкласс, подотряд и т. п.

Название всех живых организмов дается по принципу бинарной номенклатуры. Ее сущность заключается в двойном наименовании на латинском языке. Первое слово обозначает родовое название, второе – видовое:



Homo sapiens – человек.

Drosophila melanogaster – дрозофила.

Bos Taurus – бык.

Pantera tigris – тигр.

Pantera leo – лев.

Viola rostata – фиалка.

Самый сложный вопрос систематики – на каких принципах строить систему? Этот вопрос проходит через всю историю науки. Как сказал известный английский нейрофизиолог С. Роуз: «Ничто в науке не вызывает столько споров, как попытки классифицировать и упорядочить мир наблюдаемых явлений. Со времени К. Линнея, создавшего первую классификацию живых организмов, не прекращаются раздоры между систематиками» (Роуз С., 1995).

Современная систематика стремится отражать филогению (эволюционное родство) организмов. Подход к систематике, основанный на принципе филогении, получил название кладизма. Кладизм имеет свои ограничения, поэтому реальная систематика не всегда строго выдерживает его положения. Необходимо отметить, что есть и другие подходы к систематике.

В эволюционной систематике сложилась своя специфическая терминология, в которой принципиальное значение имеют понятия монофилии и полифилии. Монофилия подразумевает наличие одного, общего для всех членов таксона, предка. Полифилия подразумевает, что в таксон не включен общий предок для всех членов таксона. Строго филогенетическая система не должна включать полифилических таксонов.

Бурное развитие в 1970-е гг. молекулярной генетики радикально изменило методологию систематики. Все большее значение в ней стали приобретать генетические подходы, одновременно уменьшая «удельный вес» морфологии. Тогда же рождается новое направление, основанное на анализе сходства нуклеотидного состава геномов разных организмов, – геносистематика.

Геносистематика быстро становится ведущим методом определения филогенетического родства. Однако дальнейшее углубление наших знаний показало, что она также имеет свои ограничения. Постулируемая в концепции «молекулярных часов» равновероятность мутаций, позволяющая определить время дивергенции, не соответствует действительности: «молекулярные часы» далеко не всегда «точны». Поскольку в геномах обычно имеются локусы с разной частотой мутирования, метод сохраняет свою достоверность лишь для особо консервативных участков. Такому критерию отвечают гены р-РНК, которые отличаются значительным консерватизмом и изменяются в ходе эволюции примерно с одинаковой скоростью у разных организмов. Анализ генов р-РНК занял важное место в филогенетических построениях, особенно в мегасистематике – систематике высших таксонов (типов, царств).

Принципиальное значение при построении филогенетического древа получил анализ роли регуляторных генов. Регуляторные гены контролируют деятельность структурных генов и способны по-разному влиять на скорость эволюции таксона. Именно они в наибольшей степени изменяют скорость эволюции, осложняя анализ филогении. Причем регуляторные области всегда характеризуются особо большой консервативностью, поэтому в них обычно происходили не мутационные изменения, а добавление новых областей, что обусловливало «регуляцию регуляции». Важная роль в возникновении новых регуляторных последовательностей отводится сейчас транспозонам.

Какой ранг можно присвоить носителям резких изменений? Учет скорости эволюции при построении системы неизбежно повлечет за собой отход от принципов кладизма. Неожиданную остроту этот вопрос приобрел в систематике приматов и определении места человека в системе. Кроме того, в анализе филогении человека, как в фокусе, проявились многие проблемы эволюционной систематики.



2.6. Место человека в системе живой природы

Человек, естественно, имеет свою «прописку» в филогенетическом древе живой природы, где он относится к отряду приматов ( Primates ) класса млекопитающих ( Mammalia ). Чтобы понять систематическое положение человека, необходимо представлять филогенетические взаимоотношения различных групп этого отряда.

Направление, ведущее к отряду приматов, выделилось в классе млекопитающих еще в мезозойскую эру, около 70 млн лет назад, являясь одним из древнейших. Уже в то время наметилась магистральная линия их эволюции – прогрессирующее развитие головного мозга, хватательная конечность, доминирование зрительной сенсорной системы. В основании направления находятся насекомоядные существа величиной с крысу. Именно им суждено было в своей эволюции привести к появлению человека, который затем назовет сам себя «венцом творения».

Современный отряд Primates делится на два подотряда: Prosimia (полуобезьяны) и Simia (обезьяны). Следует учитывать, что в родословной приматов имеются полностью вымершие подотряды.

Полуобезьяны появились свыше 55 млн лет назад. В настоящее время к ним относятся пять семейств: лемуры, долгопяты, лори, индри, руконожки, но много семейств вымерло.

Приматы, относящиеся к современному подотряду обезьян, появились на Земле около 40 млн лет назад. В настоящее время сюда входят разнообразные представители – от очень мелких до весьма крупных, которые делятся на три надсемейства:

1) н/сем. Ceboidea – широконосые;

2) н/сем. Cercopithecoidea – мартышкообразные;

3) н/сем. Anthropoidea – человекообразные.

Все обезьяны имеют много общих черт, из которых наиболее важными являются относительно крупный головной мозг, обычно с большим числом борозд, стереоскопическое зрение, сложное поведение. Они весьма похожи по структуре кариотипа. Число зубов у большинства видов равно 32. У самок только одна пара молочных желез.

Мы рассмотрим проблемы систематики последнего надсемейства, к которому принадлежит человек. Особо подчеркнем, что не стоит считать всех представителей этой группы «самыми прогрессивными». Про относительность понятия прогресса скажем чуть позже, а пока напомним, что эволюция обычно проводит свои «эксперименты» не в одном варианте, а веером. Формирование развитого мышления не было прерогативой человекообразных. Из ныне живущих видов мы можем наблюдать представителей с отличными способностями и среди широконосых (капуцины ), и среди мартышкообразных (павианы ) обезьян.

В традиционном варианте н/сем. Anthropoidea состоит из трех семейств: гиббоны, понгиды, гоминиды. Человек составляет единственный современный вид гоминид, а к понгидам обычно относят орангутана, шимпанзе, бонобо и гориллу . Ранее уже рассматривались доводы сторонников объединения понгид и гоминид в одно семейство (Курчанов Н. А., 2007). В настоящее время «объединительная» тенденция систематиков усилилась, хотя нельзя сказать, что вопрос прояснился. Кратко рассмотрим ее суть.

Направление, ведущее к человекообразным обезьянам, сформировалось около 22–25 млн лет назад. Начало этой линии эволюции заложили представители вымершей группы дриопитеков. 10–16 млн лет назад дриопитеки занимали обширную территорию в Европе, Азии и Африке, образуя многочисленные роды и виды. В основном это были небольшие представители, но известны и крупные формы, размером с гориллу (например, Dryopithecus maior ).

Среди предков ныне живущих человекообразных обезьян раньше всех разошлись линии человека и гиббона (18–20 млн лет назад), позже всех – линии человека и шимпанзе (около 7 млн лет назад, но некоторые ученые считают, что еще позднее).

Дискуссии по поводу систематического положения человека приобрели неожиданно острый резонанс. Данные молекулярно-генетических исследований показали исключительно тесную филогенетическую близость человека, шимпанзе и гориллы. Так, сравнительный анализ геномов человека и шимпанзе демонстрирует гомологию до 99 %. Такие же результаты получаются при анализе аминокислотного состава белков. Человек, горилла, шимпанзе чрезвычайно близки по особенностям онтогенеза, биохимии, группам крови, строению мозга.

Впечатляющими явились этологические исследования, продемонстрировавшие схожесть моделей поведения человека и его ближайших «родственников». Как пишет наш приматолог Э. П. Фридман, сходство биологических признаков человека и обезьян способно вызвать «мистический трепет » (Фридман Э. П., 1985). Особенно большое поведенческое сходство человека и высших обезьян отмечается в раннем возрасте. Новые данные, показывающие невероятную сложность поведения и интеллекта высших обезьян, будут подробно рассмотрены нами далее.

Все эти факты для многих систематиков послужили основанием к объединению человека и понгид в одно семейство. Тогда н/сем. Anthropoidea включает в себя 2 семейства:

1) сем. Hylobatidae – гиббоновые;

2) сем. Hominidae – гоминиды.

Некоторые систематики пошли еще дальше и даже включили человека, бонобо, шимпанзе и гориллу в один род. Столь радикальный пересмотр систематического положения человекообразных обезьян может породить множество этических и юридических проблем. Включение других представителей в род Homo (человек!) неминуемо заставляет признать за ними права личности. Проблема эта оказалась несколько неожиданной для человечества.

Споры по поводу систематического положения человека не утихают. Давно уже превалирует точка зрения, согласно которой в основе быстрой дивергенции предков человека от остальных антропоидов лежат изменения регуляторных генов (King M.-C., Wilson A., 1975). Однако поразительное сходство геномов человека и антропоидов первоначально, можно сказать, шокировало ученых. Только расширение числа видов с расшифрованным геномом, похоже, начинает прояснять ситуацию.

Все царство животных оказалось генетически более однородным, чем можно было предположить, глядя на его поразительное морфологическое разнообразие. Возможности регуляторных генов оказались еще шире, чем думали. Особенно наглядно это было продемонстрировано после прочтения в 2007 г. генома опоссума рода Monodelphis. Опоссум – самый примитивный представитель сумчатых млекопитающих. Несмотря на обилие архаичных черт, указывающих на древность его происхождения, геном опоссума имеет на удивление мало отличий от генома человека. За 180 млн лет, когда разошлись их филогенетические ветви, все изменения коснулись практически только регуляторных областей (Марков А., 2010). Природа в очередной раз «посоветовала» человеку не спешить с выводами из своих наблюдений.

Но какое же место в классификации мы определим для человека? Вероятно, всех ныне живущих человекообразных, кроме гиббонов, следует рассматривать в рамках единого семейства Hominidae . Деление этого семейства на подсемейства и рода представляет собой чрезвычайно запутанный вопрос, учитывая обилие вымерших форм неясного ранга, поэтому мы его касаться не будем. Термин «понгиды», в ранге подсемейства, из ныне живущих видов лучше оставить для одного орангутана .

Дивергенция между человеком, вымершими австралопитеками и антропоидами, безусловно, не ниже уровня рода при любых подходах к систематике. Важным фактом дивергенции может служить нескрещиваемость человека и человекообразных обезьян. У других обезьян в неволе получены не только межвидовые, но и межродовые гибриды. Еще в 1949 г. в Сухумском питомнике получен гибрид гамадрила и макаки. Гибрид был вполне жизнеспособный и совмещал признаки отца и матери (Нестурх М. Ф., 1970). Однако между человеком и человекообразными обезьянами не зарегистрированы гибриды даже на уровне эмбриогенеза.

Необходимо добавить, что последние находки предков человека возрастом более 6 млн лет поставили под сомнение и точность молекулярно-генетической датировки дивергенции внутри надсемейства, и многие гипотетические построения, представленные ранее разными авторами, еще больше осложнив анализ филогенеза приматов.

Интригующей загадкой остается, даже учитывая последние данные о возможностях регуляторных генов, резкое отличие друг от друга человека и человекообразных обезьян в плане морфологии. Доктор зоологии Стокгольмского университета, автор прекрасных книг и кинофильмов о живой природе Ян Линдблад (1932–1987) свою последнюю книгу посвятил вопросам антропогенеза. В ней автор очень четко выделяет ключевые морфологические отличия человека и обезьян (Линдблад Я., 1991). Резко выражен у человека, в отличие от обезьян, и половой диморфизм.

Для объяснения эволюционного пути формирования этих особенностей в 1926 г. была предложена гипотеза голландского ученого Луи Болька (1866–1930) об эволюции человека путем неотении. Согласно этой гипотезе, многие морфологические особенности человека – это результат сохранения у взрослой особи признаков, характерных для неполовозрелых форм наших обезьяньих предков. Такими признаками у человека служат форма черепа, наличие шапки волос на голове и отсутствие волос на теле (как у новорожденного шимпанзе).

Замечена большая частота педоморфоза или неотении в группах с развитым социальным поведением. Это наблюдение легло в основу предположения, что ювенильные черты связаны с социальностью, поскольку облегчают распознавание ранга отдельной особи, уменьшают конфликтные столкновения в группе, усиливают заботу о потомстве, увеличивают стабильность сообщества (Рэфф Р., Кофмен Т., 1986). Все эти качества имели большое значение в социальной эволюции человека. Особо следует отметить любознательность, также характерную для детенышей млекопитающих и сыгравшую важную роль в эволюции психики человека. Неотенией можно объяснить и развитие мозга у человека. Мозг новорожденного ребенка остается в значительной степени недоразвитым по сравнению с мозгом шимпанзе, выполняя только часть своих функций.

Настороженно встреченная вначале, теория Болька в настоящее время благосклонно принимается большинством эволюционистов.

Но чем обусловлена такая направленность морфогенеза? Как с эволюционной точки зрения интерпретировать переход к прямохождению, исчезновение волос на теле, нетипичное для обезьян распределение жировой ткани, стремительное увеличение размеров головного мозга и многие другие морфологические отличия человека? В антропологии для объяснения этих отличий выдвигалось множество гипотез (Курчанов Н. А., 2007). Хотелось бы только напомнить об интересной гипотезе «водяной обезьяны», выдвинутой в 1960 г. английским биологом Элистером Харди (1896–1985), хотя она не разделяется многими антропологами. Активным ее сторонником и пропагандистом был Ян Линдблад.

Гипотеза «водяной обезьяны» гласит, что у предков человека был продолжительный период полуводного существования на побережьях рек и озер. Она на удивление хорошо объясняет весь комплекс морфологических особенностей человека. Прямохождение, чувствительность и ловкость пальцев рук, форма носа, отсутствие волосяного покрова, уменьшение размеров зубов (переход на всеядность, ловля подводных организмов), формирование слоя жировой ткани и женских молочных желез (теплоизоляция), длинные волосы на голове (защита от солнца и «страховка» для малышей), увеличение размеров половых органов (преодоление водного барьера оплодотворения) – все находит свое логичное объяснение. В пользу «водной гипотезы» говорят и плавательные способности младенцев, уникальные для приматов.

Конечно, эта гипотеза имеет свои слабые места, самое уязвимое из которых – ее умозрительность, отсутствие вещественных доказательств. Когда наш предок прошел «водное крещение»? Как оно согласуется с последними молекулярно-генетическими данными, резко уменьшившими срок эволюционного расхождения человека и шимпанзе? Эти вопросы пока не имеют ответа, но в последнее время гипотеза «водяной обезьяны» начинает получать поддержку (Verhaegen M. [et al.], 2002).



2.7. Эволюция и прогресс

Анализ направлений эволюции вообще и эволюции человека, часто преподносимого как эволюционная «вершина», неизбежно приводит к вопросу: что служит критерием прогрессивности? Сложность такого вопроса отмечал еще Ч. Дарвин: «Здесь мы вступаем в область очень запутанного вопроса, так как натуралисты до сих пор не предложили приемлемого для всех определения того, что следует разуметь под понятием о более высокой организации ». Известен знаменитый парадокс Дж. Хаксли: кто более прогрессивен – человек или туберкулезная бактерия, вызывающая его заболевание ? Дискуссии вокруг этого вопроса идут по сей день.

Сам Дж. Хаксли отметил, что органическая эволюция сводится главным образом к развитию специализаций. Специализация – это повышение эффективности приспособления к определенному образу жизни. Но специализация всегда связана с необходимостью пожертвовать некоторыми органами или функциями, для того чтобы другие работали более эффективно, что ограничивает возможности будущих изменений. Поэтому такая эволюция часто заканчивается тупиком и вымиранием группы. Прогресс – это биологическое усовершенствование, оно не может заканчиваться тупиком (Huxley J., 1954).

С точки зрения последовательного дарвинизма, все организмы приспособлены к своей среде обитания – «высшие» и «низшие» одинаково совершенны. В этом же смысле высказываются и представители антидарвиновских концепций. Так, Ю. В. Чайковский выдвигает весьма интересный принцип компенсации, в очередной раз показывающий условность понятия прогресса. Клетки некоторых протистов, которых мы относим к «низшим» организмам, имеют сложнейшие структуры (Чайковский Ю. В., 2006). Принцип компенсации можно рассматривать как частный случай принципа дополнительности Н. Бора (1885–1962), бытовой эквивалент которого – «все за счет чего-то».

Если отбросить антропоцентризм, то у нас нет оснований выделять прогрессивное развитие мозга человека, которое можно считать частным случаем распространенного эволюционного явления – укрупнения органов. Более того, развитый мозг человека неотвратимо ведет его к катастрофе, которая может уничтожить не только его самого, но и всю биосферу. «Парадоксам прогресса» посвящены сейчас сотни книг. Сложность темы – живительный источник креационизма.

Многие авторы отмечают, что представления об эволюционном прогрессе были порождены аналогией с техническим прогрессом. Стремительный рост потребления энергии и технических возможностей человека породил один из главных мифов XX в. – миф о безграничности технического прогресса. Однако к концу XX в. достижения научно-технического прогресса предстали в ином виде (Хорган Дж., 2001). Все больше подчеркивается их амбивалентный характер, порождение ими новых социальных проблем, приближение человечества к экологической катастрофе. В настоящее время мы живем в эпоху экспоненциального роста потребления энергии, что сопровождается точно такой же кривой роста наших отходов. Здание технического прогресса отбрасывает зловещую тень экологического кризиса.

Весьма преувеличивал человек и возможности своего интеллекта. Сейчас является общепринятым утверждение, что объем знаний, которым реально обладает и пользуется средний человек, не возрастал на протяжении прошедших веков. Вспомним изречение соавтора дарвинизма А. Уоллеса (1823–1913): «Жители джунглей не глупее среднего члена наших научных обществ ». Прогрессивное увеличение знаний человечества обеспечивается за счет стремительной специализации, пагубное влияние которой уже многократно отмечалось (Ортега-и-Гассет Х., 1997; Курчанов Н. А., 2000). Вторая половина XX в. характеризуется все возрастающим потоком литературы, посвященной развенчанию «венца творения».

Рассмотренные в этом разделе вопросы чрезвычайно важны для понимания истоков поведения человека и его психики, с которыми мы будем знакомиться на последующих страницах.






Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   15




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет