Обтекание тел воздушным потоком



бет4/4
Дата02.07.2016
өлшемі0.57 Mb.
#173266
1   2   3   4

МЕХАНИЗАЦИЯ КРЫЛА


На современных самолетах с целью получения высоких летно-тактических характеристик, в частности для достижения больших скоростей полета, значительно уменьшены и площадь крыла и его удлинение. А это отрицательно сказывается на аэродинамическом качестве самолета и особенно на взлетно-посадочных характеристиках.

Для удержания самолета в воздухе в прямолинейном полете с постоянной скоростью необходимо, чтобы подъемная сила была равна весу самолета - Y = G. Но так как



то и


(2.24)

Из формулы (2.24) следует, что для удержания самолета в воздухе на наименьшей скорости (при посадке, например) нужно, чтобы коэффициент подъемной силы Сy был наибольшим. Однако Сy можно увеличивать путем увеличения угла атаки только до крит. Увеличение угла атаки больше критического приводит к срыву потока на верхней поверхности крыла и к резкому уменьшению Сy, что недопустимо. Следовательно, для обеспечения равенства подъемной силы и веса самолета необходимо увеличить скорость полета .

Вследствие указанных причин посадочные скорости современных самолетов довольно велики. Это сильно усложняет взлет и посадку и увеличивает длину пробега самолета.

С целью улучшения взлетно-посадочных характеристик и обеспечения безопасности на взлете и особенно посадке необходимо посадочную скорость по возможности уменьшить. Для этого нужно, чтобы Сy был возможно больше. Однако профили крыла, имеющие большое Сумакс, обладают, как правило, большими значениями лобового сопротивления Схмин, так как у них большие относительные толщина и кривизна. А увеличение Сх.мин, препятствует увеличению максимальной скорости полета. Изготовить профиль крыла, удовлетворяющий одновременно двум требованиям: получению больших максимальных скоростей и малых посадочных - практически невозможно.

Поэтому при проектировании профилей крыла самолета стремятся в первую очередь обеспечить максимальную скорость, а для уменьшения посадочной скорости применяют на крыльях специальные устройства, называемые механизацией крыла.

Применяя механизированное крыло, значительно увеличивают величину Сумакс, что дает возможность уменьшить посадочную скорость и длину пробега самолета после посадки, уменьшить скорость самолета в момент отрыва и сократить длину разбега при взлете. Применение механизации улучшает устойчивость и управляемость самолета на больших углах атаки. Кроме того, уменьшение скорости при отрыве на взлете и при посадке увеличивает безопасность их выполнения и сокращает расходы на строительство взлетно-посадочных полос.

Итак, механизация крыла служит для улучшения взлетно-посадочных характеристик самолета путем увеличения максимального значения коэффициента подъемной силы крыла макс.

Суть механизации крыла состоит в том, что с помощью специальных приспособлений увеличивается кривизна профиля (в некоторых случаях и площадь крыла), вследствие чего изменяется картина обтекания. В результате получается увеличение максимального значения коэффициента подъемной силы.

Эти приспособления, как правило, выполняются управляемыми в полете: при полете на малых углах атаки (при больших скоростях полета) они не используются, а применяются лишь на взлете, на посадке, когда увеличение угла атаки не обеспечивает получения нужной величины подъемной силы.

Существуют следующие виды механизации крыла: щитки, закрылки, предкрылки, отклоняемые носки крыла, управление пограничным слоем, реактивные закрылки.



Щиток представляет собой отклоняющуюся поверхность, которая в убранном положении примыкает к нижней, задней поверхности крыла. Щиток является одним из самых простых и наиболее распространенных средств повышения Сумакс.

Увеличение Сумакс при отклонении щитка объясняется изменением формы профиля крыла, которое можно условно свести к увеличению эффективного угла атаки и вогнутости (кривизны) профиля.

При отклонении щитка образуется вихревая зона подсасывания между крылом и щитком. Пониженное давление в этой зоне распространяется частично на верхнюю поверхность профиля у задней кромки и вызывает отсос пограничного слоя с поверхности, лежащей выше по течению. За счет отсасывающего действия щитка предотвращается срыв потока на больших углах атаки, скорость потока над крылом возрастает, а давление уменьшается. Кроме того, отклонение щитка повышает давление под крылом за счет увеличения эффективной кривизны профиля и эффективного угла атаки эф.

Благодаря этому выпуск щитков увеличивает разность относительных давлений над крылом и под крылом, а следовательно, и коэффициент подъемной силы Су.

На Рис. 35 показан график зависимости Сy от угла атаки для крыла с различным положением щитка: убранное, взлетное щ = 15°, посадочное щ = 40°.

При отклонении щитка вся кривая Сущ = f() смещается вверх почти эквидистантно кривой Су = f () основного профиля.

Из графика видно, что при отклонении щитка в посадочное положение (щ = 40°) приращение Су составляет 50-60%, а критический угол атаки при этом уменьшается на 1-3°.

Для увеличения эффективности щитка конструктивно его выполняют таким образом, что при отклонении он одновременно смещается назад, к задней кромке крыла. Тем самым увеличиваются эффективность отсоса пограничного слоя с верхней поверхности крыла и протяженность зоны повышенного давления под крылом.

При отклонении щитка одновременно с увеличением коэффициента подъемной силы увеличивается и коэффициент лобового сопротивления, аэродинамическое качество крыла при этом уменьшается.

Закрылок. Закрылок представляет собой отклоняющуюся часть задней кромки крыла либо поверхность, выдвигаемую (с одновременным отклонением вниз) назад из-под крыла. По конструкции закрылки делятся на простые (нещелевые), однощелевые и многощелевые.





Рис. 32 Профиль крыла со щитком, смещающимся назад

Рис. 33 Закрылки: а - нещелевой; б - щелевой
Нещелевой закрылок увеличивает коэффициент подъемной силы Сy за счет увеличения кривизны профиля. При наличии между носком закрылка и крылом специально спрофилированной щели эффективность закрылка увеличивается, так как воздух, проходящий с большой скоростью через сужающуюся щель, препятствует набуханию и срыву пограничного слоя. Для дальнейшего увеличения эффективности закрылков иногда применяют двухщелевые закрылки, которые дают прирост коэффициента подъемной силы Сy профиля до 80%.

Увеличение Сумакс крыла при выпуске закрылков или щитков зависит от ряда факторов: их относительных размеров, угла отклонения, угла стреловидности крыла. На стреловидных крыльях эффективность механизации, как правило, меньше, чем у прямых крыльев. Отклонение закрылков, так же как и щитков, сопровождается не только повышением Сy, но в еще большей степени приростом Сx, поэтому аэродинамическое качество при выпущенной механизации уменьшается.

Критический угол атаки при выпущенных закрылках незначительно уменьшается, что позволяет получить Сумакс при меньшем подъеме носа самолета (Рис. 36).





Рис. 34 Профиль крыла с щитком

Рис. 35 Влияние выпуска щитков на кривую Су=f()


Рис. 36 Поляра самолета с убранными и выпущенными щитками

Предкрылок представляет собой небольшое крылышко, находящееся впереди крыла (Рис. 37).

Предкрылки бывают фиксированные и автоматические.

Фиксированные предкрылки на специальных стойках постоянно закреплены на некотором удалении от носка профиля крыла. Автоматические предкрылки при полете на малых углах атаки плотно прижаты к крылу воздушным потоком. При полете на больших углах атаки происходит изменение картины распределения давления по профилю, в результате чего предкрылок как бы отсасывается. Происходит автоматическое выдвижение предкрылка (Рис. 38).

При выдвинутом предкрылке между крылом и предкрылком образуется суживающаяся щель. Увеличиваются скорость воздуха, проходящего через эту щель, и его кинетическая энергия. Щель между предкрылком и крылом спрофилирована таким образом, что воздушный поток, выходя из щели, с большой скоростью направляется вдоль верхней поверхности крыла. Вследствие этого скорость пограничного слоя увеличивается, он становится более устойчивым на больших углах атаки и отрыв его отодвигается на большие углы атаки. Критический угол атаки профиля при этом значительно увеличивается (на 10°-15°), а Cумакс увеличивается в среднем на 50% (Рис. 39).

Обычно предкрылки устанавливаются не по всему размаху, а только на его концах. Это объясняется тем, что, кроме увеличения коэффициента подъемной силы, увеличивается эффективность элеронов, а это улучшает поперечную устойчивость и управляемость. Установка предкрылка по всему размаху значительно увеличила бы критический угол атаки крыла в целом, и для его реализации на посадке пришлось бы стойки основных ног шасси делать очень высокими.



Рис. 37 Предкрылок

Рис. 38 Принцип действия автоматического предкрылка: а - малые углы атаки; б – большие углы атаки
Фиксированные предкрылки устанавливаются, как правило, на нескоростных самолетах, так как такие предкрылки значительно увеличивают лобовое сопротивление, что является помехой для достижения больших скоростей полета.

Отклоняемый носок (Рис. 40) применяется на крыльях с тонким профилем и острой передней кромкой для предотвращения срыва потока за передней кромкой на больших углах атаки.

Изменяя угол наклона подвижного носка, можно для любого угла атаки подобрать такое положение, когда обтекание профиля будет безотрывным. Это позволит улучшить аэродинамические характеристики тонких крыльев на больших углах атаки. Аэродинамическое качество при этом может возрастать.

Искривление профиля отклонением носка повышает Сумакс крыла без существенного изменения критического угла атаки.



Рис. 39 Кривая Су =f () для крыла с предкрылками

Рис. 40 Отклоняемый носок крыла
Управление пограничным слоем (Рис. 41) является одним из наиболее эффективных видов механизации крыла и сводится к тому, что пограничный слой либо отсасывается внутрь крыла, либо сдувается с его верхней поверхности.

Для отсоса пограничного слоя или для его сдувания применяют специальные вентиляторы либо используют компрессоры самолетных газотурбинных двигателей.

Отсасывание заторможенных частиц из пограничного слоя внутрь крыла уменьшает толщину слоя, увеличивает его скорость вблизи поверхности крыла и способствует безотрывному обтеканию верхней поверхности крыла на больших углах атаки.

Сдувание пограничного слоя увеличивает скорость движения частиц воздуха в пограничном слое, тем самым предотвращает срыв потока.

Управление пограничным слоем дает хорошие результаты в сочетании с щитками или закрылками.



Рис. 41 Управление пограничным слоем

Рис. 42 Реактивный закрылок
Реактивный закрылок (Рис. 42) представляет струю газов, вытекающую с большой скоростью под некоторым углом вниз из специальной щели, расположенной вблизи задней кромки крыла. При этом струя газа воздействует на поток, обтекающий крыло, подобно отклоненному закрылку, вследствие чего перед реактивным закрылком (под крылом) давление повышается, а позади его понижается, вызывая увеличение скорости движения потока над крылом. Кроме того образуется реактивная сила Р, создаваемая вытекающей струёй.

Эффективность действия реактивного закрылка зависит от угла атаки крыла, угла выхода струи и величины силы тяги Р. Их используют для тонких, стреловидных крыльев малого удлинение Реактивный закрылок позволяет увеличить коэффициент подъемной силы макс в 5-10 раз.

Для создания струи используются газы, выходящие из турбореактивного двигателя.

ПЕРЕМЕЩЕНИЕ ЦЕНТРА ДАВЛЕНИЯ КРЫЛА И САМОЛЕТА


Центром давления крыла называется точка пересечения равнодействующей аэродинамических сил с хордой крыла.

Положение центра давления определяется его координатой ХД - расстоянием от передней кромки крыла, которое может быть выражено в долях хорды

Направление действия силы R определяется углом , образуемым с направлением невозмущенного воздушного потока (Рис. 43, а). Из рисунка видно, что

(2.25)

где К - аэродинамическое качество профиля.



Рис. 43 Центр давления крыла и изменение его положения в зависимости от угла атаки

Положение центра давления зависит от формы профиля и угла атаки. На Рис. 43, б показано, как изменяется положение центра давления в зависимости от угла атаки для профилей самолетов Як 52 и Як-55, кривая 1 -для самолета Як-55, кривая 2-для самолета Як-52.

Из графика видно, что положение ЦД при изменении угла атаки у симметричного профиля самолета Як-55 остается неизменным и находится примерно на 1/4 расстояния от носка хорды.



Таблица 1

нагрузка

Обозначение веса (груза)

Пустой самолет

Взлетный вес

Летчик в передней кабине

Летчик в задней кабине

Топливо в баках

Масло в баках

Gп

Gвзл

G1

G2

GT

GM

При изменении угла атаки изменяется распределение давления по профилю крыла, и поэтому центр давления перемещается вдоль хорды (для несимметричного профиля самолета Як-52), как показано на Рис. 44. Например, при отрицательном угле атаки самолета Як 52, примерно равном -1°, силы давления в носовой и хвостовой частях профиля направлены в противоположные стороны и равны. Этот угол атаки называется углом атаки нулевой подъемной силы.



Рис. 44 Перемещение центра давления крыла самолета Як-52 при изменении угла атаки



При несколько большем угле атаки силы давления, направленные вверх, больше силы, направленной вниз, их равнодействующая Y будет лежать за большей силой (II), т. е. центр давления окажется расположенным в хвостовой части профиля. При дальнейшем увеличении угла атаки местонахождение максимальной разности давлений передвигается все ближе к носовой кромке крыла, что, естественно, вызывает перемещение ЦД по хорде к передней кромке крыла (III, IV).

Наиболее переднее положение ЦД при критическом угле атаки кр= 18° (V).

Достарыңызбен бөлісу:
1   2   3   4




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет