ТАБЛИЦА № 14
Uл
|
Uф
|
660
|
380
|
380
|
220
|
220
|
127
|
При включении в трехфазную сеть однофазных нагрузок необходимо следить за равномерностью подключения. В противном случае выйдет, что один провод будет сильно перегружен, а два других при этом останутся без дела.
Все трехфазные электрические машины имеют по три пары полюсов и ориентируют направление вращения подключением фаз. При этом для изменения направления вращения (электрики говорят – РЕВЕРСа) достаточно поменять местами только две фазы, любые.
Аналогично и с генераторами.
Включение в «треугольник» и «звезду».
Имеются три схемы включения трехфазной нагрузки в сеть. В частности, на корпусах электродвигателей имеется контактная коробка с выводами обмоток. Маркировка в клеммных коробках электрических машин следующая:
начала обмоток С1, С2 и С3, концы, соответственно С4, С5 и С6 (крайний левый рисунок).
Подобную маркировку крепят и на трансформаторах.
Соединение''треугольником'' показано на среднем рисунке. При таком соединении весь ток из фазы к фазе проходит по одной обмотке нагрузки и, в этом случае, потребитель работает на полную мощность. На крайнем правом рисунке показаны соединения в клемной коробке.
Соединение''в звезду'' может «обходиться» без нуля. При таком подключении линейный ток, проходя через две обмотки, делится пополам и, соответственно, потребитель работает в половину силы.
При соединение''в звезду'' с нулевым проводом на каждую обмотку нагрузки поступает только фазное напряжение: Uф=Uл/V3. Мощность потребителя получается меньше на V3.
Электрические машины из ремонта.
Большую проблему представляют старые двигатели, вышедшие из ремонта. Такие машины, как правило, не имеют табличек и клеммных выходов. Провода торчат из корпусов, и похожи на лапшу из мясорубки. И если подключить их неправильно, то в лучшем случае, двигатель будет перегреваться, а в худшем - сгорит.
Происходит это, потому что одна из трех, неправильно подключённых обмоток, будет стараться провернуть ротор двигателя, в сторону, противоположную вращению, создаваемому двумя другими обмотками.
Чтобы подобного не случилось необходимо найти концы одноименных обмоток. Для этого с помощью тестера «прозванивают» все обмотки, одновременно проверяя и их целостность (отсутствие обрыва и пробоя на корпус). Найдя концы обмоток, их маркируют. Цепь собирается следующим образом. К предполагаемому окончанию первой обмотки присоединяем предполагаемое начало второй обмотки, конец второй соединяем с началом третьей, а с оставшихся концов снимаем показания омметра.
Заносим значение сопротивления в таблицу.
схема
|
сопротивление
|
123456
|
0,456
|
213456
|
0,567
|
124356
|
0,678
|
123465
|
0,234
|
213465
|
0,345
|
214365
|
0,453
|
Потом цепь разбираем, меняем конец и начало первой обмотки местами и снова собираем. Как и в прошлый раз, результаты измерений заносим в таблицу.
Далее опять повторяем операцию, поменяв местами концы второй обмотки
Повторяем подобные действия столько раз, сколько имеется возможных схем включения. Главное, аккуратно и точно снимать показания с прибора. Для точности, весь цикл измерений стоит повторить дважды.После заполнения таблицы сравниваем результаты измерений.
Правильной будет схема с наименьшим измеренным сопротивлением.
Включение трехфазного двигателя в однофазную сеть.
Случается необходимость, когда трехфазный двигатель надо включить в обычную бытовую розетку (однофазную сеть). Для этого, способом сдвига фазы при помощи конденсатора, принудительно создают третью фазу.
На рисунке показано подключение двигателя по схеме «треугольник» и "звезда". На один вывод подключают «ноль», на второй фазу, к третьему выводу также подключают фазу, но через конденсатор. Для вращения вала двигателя в нужную сторону применяют пусковой конденсатор, который включается в сеть параллельно рабочему.
При напряжении сети 220 В и частоте 50 Гц емкость рабочего конденсатора в мкФ рассчитываем по формуле, Сраб = 66 Рном, гдеРном – номинальная мощность двигателя в кВт.
Ёмкость пускового конденсатора рассчитывают по формуле, Спуск = 2 Сраб = 132 Рном.
Для пуска не очень мощного двигателя (до 300 Вт) пусковой конденсатор может и не понадобиться.
Магнитный пускатель.
Включение электродвигателя в сеть при помощи обычного выключателя, дает ограниченную возможность регулирования.
Кроме того, в случае аварийного отключения электроэнергии (например, перегорают предохранители), машина перестает работать, но после починки сети двигатель запускается уже без команды человека. Это может привести к несчастному случаю.
Необходимость защиты от исчезновения тока в сети (электрики говорят НУЛЕВОЙ ЗАЩИТЫ) привела к изобретению магнитного пускателя. В принципе, это схема с использованием, уже описанного нами, реле.
Для включения машины используем контакты реле «К» и кнопку S1.
При нажатии на кнопку цепь катушки реле «К» получает питание и контакты реле К1 и К2 замыкаются. Двигатель получает питание и работает. Но, отпустив кнопку, схема перестает работать. Поэтому один из контактов реле «К» используем для шунтирования кнопки.
Теперь, после размыкания контакта кнопки, реле не теряет питание, а продолжает удерживать свои контакты в замкнутом положении. И для выключения схемы используем кнопку S2.
Правильно собранная схема после отключения сети не включится до тех пор, пока человек не даст на это команду.
Монтажные и принципиальные схемы.
В предыдущем параграфе мы начертили схему магнитного пускателя. Эта схема является принципиальной. Она показывает принцип работы устройства. В ней задействованы элементы, используемые в данном устройстве (схеме). Несмотря на то, что реле или контактор может иметь большее число контактов, вычерчиваются только те, которые будут задействованы. Провода рисуются, по возможности, прямыми линиями и не в натуральном исполнении.
Наряду с принципиальными схемами, используют монтажные схемы. Их задача показать, как должны монтироваться элементы электрической сети или устройства. Если реле имеет несколько контактов, то все контакты обозначаются. На чертеже они ставятся так, как будут стоять после монтажа, места присоединения проводов рисуются там, где они действительно должны крепиться, и т.п. Ниже, на левом рисунке показан пример принципиальной электрической схемы, а на правом рисунке монтажная схема того же самого устройства.
Силовые цепи. Цепи управления.
Владея знаниями , мы можем быстро рассчитать необходимое сечение проводов. Мощность двигателя несоизмеримо выше мощности катушки реле. Поэтому провода, ведущие к основной нагрузке, всегда толще, чем провода, ведущие к управляющим аппаратам.
Введём понятие силовых цепей и цепей управления.
К силовым цепям относятся все части, ведущие ток к нагрузке (провода, контакты, измерительные и контролирующие приборы). На схеме они выделены "жирными" линиями. Все провода и аппаратура управления, контроля и сигнализации относятся к цепям управления. На схеме они выделены пунктиром.
Как собирать схемы.
Одной из сложностей в работе электрика является понимание того, как взаимодействуют элементы схемы между собой. Необходимо уметь читать, понимать и собирать схемы.
При сборке схем следуйте необременительным правилам:
1. Сборку схемы следует проводить в одном направлении. Например: собираем схему по часовой стрелке.
2. При работе со сложными, разветвленными схемами, удобно разбить ее на составные части.
3. Если в схеме много разъемов, контактов, соединений, удобно разбить схему на участки. Например, сначала собираем цепь от фазы до потребителя, потом собираем от потребителя к другой фазе, и т.д.
4. Сборку схемы следует начинать от фазы.
5. Каждый раз, выполнив присоединение, задавайте себе вопрос: А что произойдёт, если напряжение подать сейчас?
В любом случае, после сборки у нас должна получиться замкнутая цепь: Например, фаза розетки - разъем контакта выключателя – потребитель – «ноль» розетки.
Достарыңызбен бөлісу: |