5.1 Тенденции развития современной гироскопии
Кратко остановимся на тенденциях развития современной гироскопии. Сегодня созданы настолько точные гироскопические системы, что дальнейшего повышения точностей многим потребителям уже не требуется, а сокращение средств, выделяемых для военно-промышленного комплекса в бюджетах ведущих мировых стран, резко повысило интерес к массовым гражданским применениям гироскопической техники, которые были ранее на периферии внимания разработчиков.
Наконец, выдающийся прогресс в области высокоточной спутниковой навигации сделал ненужными автономные средства навигации в тех случаях, когда сигнал со спутника может приниматься непрерывно. В настоящее время большинство навигационных задач с очень высокой точностью (доли метра) решается с помощью GPS (Global Position System) и ГЛОНАСС. При этом отпадает необходимость в использовании даже курсовых гироскопов, ибо сравнение показаний двух приемников спутниковых сигналов, установленных на расстоянии в несколько метров, например на крыльях самолета, позволяет получить информацию о повороте самолета вокруг вертикальной оси [15,16].
Можно сказать, что классическая навигация завершила свое эволюционное развитие, обеспечив при этом главным образом узкоспециальные потребности военно-промышленного комплекса и получив сильного конкурента в виде спутниковых навигационных систем, подошла к рубежу, на котором она практически вынуждена сменить приоритеты своего развития [13]. Именно поэтому внимание специалистов в области гироскопии сейчас сосредоточилось на поиске нетрадиционных областей применения приборов.
Однако последние достижения как в области теоретической механики, электроники, информатики, так и при создании новых типов микромеханических гироскопов позволяют ожидать появления новых подходов к решению ряда задач, среди которых важное место занимает навигация и ориентация малых, а также сверхмалых беспилотных летательных аппаратов.
5.2 Основные определения. Погрешности
Долгое время слово гироскоп использовалось для обозначения быстро закрученного вращающегося симметричного твердого тела в кардановом подвесе.
Определение: Карданов подвес представляет собой систему твердых тел (рамок, колец), последовательно соединенных между собой цилиндрическими шарнирами. Обычно при отсутствии технологических погрешностей оси рамок карданова подвеса пересекаются в одной точке — центре подвеса (смотри рис. 5.1). Гироскоп, у которого центр масс совпадает с центром подвеса, называется уравновешенным или свободным.
|
Рис. 5.1. Трехстепенной гироскоп
|
Определение: На сегодняшний день развитие гироскопической техники привело к тому, что гироскопами стали называть очень широкий класс приборов, и сейчас термин гироскоп используется для названия устройств, содержащих материальный объект, который совершает быстрые периодические движения. В результате этих движений устройство становится чувствительным к вращению в инерциальном пространстве. При таком понимании слова гироскоп для него необязательно наличие симметричного массивного быстро вращающегося ротора, подвешенного без трения таким образом, чтобы его центр масс совпадал с центром подвеса [15].
Гироскопические приборы можно разделить на измерительные и силовые. Силовые служат для создания моментов сил, приложенных к основанию, на котором установлен гироприбор, а измерительные предназначены для определения параметров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и т.д.).
На практике любые средства, используемые для подвеса ротора гироскопа, являются причиной возникновения нежелательных внешних моментов неизвестной величины и направления. Основными погрешностями любого гироскопического прибора является дрейф смещения нуля и нестабильность масштабного коэффициента.
Определение: Дрейф смещения нуля – метрологическая характеристика (характеристика одного из свойств гироскопа, влияющая на результат преобразования и его погрешности), определяемая нестабильностью величины сигнала на выходе преобразовательных каналов гироскопа при отсутствии воздействия (угловой скорости) в виде высокочастотной (шумовой) и низкочастотной составляющих сигнала на выходе [3].
Определение: Нестабильность масштабного коэффициента – нестабильность отношения приращения сигнала на выходе гироскопа к вызывающему это приращение изменению угловой скорости [3].
Сопоставительный анализ будет проведен по дрейфам смещения нуля гироскопов разных типов.
5.3 Роль и место микромеханических гироскопов
Как и любые промышленные приборы, гироскопы можно сравнивать по различным характеристикам: это массо-габаритные показатели, энергопотребление, стоимость, надежность, способность работать в условиях вибрации и перегрузки. Однако в первую очередь разработчик интересуется показателями, характеризующими точность гироскопа.
Постоянно возрастающие требования к точностным и эксплутационным характеристикам гироскопических приборов стимулировали ученых и инженеров многих стран мира не только к дальнейшим усовершенствованиям классических гироскопов с вращающимся ротором, но и к поискам принципиально новых идей, позволяющих решить проблему создания чувствительных датчиков для индикации и измерения угловых движений объекта в пространстве. В настоящее время известно более ста различных явлений и физических принципов, которые позволяют решать гироскопические задачи. Выданы многие тысячи патентов и авторских свидетельств на соответствующие открытия и изобретения. И даже их беглое перечисление представляет собой невыполнимую задачу.
Обобщим сведения о состоянии российской и мировой гироскопии за последние годы [13]. На рис. 5.2 приведем диаграмму со сводными данными о достигнутых показателях точности гироскопов, построенных на различных физических принципах.
|
Рис. 5.2. Диаграмма со сводными данными о точности гироскопов разных типов
|
Подробнее остановимся на неконтактных гироскопах (электростатические и гироскопы на магнитных подвесах) и микромеханических гироскопах.
5.3.1 Неконтактные гироскопы
С помощью неконтактные гироскопов удалось достичь сверхвысоких точностей °/ч. Неконтактные гироскопы имеют резервы дальнейшего повышения точности и по крайней мере в обозримом будущем будут оставаться лидерами в этом отношении. Разработка гироскопов с неконтактными подвесами началась с середины ХХ века. В неконтактных подвесах реализуется состояние левитации, то есть состояние, при котором ротор гироскопа парит в силовом поле подвеса без какого-либо механического контакта с окружающими телами. Среди гироскопов с неконтактными подвесами можно выделить гироскопы с электростатическим и магнитным подвесами ротора.
В электростатическом гироскопе (ЭСГ) проводящий сферический ротор подвешен в вакуумированной полости в регулируемом электрическом поле, создаваемой системой электродов. Если поверхность ротора — идеальная сфера, то силы электрического поля, действующие по нормали к проводящей поверхности ротора, не могут создать момента относительно его центра и возникает возможность создания идеального гироскопа. Ротором электростатического гироскопа может служить бериллиевый шар диаметром 1 см, раскрученный до скорости порядка 180 тыс. оборотов в минуту. Для такого подвеса характерно практически полное отсутствие трения (при вакууме в подвесе мм рт. ст.). Ничтожно малые величины возмущающих моментов сил, действующих на левитирующий в вакууме ротор, обеспечивают неограниченно долгое и надежное сохранение направления оси вращения гироскопа в пространстве.
Гироскопы с магниторезонансным подвесом ротора (МСГ) являются в определенной степени аналогами гироскопов с электростатическим подвесом ротора, в которых электрическое поле заменено магнитным, а бериллиевый ротор — ферритовым. Несмотря на более чем тридцатилетнюю историю разработок МСГ, он так и не стал объектом серийного производства. Причина заключается в том, что в конкуренции за достижение сверхвысоких точностей выявилось решающее преимущество ЭСГ из-за существенно меньших возмущающих моментов, возникающих при взаимодействии бериллиевого ротора с электрическим полем, чем ферритового с магнитным. Разумеется, достижение точности гироскопа в 10 4—10 5 °/ч — задача чрезвычайной сложности.
Современные гироскопы с неконтактными подвесами — это сложнейшие приборы, которые вобрали в себя новейшие достижения техники. Только три страны в мире в настоящее время способны производить электростатические гироскопы. Кроме США и Франции в их число входит и Россия. Опыт эксплуатации на морских объектах электростатических гироскопов, созданных в Санкт-Петербурге в ЦНИИ "Электроприбор", подтвердил высокую точность и достаточную надежность корабельных инерциальных навигационных систем на электростатических гироскопах [15].
5.3.2 Микромеханические гироскопы
Микромеханические гироскопы (ММГ) относятся к области низких точностей. Эта область традиционно считалась малоперспективной для задач управления движущимися объектами и навигации и серьезно не рассматривалась в научных и инженерных кругах [15]. Но в последнее время ситуация резко изменилась, и в печати одно за другим стали появляться сообщения о новом классе гироскопических чувствительных элементов, получивших название микромеханических. Это одноосные гироскопы вибрационного типа, изготавливаемые на базе современных кремниевых технологий. ММГ представляет собой своеобразный электронный чип с кварцевой подложкой площадью в несколько квадратных миллиметров, на которую методом фотолитографии наносится плоский вибратор.
Точность полученных к настоящему времени ММГ находится на невысоком уровне, но ожидается, что ее можно будет повысить на порядок. Тем не менее, несмотря на меньшую в сравнении с прочими гироскопами точность, микромеханические гироскопы обладают целым рядом уникальных достоинств, что делает их незаменимыми для многих применений.
Прежде всего – это малые габариты и масса, во много раз меньшие, чем у любого другого гироскопа. Датчики угловой скорости типа ADXRS150 и ADXRS300 фирмы Analog Devices выпускаются в миниатюрных корпусах размером 7×7×3 мм, вес такого прибора не превышает 0,5 г. Рекордно низкие массогабаритные показатели чувствительных элементов, обеспечиваемые микромеханической технологией MEMS, сочетаются с интеграцией всех необходимых электронных схем обработки сигнала в одной микросхеме
Важнейший для портативных автономных устройств параметр – это энергопотребление. Гироскопы ADXRS150 и ADXRS300 потребляют ток величиной 5 мА при номинальном напряжении питания 5 В. Этот параметр у ММГ сильно отличается в меньшую сторону по сравнению с прочими гироскопами [14].
Низкая стоимость датчиков угловой скорости (не превышающая десятков долларов) также ставит их в обособленное положение среди других гироскопов.
Кроме того, гироскопы отличаются высокой надежностью. В данных приборах для повышения надежности (впервые в коммерчески доступных гироскопах данного класса) предусмотрена встроенная система полного механического и электронного автотестирования, которая функционирует без необходимости отключения датчиков. Патентованные решения, которые воплощены в технологии MEMS, обеспечивают экстраординарную устойчивость датчиков к ударам и вибрации. Например, гироскопы ADXRS выдают стабильный выходной сигнал в присутствии механических шумовых колебаний с величиной ускорения до 2000 g в широком диапазоне частот.
Разумеется, достигнутые характеристики постоянно повышаются благодаря совершенствованию технологии MEMS. Таким образом, сочетание уникальных показателей сразу по многим параметрам позволяет данным приборам служить средством как для улучшения характеристик и возможностей имеющихся разработок, так и для воплощения новых, беспрецедентных конструкторских идей [14].
Рассмотрим подробнее основных производителей, устройство и принципы функционирования ММГ И ММА.
Достарыңызбен бөлісу: |