4.4. Иллюстративный материал: раздаточный материал, тест.
4.5. Литература:
1. Базикян Э.А. Пропедевтическая стоматология: учебник / под ред. Э.А. Базикяна // М.: ГЭОТАР-Медиа, 2010. – С. 528-539.
2. Стоматологическое материаловедение: учебное пособие для студентов медицинских вузов / И. Я. Поюровская. - М. : ГЭОТАР-Медиа, 2008. - 192 с.
3. Попков В.А. Стоматологическое материаловедение: Учебное пособие. / В.А. Попков, О.В. Нестерова, В.Ю. Решетняк // М.: МЕДпресс-информ, 2009. – С. 23-94.
4. Материаловедение в ортопедической стоматологии, Рузиддинов С.Р., Учебное пособие, 2010
|
4.6. Контрольные вопросы:
1. Каков механизм твердения цинк-фосфатных цементов, какова структура отвердевшего цемента?
2. Назовите основные компоненты силикатных стоматологических цементов. Каковы их преимущества и недостатки?
3. Сравните по составу и по основным свойствам цинк-фосфатный и поликарбоксилатный цементы.
5. Что такое стеклополиалкенатные цементы? Каков механизм их твердения?
6. Чем состав порошка для силикатного цемента отличается от состава порошка для стеклополиалкенатного (или стеклоиономерного) цемента?
4.1. Тема №12 Полимерные материалы для восстановления зубов
4.2. Цель:
разобрать содержание дисциплины стоматологическое материаловедение как основного раздела ортопедической стоматологии, ознакомить студентов с видами зубных протезов и основными группами материалов для их изготовления.
4.3. Тезисы лекции:
1. Состав и механизм отверждения полимер-мономерных композиций для пломбирования. 2. Недостатки и пути совершенствования.
3. Композиты - определение, основные компоненты состава.
В конце 40-х годов ХХ в. появилась возможность непосредственно восстанавливать коронки зубов полимерами благодаря разработкам так называемых самотвердеющих акриловых материалов. Порошок этих материалов представлял собой окрашенный суспензионный гомоили сополимер, содержащий компонент окислительно-восстановительной системы (ОВС) для отверждения при невысоких температурах - инициатор пероксид бензоила, в количестве, превышающем содержание инициатора в базисных материалах холодного отверждения и составляющем около 1,5%. Жидкость самотвердеющих пластмасс содержала мономер или смесь мономеров, активатор ОВС, иногда бифункциональный мономер в качестве сшивающего агента для образования сетчатой структуры полимера. Компоненты ОВС обеспечивают отверждение полимер-мономерной композиции при невысоких температурах (от комнатных до температуры полости рта) по механизму реакции радикальной полимеризации. Первичные свободные радикалы инициатора образуются при взаимодействии пероксида бензоила с восстановителем-активатором, как правило, диметил-р-толуидином (схема 25.1).
Клинические наблюдения за зубами, восстановленными акриловыми полимерами, дали противоречивые результаты. Были отмечены преимущества этих материалов - эстетичность и устойчивость в среде полости рта (нерастворимость), особенно заметные при сравнении с силикатными цементами. С другой стороны, выявленные отрицательные свойства этих материалов, прежде всего нарушение краевого прилегания и краевая проницаемость, недостаточные прочность при сжатии, изнашиваемость и изменения в цвете, были настолько серьезны, что ставили под сомнение саму возможность их дальнейшего применения в восстановительной стоматологии.
Схема 25.1. Реакции инициирования радикальной полимеризации: 1) под действием нагревания; 2) при взаимодействии компонентов ОВС - инициатора ПБ и активатора ДМПТ.
Но, несмотря на выявленные в процессе клинического применения серьезные недостатки, положительные свойства этих материалов стимулировали продолжение работ по их совершенствованию, результатом которых стало создание нового класса стоматологических материалов на полимерной основе - композитов.
Композитные материалы для восстановления зубов - наиболее молодой и развивающийся класс материалов в стоматологии. Согласно литературным данным, первый стоматологический композитный материал был запатентован в 1962 г. Полимер первого композита содержал ароматический диметакрилатный мономер (Бис-ГМА), называемый также по имени его создателя мономером Боуэна (схема 25.2). Наиболее часто в качестве основного компонента полимерного связующего
в композитах, даже самых современных, по-прежнему является мономер Бис-ГМА. Он является результатом реакции взаимодействия бисфенола А и глицидилметакрилата. Позднее в качестве связующего начали использовать уретандиметакрилаты (УДМА), а затем вещества, получаемые при взаимодействии алифатических уретанов и Бис-ГМА, так называемые Бис-ГМА уретаны. Строго говоря, перечисленные вещества, такие, как Бис-ГМА, УДМА и их производные, нельзя назвать мономерами. Это скорее олигомеры, представляющие собой вязкие смолоподобные жидкости. Поэтому в состав композитного связующего дополнительно потребовалось ввести разбавители, способные полимеризоваться при отверждении пломбировочного композитного материала. Наиболее распространенным разбавителем является диметакрилат триэтиленгликоля.
Схема 25.2. Структурные формулы Бис-ГМА и мономера-разбавителя ТГМ-3
Наиболее полное и общее определение композита: пространственное сочетание или комбинация, по крайней мере, двух различных по физико-химической природе материалов, которые имеют достаточно четкую
границу раздела; эта комбинация имеет новые показатели свойств, отличные от каждого из составляющих материалов в отдельности.
Согласно модели композитная структура состоит из трех основных фаз: наполнителя, связующего вещества (органической матрицы) и межфазного слоя (рис. 25.1).
Рис. 25.1. Микрофотография (а) и схематичное представление структуры композита (б): 1 - непрерывная фаза - полимерная матрица; 2 - дисперсная фаза - неорганический наполнитель; 3 - межфазный слой
В непрерывной фазе матрицы с определенной закономерностью распределена дискретная фаза наполнителя. Связующее вещество (полимер или полимерная матрица) обеспечивает текучесть и пластичность материала в процессе формирования пломбы, а после отверждения - стабильность формы, монолитность, герметичность, необходимые материалу для создания функциональной полноценности восстановленного зуба.
Введение неорганических наполнителей в связующее на основе метакриловых мономеров позволяет, прежде всего, уменьшить усадку при полимеризации, которая для Бис-ГМА составляет около 7% (объемных), а для мономеров-разбавителей типа ТГМ-3 - 10-12%, вместо 20% полимеризационной усадки метилметакрилата.
В результате адсорбционного взаимодействия вблизи каждой частицы наполнителя образуется пограничный слой с измененными по отношению к остальной части полимерной матрицы свойствами. Этот слой называется межфазным. Его толщина составляет примерно 10-30 нм (100-300 А). Несмотря на очень малый размер, межфазный слой в значительной степени определяет свойства композита. В пределах этого слоя свойства изменяются непрерывно, невозможно провести четкую границу раздела между этим слоем и основным полимером матрицы.
Межфазный слой в композитах создается взаимодействием жидкого связующего и твердой поверхности частицы наполнителя. Для осуществления этого взаимодействия частицы неорганического наполнителя обрабатывают специальными химическими соединениями, так называемыми связывающими агентами или аппретами. Основное назначение аппретов - создать достаточно стабильное и водостойкое адгезионное соединение между наполнителем и полимерным связующим. Известно достаточно многочисленное число таких аппретов, в большинстве своем представляющих собой кремнийорганические бифункциональные соединения-силаны (схема 25.3).
Схема 25.3. Применение силана для образования межфазного слоя
Большое значение для эффективного применения аппретов имеет не только выбор химического соединения для этой цели, но и способ нанесения аппрета на поверхность тонкодисперсного наполнителя.
Достарыңызбен бөлісу: |