Антонов В. М. Эфир русская теория Липецк 1999 удк ббк



бет1/5
Дата26.06.2016
өлшемі0.76 Mb.
#158714
  1   2   3   4   5


Антонов В. М.

ЭФИР

Русская теория

Липецк 1999

УДК ББК
Антонов В.М. Эфир. Русская теория. — Изд-во ЛипГТУ, Липецк,
1999. — с.
Предложена эфирная модель мира, согласно которой единственным веществом Вселенной является эфир; элементарная частица эфира — идеальный шарик. Электроны и атомы представляют собой микрозавихрения эфира. Приведены примеры топологии атомов.

Отвергнуты физическое притяжение и электрические заряды; закон всемирного тяготения заменен законами космических эфирных завихрений; электрофизика представлена в виде пневматики электронного газа.


 Владимир Михайлович Антонов, 1999 г.



1. Эфир
1.1. Эфир

Начнём с того, что уточним предмет разговора: речь пойдёт о среде, в которой плавают планеты и звёзды, то есть о том, чем за­полнено безвоздушное космическое пространство и вообще всё прост­ранство. Если мы с помощью вакуум-компрессора отсосали воздух из закрытой ёмкости, то это не значит, что там образовалась абсолют­ная пустота — ёмкость окажется наполненной эфиром, причём нельзя говорить, что он туда попал во время откачки воздуха — он там был всегда, только компрессор удалил из него атомы и молекулы, то есть очистил его. Так рыбаки, вылавливая сетями рыбу, можно сказать, «очищают» от неё воду; при этом вода свободно уходит сквозь сети: их ячейки слишком крупны, чтобы задерживать её.

Ещё более текучей, даже сверхтекучей, средой является эфир. Пока человечество не располагает средствами прямой его регистрации. Воду, даже невидимую, прозрачную, мы обнаруживаем по её сопротив­лению ладони или веслу; воздух почти не ощущается ни ладонью, ни, тем более, веслом, но лицом мы можем почувствовать даже самые лёгкие его дуновения; эфир не ощущается нами никак, а если и ощу­щается как предвестие смены погоды, то не осознаётся. Его сущест­вование подтверждается исключительно косвенно, но достаточно убеди­тельно.

Эфир является той средой, которая несёт «электромагнитные» волны, и в том числе — свет. Не будь этой среды, не было бы и волн. Круги от брошенного камня возникают только тогда, когда камень падает в воду: не было бы воды — не было бы и кругов; звук мы слышим только потому, что воздух несёт его волны: в безвоздушном прост­ранстве — абсолютная тишина. Так же и со светом: если он распро­страняется, — а это очевидно, то, без сомнения, есть его среда; этой средой является эфир.

Свет, как свидетель существования эфира, определяет и его грани­цы. Видимые нами звёзды находятся, очевидно, в одном с нами непре­рывном эфирном пространстве; это — наше Эфирное Облако или други­ми словами — Видимое пространство Вселенной; за пределами этого Облака — абсолютная пустота, и свет там не гуляет. Следовательно, Вселенная представляет собой абсолютную пустоту, в которой нахо­дятся эфирные облака, и одно из них — наше. Размеры Видимого про­странства огромны и не поддаются обычному представлению: свет, рас­пространяющийся по эфиру со скоростью триста тысяч километров в секунду, пересекает только одну нашу Галактику за сто тысяч лет, а всего известно около миллиарда галактик.

Облако текучего эфира своим поведением напоминает обычное об­лако в жаркий летний день: оно также постоянно видоизменяет свою форму: местами сжимается, где-то расширяется, образует спиральные и дискообразные завихрения. Их различие — только в несопоставимых размерах и скоростях трансформаций: за время одной человеческой жизни удаётся наблюдать не так уж и много существенных изменений Видимого пространства, хотя одного года достаточно для того, чтобы отметить полный оборот нашей планеты Земля вокруг Солнца.

Наблюдения только за поведением родной планеты и за её соседями убеждают нас также в существовании эфира. Ничем другим, кроме как наличием эфира, нельзя объяснить дискообразность Солнечной системы: все её планеты и их спутники расположены практически в одной плос­кости; так может закручиваться только сплошная текучая среда, и планеты со спутниками ведут себя в ней как захваченные ею инород­ные тела. Если ещё принять к сведению, что все эти планеты движут­ся в одном направлении, то существование эфира, закрученного в виде дискообразного завихрения, кажется очевидным. Встреч­ное движение кометы Галлея не опровергает, а, наоборот, подтверждает наш вывод: встречные и поперечные движения в космосе в прин­ципе возможны, и такое может возникнуть при случайных встречах кос­мических тел; но постоянные «жители» Солнечной системы — её абори­гены, хорошо нам известные планеты — плыть навстречу потоку эфира или поперёк него не могут.

Если невозможно не признать существование эфира (а об этом го­ворят многие и многие другие подтверждения), то из его поведения напрашиваются его свойства: эфир представляет собой прозрачную, малоинерционную, не имеющую никакой вязкости жидкость из весьма тонкой материи. Её прозрачность делает эфир невидимым (воздух тоже невидим); малоинерционность не позволяет ощутить её динамическое сопротивление (тот же воздух веслом не ощутить); отсутствие вяз­кости делает её сверхтекучей, а в совокупности с тонкостью мате­рии — всепроникающей; такую жидкость можно назвать идеальной. Она проявляется только в лобовом сопротивлении: потоки эфира могут по­рождать движения воздуха, то есть ветер, и господство западных направлений ветров на Земле можно объяснить только его действием. Это — ещё одно свидетельство существования эфира.

Только одно признание наличия эфира, как среды, в которой пла­вают планеты и звёзды, не столь уж и неожиданно: существование так называемого физического вакуума не отрицается никем (а чем это не эфир?), но осмелимся на большее: будем утверждать, что он явля­ется основой всего, что кроме него в Природе ничего нет и что атомы построены из эфира. Такое утверждение напрашивается само собой, если принять как догму, что в основе своей Природа проста; сложными становятся только её проявления. Эфир, как однородная жидкость, может быть представлен в виде Эфирного Облака, или в виде громадного завихрения, образующего Солнечную систему, или в виде звёзд и планет, носимых этим завихрением, или, наконец, в виде атомов.

Простота Природы заключается ещё и в том, что эфир состоит из элементарных частиц одной формы и с одними неизменными и простыми свойствами; и всё в нашем Мире построено из этих элементарных «кирпичиков».
1.2. Элементарная частица эфира

Элементарная частица эфира представляет собой круглое тело — шарик. Будем считать, что не атом, а этот эфирный или элементарный шарик (ЭШ) является неделимой частицей вещества.

Е
го характеристика предельно проста: он идеально круглый, иде­ально скользкий, идеально упругий и обладает инерцией. Его округ­лость идеальна в том смысле, что, кроме правильной геометрической формы, его поверхность имеет нулевую шероховатость: в какой бы микроскоп мы не смотрели на неё (если это было бы возможно), ника­ких неровностей не заметили бы. Он скользкий потому, что не испы­тывает даже малейшего прилипания к другим таким же шарикам, как и он; другими словами: эфирная жидкость, состоящая из этих шари­ков, не имеет вообще никакой вязкости, и может течь без потери энергии. Идеальная упругость элементарной эфирной частицы выража­ется в том, что, во-первых, дефор­мация шарика всегда пропорциональна сдавливавшей силе, а во-вторых, любое сжатие происходит без потерь: с какой силой шарик сдавливается, с такой же силой он распрямляется.

Для образного сравнения можно представить элементарную эфирную частицу в виде подшипникового шарика: он также кажется на взгляд идеально круглым, его блеск свидетельствует о зеркальности поверхности, он производит впечатление своей упругостью. И самое главное, может быть, подшипниковые шарики демонстрируют почти иде­альные столкновения между собой: сила от любого столкновения всегда направлена нормально к поверхности и проходит через центр шарика; это выражается в предсказуемости поведения шариков при их воздей­ствиях друг на друга. Подобные свойства характерны также для биль­ярдных шаров и теннисных мячей: если бы их поведение при любых столк­новениях не было предсказуемым, не было бы и соответствующих увле­кательных игр.

Ещё более идеальны столкновения эфирных шариков. В их среде не­возможны хаотичные движения наподобие тепловых движе­ний атомов и молекул.



Элементарные частицы эфира абсолютно независимы: они не призна­ют никакого притяжения и никакого другого воздействия извне, кроме силового давления друг на друга; нет для них никаких гравитацион­ных, электрических, магнитных и иных полей. Эфирный шарик, зажа­тый со всех сторон такими же, как и он, шариками, не ведает, где он находится (положение в пространстве для него ничего не значит), не имеет представления, есть ли у него скорость или её нет (к дви­жению с постоянной скоростью он безразличен); он реагирует только на давления со всех сторон соседних шариков: эти давления могут быть уравновешенными или неуравновешенными; неуравновешенность возникает в результате действия двух факторов: наличия собствен­ной инерции и неодинакового давления своих соседей.

Точно также чувствует себя человек в тесном вагоне поезда: если у него нет возможности выглянуть в окошко, то он может даже не представлять, где он находится, движется ли поезд и он с ним или нет; он легко смиряется с тем, что стиснут толпой. Выводит его из такого состояния только сосед, вознамерившийся пробраться к выходу и вынужденный толкаться.

О размерах эфирных шариков можно судить, сравнивая их с разме­рами атомов: самый наименьший из всех атомов — атом водорода пост­роен из пяти с половиной тысяч шариков; атомы тяжёлых химических элементов насчитывают их более миллиона. Из таких соотношений сле­дует, что диаметр эфирного шарика приблизительно равен 3,1 на 10 в минус одиннадцатой степени сантиметра.

Эфирный шарик всеми своими свойствами отвечает критериям веще­ства: он конкретен, имеет реальные размеры и обладает инерцией; можно даже утверждать большее: только он представляет собой веще­ство. Про атомы мы должны теперь говорить так: они состоят из вещества. Эфирные шарики являются тем строительным материалом, из которого создаются атомы. В сплошной эфирной среде атомы выделяются как сгустки, точнее сказать, как вихри. От эфирных шариков они наследуют только инерцию. Более подробно эти вопросы рассмотрим несколько позднее.

В заключение скажем, что элементарный эфирный шарик не имеет никакого внутреннего состояния; поэтому он не поглощает внешние движения (тепло) и не выделяет их; он не способен видоизменяться. А так как внутри него не происходят никакие процессы, то не может быть и смены внутренних событий и не требуется их отсчёт. Следова­тельно, элементарный эфирный шарик не имеет своего внутреннего времени и поэтому он — вечен; можно даже сказать так: эфирный шарик не возникает, не изменяется и не исчезает никогда и ни при каких обстоятельствах.
1.3 Плотность эфира

Плотность эфира в Видимом пространстве Вселенной в среднем избыточная. Это означает, что в спокойном состоянии все эфирные шарики частично сдавлены, то есть эфирная среда напряжена; только в таком состоянии эта среда способна нести так называемые электромагнитные волны, и только такая среда может удержать атомы от распада. Избыточная плотность Эфирного Облака является причиной его расширения; из­вестно, что оно разбегается со скоростью 50 ... 100 километров в секунду на каждый мегапарсек (один парсек в 206 266 раз больше расстояния до Солнца).

Усреднённость избыточной плотности следует понимать в том смыс­ле, что она не везде одинаковая: где-то — выше, где-то — ниже, а где-то она полностью отсутствует. Астрономам известны так называе­мые чёрные дыры, сквозь которые свет не проникает; не трудно пред­положить, что в них плотность эфира разреженная; а если это так, то и атомы там существовать не могут: не имея сдавливающего окру­жения, они распадутся.

О неодинаковой избыточной плотности эфира в Видимом простран­стве говорит также разброс скоростей его разбегания и уже упоминав­шиеся постоянные видоизменения форм галактик и метагалактик. В от­носительно мелком плане изменение плотности эфира может возникать в результате локальных завихрений эфира: в центрах таких завихре­ний плотность будет ниже, чем на перифериях. Примером может служить та же Солнечная система: отчётливо закрученный вокруг Солнца эфир более плотный на большом удалении и менее плотный в ближайших ок­рестностях светила. Можно высказать даже предположение, что чёрные дыры являются центрами подобных завихрений, но уже на поздних ста­диях их развития.

Постоянные видоизменения внутри нашего Эфирного Облака могут расцениваться как события, а события предполагают наличие времени, а у времени есть начало. Началом начал Видимого и Атомарного мира было само возникновение избыточной плотности эфира. Сейчас трудно утверждать, в результате чего она возникла, но предполагать мы можем.

Предположим идеальный случай: в пустоте Вселенной плавали два эфирных облака, и в один прекрасный момент они столкнулись; энер­гия их столкновения ушла на рождение мириад атомов и на повышение плотности эфира во вновь образованном облаке. Такое предположение хорошо тем, что упрощает весь процесс и наши рассуждения о нём. Произойти это событие могло, по мнению учёных, 15 миллиардов лет тому назад.

Как ни заманчив этот вариант, но в него верится с трудом: сму­щает его идеальность. Тот прекрасный момент столкновения, учиты­вая размеры возникшего облака и скорость столкновения, пусть даже равную скорости света, должен был длиться так долго, что не хва­тило бы на это всех тех 15 миллиардов лет. Да и возникшее облако было бы каким-то однобоким: со стороны столкновения плотность эфира и плотность возникших атомов должна была бы быть выше; однако в действительности этого не наблюдается: звёзды распределены в Види­мом пространстве более-менее равномерно.

Откажемся от идеального случая и усложним его до столкновений большого количества облаков (может быть даже очень большого коли­чества), но произошедших приблизительно в одно и то же время. Облака могли сойтись с разных сторон в направлении к некоторому центру и за относительно короткий срок сжаться в одно облако. В ре­зультате возникло бы шаровидное образование с явно выраженной сфе­рической структурой. Но и этого в Видимом пространстве нет. К тому же, одновременность столкновения большого количества облаков кажется нереальной, если не принимать всерьёз возможность отрица­тельного взрыва или взрыва в отрицательном пространстве — но такую теорию пусть рассматривают другие.

Остановимся на том, что столкновения нашего Эфирного Облака с ему подобными идут постоянно и происходят они, разумеется, на его окраинах; в результате оно получает постоянную подпитку. Толчки от столкновений не столь значительны, чтобы вызывать сжатие эфира на больших пространствах; а локальные сжатия на окраинах Видимого пространства зарегистрировать современными средствами практически невозможно; поэтому пока нет подтверждений подобных явлений. Труд­ность обнаружения местных столкновений усугубляется ещё и тем, что после них в тех местах сначала образуются только атомы, потом из них постепенно собираются планеты; но и то, и другое астрономы увидеть не могут. Звёзды же возникают значительно позже, когда рост плотности эфира прекращается и начинается её уменьшение: именно тогда атомы планет могут ускоренно распадаться. Свидетелем окра­инных столкновений может быть только рассеянный свет, не имеющий точечных источников, и такой свет до нас доходит.

Переменная плотность эфира характерна не только для субпространств, но и в масштабах, куда как меньших, вплоть до пределов одного атома; в последнем случае она выражена наиболее ярко: уплотнённой оболочке атома противостоит разреженная сердцевина, и этот перепад плотностей удерживает атом от распада. Чем выше плотность окружающего эфира, тем атомы более устойчивы; при этом их абсолютные размеры уменьша­ются. Снижение плотности вызывает разбухание атомов и, как следствие, увеличение объёма абсолютной пустоты в них; а пустота определяет гравитационную массу тела. Отсюда — вывод: при снижении плотности окружающего эфира гравитация тел уменьшается.

Если взять Солнечную систему, где плотность эфира нестабильна и зависит от удалённости от самого светила и других планет, то масса гравитации любого тела будет меньше на дальних рубежах и больше при при­ближении к центрам завихрений. Проще говоря, на космической станции любое тело имеет меньший объём и меньшую массу гравитации, чем на поверхности Земли. Изменение плотности эфира влия­ет также на изменение скорости света и на его прямолинейность.

Говоря о плотности эфира, мы всегда имели в виду избыточную плот­ность, но в принципе она может быть нормальной, когда эфирные шарики соприкасаясь не давят друг на друга, или даже пониженной — в случае разреженного расположения элементарных эфирных частиц.
1.4. Законы эфирной среды

Принимая элементарную частицу эфира идеально круглой, идеально скользкой, идеально упругой, обладающей инерцией и не испытывающей никаких иных взаимодействий с другими такими же частицами, кроме отталкивания, мы заключили, что, во-первых, среда, собранная из та­ких частиц, будет вести себя как жидкость, и во-вторых, она будет обладать идеальными свойствами: такая жидкость малоинерционна, не имеет никакой вязкости и, следовательно, никакого сопротивления течению, кроме лобового столкновения, и может быть поэтому охарактеризована как сверхтекучая. На такую жидкость распространяется общеизвестные законы гидравлики, основанные на классической механике в чистом виде.

Для сравнения скажем, что в атомарно-молекулярном мире законы механики в чистом виде практически не действуют: каждый раз прихо­дится учитывать множество поправок. Взять, например, ускоре­ние свободного падения: согласно классической механики такие разные тела, как камень и пушинка, должны были бы падать с равной скоро­стью, однако на самом деле этого не происходит. Или другой пример: движущееся тело всегда останавливается, несмотря на инерционное стремление продол­жать своё движение. У жидкостей наличие вязкости, то есть прилипания атомов и молекул друг к другу, искажает теоретический процесс течения настолько, что в практических расчётах используют только эмпирические зависимости.

Получается так, что классики науки о механике испытывали муче­ния в раскрытии законов Природы только потому, что имели дело не о первородной эфирной средой, а со средой атомарно-молекулярной, и, разгребая её, доходили до такого уровня, на котором механика представлялась им в виде простейшей математики; это как раз тот уровень, где этой математике соответствует простейший эфир. И ника­кой иной механики, кроме классической, для описания эфирной среды и микромира вообще не требуется.

Инерция (инертность) в ряду факторов механики стоит на первом месте. Это такое загадочное свойство вещества, которое признано как факт, но не объяснено, и мало надежд на то, что кто-нибудь когда-либо сможет это сделать. Первый закон механики гласит: вся­кое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не вы­водит его из этого состояния; в этом проявляется инерция или, дру­гими словами, стремление к сохранению механического состояния.

Применительно к эфиру, точнее — к эфирному шарику, приведённое определение инерции нуждается в некотором изменении. Элементарная эфирная частица, как уже говорилось, зажатая со всех сторон други­ми такими же частицами, не может быть охарактеризована как находя­щаяся в покое или в равномерном прямолинейном движении: и то, и другое оценивается выбранной системой координат и является субъек­тивной характеристикой. Одно и то же состояние эфирного шарика мо­жет рассматриваться как покой и как равномерное движение в зависи­мости от выбранной нами системы отсчёта; от этого же зависит опре­деление прямолинейности движения: среди эфирных шариков нет опорных плоскостей и прямых линий (из чего бы они состояли?), и даже луч света, представляющий собой мятущиеся туда-сюда эфирные час­тицы, не может быть использован в качестве таковых.

В нашем случае лучше сказать так: инерция эфирного шарика выра­жается в том, что он может испытывать неуравновешенное воздействие соседних шариков, то есть упругая деформация шарика с одной сторо­ны может отличаться в тот же момент от деформации с противополож­ной.

Инерцию, как свойство, правильнее было бы называть инертностью, а инерция — это уже мера инертности, то есть физическая величина, имеющая размерность; размерностью инерции является килограмм. Будем помнить. Что в эфирной физике инерция не имеет ничего общего с гравитацией; у последней – совсем другая размерность - метры кубические. Гравитация это такой параметр, который определяет тяготение атомарных тел к центру гравитации; и природа тяготения – не притяжение, а выталкивание. К этому вопросу мы ещё вернёмся, а пока сосредоточим своё внимание на инерции.

Второй закон механики устанавливает соотношение между силой, действующей на тело, его инерцией и его ускорением. В окружающей нас действи­тельности в отношении тел, с которыми мы имеем дело, этот закон нуждается в серьёзных поправках, и мы уже говорили об этом. Попро­буйте сами толкнуть шкаф и посмотрите, какое ускорение он при этом получит. Если вам не нравится такой грубый опыт, то толкните лодку, но не строго направленно, а случайно, и попробуйте предсказать её поведение — ничего не получится.

И только в эфирной среде Второй закон механики действует безу­коризненно; только там не требуется никаких поправок и только там тела (шарики) могут быть представлены в виде точек с сосредоточенными в них массами.

Что касается Третьего закона механики, гласящего, что два тела действуют друг на друга одинаково, то он справедлив везде: и в атомарном мире, и в эфире, — и его универсальность, скорее всего, — философская. Разве не им руководствуется, не ведая того, зажатый в общественном транспорте пассажир, когда урезонивает привередли­вого соседа: «Я на вас давлю также, как и вы на меня»?

В эфирной среде в идеальном виде предстаёт векторностъ механи­ки, там справедливы законы сохранения энергии и количества движе­ния, и там реализуются в чистом виде все следствия из законов ме­ханики, такие, например, как центробежная сила, момент инерции, законы гидравлики и другие.

Для идеальной эфирной среды характерны такие её идеальные формы поведения, которые в атомарно-молекулярном мире просто невозможны. Так отсутствие какого-то ни было трения может породить ярко выра­женную неустойчивость без энергетической подпитки её извне; и такое наблюдается у атомов и молекул газов: они как бы пульсируют, и эта пульсация не затухает.

Стоит отметить ещё такое интересное явление, как возникновение вокруг неустойчивых атомов и молекул своих как бы изолированных теп­ловых полей, на которые не распространяются действия Второго закона термодинамики, гласящего, что теплота смещается от более нагретых участков к менее нагретым.

В атомарно-молекулярной среде, как известно, царствуют хаотичные движения. Они хаотичны потому, что атомы и молекулы имеют неправильные геометрические формы, сильно отличающиеся от сфери­ческих, и их столкновения приводят к непредсказуемым последствиям. В их движениях «правит бал» вероятность: каждая частица, если она даже идеально упругая, но имеет неправильную форму, после получения удара от другой частицы совершает такой «кульбит», что упругую сдачу своей обидчице нанести уже не может; её «злость» выливается на иную случайно попавшую под руку частицу. Таким образом, получая удары чаще всего со стороны более нагретого участка, каждая части­ца не возвращает их назад, а передаёт по законам вероятности в раз­ные стороны, чем способствует перемещению движений, то есть теп­лоты, в направлении к холодному участку.

Из Второго закона термодинамики следует вывод, обескураживаю­щий учёных: согласно нему температура во Вселенной рано или поздно должна выравняться; хаос движений должен взять верх над порядком, или, как говорят сами учёные, энтропия должна достичь своего наи­большего значения; и это будет концом Жизни.

Эфир тепловых полей неустойчивых атомов и молекул ведёт себя несколько иначе. Правильная, более того — идеально сферическая фор­ма эфирных шариков исключает хаос в их движениях. Эфирный шарик может получить толчок от соседа только в направлении по прямой ли­нии, соединяющей их центры; спружинив он отскочит — ударится в следующий ряд шариков — отскочит и от них — вернётся назад и воз­вратит полученный толчок в целости и сохранности, то есть в преж­ней величине и всё по той же прямой линии. В результате движения будут распространяться от источника радиально в виде продольных колебаний прилегающих шариков, амплитуда которых будет уменьшаться в квадратной зависимости от удаления. Указанные возмущения эфирной среды вокруг источника окажутся как бы привязанными к нему; дого­воримся называть такое поле возмущений стоячим тепловым полем. Оно может сохраняться как угодно долго.

Это не значит, что стоячие тепловые поля - неизменны вообще; всё зависит от поведения источника колебаний. Если источник полу­чает постоянную подпитку, то амплитуда его колебаний будет возрас­тать, и будет активизироваться его стоячее тепловое поле: оно бу­дет расширять зону своих движений. И наоборот: если источник колебаний теряет свою энергию, то его стоячее тепловое поле сжимается. Равновесие удерживается только при балансе поступающей к источни­ку и теряемой им энергий. К слову: подпитка и потеря энергии осу­ществлюется через то же тепловое поле.

Диапазон изменения активности стоячих тепловых полей достаточно широк, но имеет свои пределы. Если баланс энергий источника нару­шается и он больше теряет, чем приобретает, то это приводит рано или поздно к успокоению источника — он прекращает свою пульса­цию, — и его стоячее тепловое поле исчезает. С другой стороны, при избытке поступающей энергии источник будет увеличивать амплитуду своих колебаний и расширять зону действия своего стоячего поля, но и одновременно начнёт чаще испускать убегающие поперечные волны; в результате очень скоро наступит равновесие, но уже на новом энер­гетическом уровне; это — временный верхний предел активности тепло­вого поля. Что же касается абсолютного верхнего предела, то он, скорее всего, определяется границей, за которой начинается распад источника колебаний, в частности атома.

На эфирную текучую среду в полной мере распространяется такой общеизвестный закон гидравлики и пневматики, как связь давления со скоростью; он гласит: давление текущей жидкости (газа) больше в тех сечениях потока, в которых скорость его движения меньше, и наоборот, в тех сечениях, в которых скорость его движения больше, давление меньше. Этот закон является всеобъемлющим для эфирной среды, и поэтому его значение трудно переоценить. Его действие распространяется от масштабов гигантских космических завихрений типа Солнечной системы до крошеч­ных, вроде атома и электрона.

Уточним применительно к эфирной среде его формулировку: в нашем случае правильнее говорить не о связи давления со скоростью, а о влиянии движений элементарных эфирных частиц на их избыточную плотность. Это влияние является следствием наиболее общего закона — закона неравномерных деформаций эфирных шариков, который звучит так: чем больше в изолированном пространстве неравномерность деформа­ций каждого отдельного эфирного шарика, тем меньше суммарная де­формация всех шариков. Указанное пространство изолировано в том смысле, что не получает энергию со стороны и не отдаёт её на сто­рону; таким же можно считать пространство с балансом энергий. Под неравномерностью деформаций будем понимать неодинаковую дефор­мацию эфирного шарика с разных сторон.

Предложенная формулировка закона позволяет, с одной стороны, конкретизировать охватываемое им явление, а с другой — исключить из сферы его действия случай с потоком параллельно движущихся эфир­ных шариков, в котором они полностью уравновешены (скорость в этом случае возникает как продукт выбора «не той» системы координат).

Чтобы не говорить каждый раз о неравномерности деформаций ша­рика, заменим её более привычным понятием движения. Для этого у нас есть все основания: неравномерность деформаций говорит о не­уравновешенности сил; неуравновешенные силы порождают результиру­ющую силу; она вызывает ускорение эфирного шарика, а ускорение может быть расценено как объективно существующее движение. Все другие движения, определяемые изменением положения или скоростью изменения положения, субъективны и лучше их движениями не назы­вать. Короче говоря, чем больше неравномерность деформаций эфир­ного шарика, тем больше у него движений.

С учётом сказанного и того, что избыточная плотность эфира оп­ределяется степенью деформаций элементарных шариков, можно заклю­чить, что, чем больше у них движений, тем меньше их избыточная плотность. Если теперь мы приравняем избыточную плотность к давле­нию (то и другое определяется степенью упругой деформации эфирных шариков), то получим рассматриваемый нами закон гидравлики, который звучит теперь так: чем больше движений эфирных шариков, тем меньше их давление.

Исключение составляют так называемые антипараллельные движения, то есть встречные; в них давление не уменьшается, а наоборот, растёт, и происходит это в результате лобового столкновения эфирных шариков. Исключение возникает потому, что в данном случае нарушается прин­цип изолированности эфирных пространств: встречные потоки являются внешними по отношению к каждому из них, и их движения препятствуют друг другу.
1.5. Электроны и атомы

Электроны и атомы представляют собой разные формы микрозавихре­ний эфира, И те и другие состоят исключительно из эфирных шариков, и никаких иных элементарных частиц в них нет. Кроме набора некото­рого количества эфирных шариков для их построения требуются ещё два условия: наличие энергии и избыточное давление эфирной среды. Эти условия создаются и удачно сочетаются в моменты, исключительно важ­ные для истории Вселенной, — в моменты столкновений эфирных облаков; тогда появляются на Свет первичные электроны и атомы; вторичные возникают в результате распада атомов, в частности электроны в основ­ной своей массе появляются именно таким образом, и поставляет их нам в огромных количествах наше светило — Солнце: там распад атомов происходит более интенсивно, чем на планетах.




Достарыңызбен бөлісу:
  1   2   3   4   5




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет