Аппроксимация функций



Дата27.06.2016
өлшемі87.31 Kb.
#160482

Аппроксимация функций.

Из курса математики известны 3 способа задания функциональных зависимостей:



  1. аналитический

  2. графический

  3. табличный

Табличный способ обычно возникает в результате эксперемента.

Недостаток табличного задания функции заключается в том, что найдутся значения переменных которые неопределены таблицей. Для отыскания таких значений определяют приближающуюся к заданной функцию, называемой аппроксмирующей, а действие замены аппроксимацией.



А

φ(х)
ппроксимация
заключается в том, что используя имеющуюся информацию по f(x) можно рассмотреть другую функцию φ(ч) близкую в некотором смысле к f(x), позволяющую выполнить над ней соответствующие операции и получить оценку погрешность такой замены.

φ(х)- аппроксимирующая функция.


Интерполяция (частный случай аппроксимации)

Если для табличной функции y=f(x), имеющей значение x0 f(x0) требуется построить аппроксимирующюю функцию (x) совпадающую в узлах с xi c заданной, то такой способ называется интерполяцией

При интерполяции, заданная функция f(x) очень часто аппроксимируется с помощью многочлена, имеющего общий вид

(x)=pn(x)=anxn+an-1xn-1+…+a0

В данном многочлене необходимо найти коэффициенты an ,an-1, …a0 , так как задачей является интерполирование, то определение коэффициентов необходимо выполнить из условия равенства:

Pn(xi)=yi i=0,1,…n

Для определения коэффициентов применяют интерполяционные многочлены специального вида, к ним относится и полином Лагранжа Ln(x).
ij

В точках отличных от узлов интерполяции полином Лагранжа в общем случае не совпадает с заданной функцией .



Задание


С помощью интерполяционного полинома Лагранжа вычислить значение функции y в точке xc, узлы интерполяции расположены равномерно с шагом х=4,1 начиная с точки х0=1,3 даны значения функции y={-6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27}.

ГСА для данного метода



CLS


DIM Y(9)

DATA -6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27

X0 = 1.3: H = 4.1: N = 10: XC = 10

FOR I = 0 TO N - 1

1 X(I) = X0 + H * I

READ Y(I)

PRINT Y(I); X(I)

NEXT I


S1 = 0: S2 = 0: S3 = 0: S4 = 0

FOR I = 0 TO N - 1

2 S1 = S1 + X(I) ^ 2

S2 = S2 + X(I)

S3 = S3 + X(I) * Y(I)

S4 = S4 + Y(I)

NEXT I

D = S1 * N - S2 ^ 2



D1 = S3 * N - S4 * S2

D0 = S1 * S4 - S3 * S2

A1 = D1 / D: A0 = D0 / D

YC = A1 * XC + A0

PRINT "A0="; A0, "A1="; A1, "YC="; YC

FOR X = 0 TO 50 STEP 10

Y = A1 * X + A0

PRINT X, Y

NEXT X

END
XC= 10



Х Y

1.3 -6.56

5.4 -3.77

9.5 -1.84

13.6 .1

17.7 2.29



21.8 4.31

25.9 5.86

30 8.82

34.1 11.33



38.2 11.27

S=-1.594203

АППРОКСИМАЦИЯ ФУНКЦИЕЙ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ.

В
инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi,yi), i=0,1,2,...n, где n - общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности. При аппроксимации желательно получить относительно простую функциональную зависимость (например, полином), которая позволила бы "сгладить" экспериментальные погрешности, получить промежуточные и экстраполяционные значения функций, изначально не содержащиеся в исходной табличной информации.

Графическая интерпретация аппроксимации.

Эта функциональная (аналитическая) зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. Критерием точности или достаточно "хорошего" приближения могут служить несколько условий.

Обозначим через fi значение, вычисленное из функциональной зависимости для x=xi и сопоставляемое с yi.

Одно из условий согласования можно записать как



S =
(fi-yi)  min ,

т.е. сумма отклонений табличных и функциональных значений для одинаковых x=xi должна быть минимальной (метод средних). Отклонения могут иметь разные знаки, поэтому достаточная точность в ряде случаев не достигается.

Использование критерия S =
|f
i-yi| min , также не приемлемо, т.к. абсолютное значение не имеет производной в точке минимума.

Учитывая вышеизложенное, используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость, при которой


S = (
f
i-yi)2 , (1)

обращается в минимум.

В качестве функциональной зависимости рассмотрим многочлен

f(x)=C0 + C1X + C2X2+...+CMXM. (2)

Формула (1) примет вид S =
( C
0 + C1Xi + C2Xi2+...+CMXiM - Yi ) 2

Условия минимума S можно записать, приравнивая нулю частные производные S по независимым переменным С0,С1,...СМ :

SC0 = 2 (
C0 + C1Xi + C2Xi2+...+CMXiM - Yi ) = 0 ,


SC1 = 2 (
C0 + C1Xi + C2Xi2+...+CMXiM - yi ) Xi = 0 ,

................................................................................................. (3)



SCM = 2 (
C0 + C1Xi + C2Xi2+...+CMXiM - Yi ) XiM = 0 ,

Тогда из (3) можно получить систему нормальных уравнений



C0 (N+1) + C1
Xi + C2
Xi2 +...+ CM
XiM =
Yi ,


C0
Xi + C1
Xi2 + C2
Xi3 +...+ CM
XiM+1 =
Yi Xi ,


....................................................................................................... (4)

C0
XiM + C1
XiM+1 + C2
XiM+2 +...+ CM
Xi2M = Y
i XiM .

Для определения коэффициентов Сi и, следовательно, искомой зависимости (2) необходимо вычислить суммы и решить систему уравнений (4). Матрица системы (4) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при ее решении.






(N+1)


Xi


Xi2

...


XiM


Yi







X
i



Xi2


Xi3

...


XiM+1

EMBED Equation.3 Y
i Xi








...

...

...

...

...

...







X
iM



XiM+1


XiM+2

...


Xi2M


Yi XiM




Нетрудно видеть, что для формирования расширенной матрицы (4а) достаточно вычислить только элементы первой строки и двух последних столбцов, остальные элементы не являются "оригинальными" и заполняются с помощью циклического присвоения.

Задание
Найти коэффициенты прямой и определить значение функции y{-6.56,-3.77, -1.84,0.1,2.29,4.31,5.56,8.82,11.33,11.27}, x0=1.3 h=4.1, и определить интеграл заданной функции.


ГСА Программы аппроксимации и вычисления интеграла методом трапеции.


Программа


¦CLS

¦XC = 10: X0 = 1.3: H = 4.1: N = 10

¦DIM Y(9): DIM X(9)

¦DATA -6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27

¦FOR I = 0 TO N - 1

¦X = X0 + H * I:

¦X(I) = X

¦READ Y(I)

¦PRINT X(I), Y(I)

¦NEXT I


¦S1 = 0: S2 = 0: S3 = 0: S4 = 0

¦I = 0


¦10 S1 = S1 + X(I) ^ 2:

¦S2 = S2 + X(I):

¦S3 = S3 + X(I) * Y(I):

¦S4 = S4 + Y(I)

¦I = I + 1

¦IF I <= N - 1 THEN 10

¦D = S1 * N - S2 ^ 2:

¦D1 = S3 * N - S2 * S4:

¦D0 = S1 * S4 - S2 * S3

¦A1 = D1 / D:

¦A0 = D0 / D

¦Y = A1 * XC + A0

¦PRINT TAB(2); "КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A0="; A0,

¦PRINT TAB(2); "КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A1="; A1,

¦PRINT TAB(2); "ЗНАЧЕНИЕ ФУНКЦИИ В ТОЧКЕ XC Y="; Y

¦FOR X = 10 TO 50 STEP 10

¦Y = A1 * X + AO

¦PRINT X, Y

¦NEXT X

¦FOR I = 1 TO N - 1

¦S = S + Y(I): NEXT I

¦D = H / 2 * (Y(0) + Y(N - 1) + 2 * S)

¦PRINT "ЗНАЧЕНИЕ ИНТЕГРАЛА ПО МЕТОДУ ТРАПЕЦИИ D="; D

Ответы


Х Y

1.3 -6.56

5.4 -3.77

9.5 -1.84

13.6 .1

17.7 2.29



21.8 4.31

25.9 5.86

30 8.82

34.1 11.33



38.2 11.27

КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A0=-6.709182

КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A1= .5007687

ЗНАЧЕНИЕ ФУНКЦИИ В ТОЧКЕ XC Y=-1.701495

10 5.007687

20 10.01537



ЗНАЧЕНИЕ ИНТЕГРАЛА ПО МЕТОДУ ТРАПЕЦИИ D= 166.9725





Достарыңызбен бөлісу:




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет