3. Тығыздық градиентінде тепе-теңдікпен центрифугалау. Бұл жағдайда тығыздық градиентін құру үшін цезий және рубидий секілді металдардың тұздарын, сонымен қатар сахарозаның ерітінділерін қолданады. Зерттелетін препаратты, мысалы ДНҚ-ны, концентрленген хлорлы цезий ерітіндісімен араластырады. Ерітіндідегі қосылыс (бұл жерде ДНҚ) және еріткіштің қоспасы центрифуга пробиркасының барлық көлемінде біркелкі болып құйылады. Центрифугалау барысында концентрацияның тепе-тең болып таралуы іске асады. Соның нәтижесінде цезий ионының массасы үлкен болғандықтан хлорлы цезийдің де тығыздығы барлық көлемге тепе-тең болып таралады. Центрден тебілу үдеуінің әсерінен ДНҚ молекулалары пробиркадағы өздеріне сәйкес келетін тығыздықтың аймағында бөлекше зона түрінде қайта топтасады. Америка ғалымдары Месельсон мен Сталь дәл осы әдісті ДНҚ-ның жартылай консервативті репликациясын ашуда орынды пайдаланған.
4. Аналитикалық центрифугалау. Биологияда аналитикалы центрифугалауды макромолекулалардың молекулалық салмақтарын анықтау, үлгілердің тазалығын тексеру, сонымен қатар макромолекулалардың конформациялық өзгерістерін зерттеу үшін қолданылады. Аналитикалық ультрацентрифуганың көмегімен молекулалық салмақты анықтаудың үш әдісі бар: седиментация жылдамдығын анықтау, седиментациялық тепе-теңдік әдісі және седиментациялық тепе-теңдікке жақындау әдісі.
5. Молекулалық салмақты седиментация жылдамдығы арқылы анықтау. Бұл кең тараған әдіс. Алғаш барлық кеңістікке біркелкі таралған бөлшектер үлкен жылдамдықпен центрифугалау жүргізгенде айналудың центрінен радиус бойынша рет-ретімен қозғала бастайды. Бөлшектерден босанып үлгерген еріткіштің аймағы және оның әлі де бөлшектер бар бөлімінің арасында оларды анық бөліп тұратын шекара пайда болады. Сол шекара центрифугалау кезінде жылжып, бөлшектердің седиментциясының жылдамдығын анықтауға мүмкіндік береді, фотопарақта тіркеліп отырады.
НАЗАРЛАРЫҢЫЗҒА РАХМЕТ!
Достарыңызбен бөлісу: |