ЧИСЛА – ВЕЛИКАНЫ
Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:
1000 единиц – просто тысяча
1000 тысяч – 1 миллион
1000 миллионов – 1 биллион ( или миллиард)
1000 биллионов – 1 триллион
1000 триллионов – 1 квадриллион
1000 квадриллионов- 1 квинтиллион
1000 квинтиллионов – 1секстиллион
1000 секстиллионов – 1 септиллион
1000 септиллионов – 1октиллион
1000 октиллионов – 1 нониллион
1000 нониллионов – 1 дециллион
1000 дециллионов - ундециллион.
МИЛЛИАРД
Слово „миллиард" употребляется у нас в смысле тысячи миллионов и при денежных вычислениях и в точных науках. Но, например, в Германии и в Америке под миллиардом иногда имеют в виду не тысячу, а всего сто миллионов. Этим, между прочим, можно объяснить то, что слово „миллиардер" было в ходу за океаном еще тогда, когда ни один из тамошних богачей не имел состояния в тысячу миллионов. Огромное состояние Рокфеллера незадолго до войны исчислялось „всего" 900 миллионов долларов, а остальных „миллиардеров» – меньшими числами. Только во время войны появились в Америке миллиардеры в нашем смысле слова (их иногда называют на родине „биллионерами").
Чтобы составить себе представление об огромности миллиарда, представьте себе, что в книжке в 200 страниц не более 200.000 букв. В пяти таких книжках окажется один миллион букв. А миллиард букв будет заключать в себе стопка из 5.000 экземпляров такой книжки. Стопка, которая, будучи аккуратно сложена, составила бы столб высотой с Исаакиевский собор. Миллиард секунд часы отобьют более чем в 30 лет (точнее в 31,7 лет). А миллиард минут составляет более 19 столетий; человечество всего 29 апреля 1902 года в 10 часов 40 минут начало считать второй миллиард минут от первого дня нашего летосчисления.
БИЛЛИОН и ТРИЛЛИОН
Ощутить огромность этих числовых исполинов трудно даже человеку, опытному в обращении с миллионами. Великан–миллион – такой же карлик рядом со сверхвеликаном биллионом, как единица рядом с миллионом. Об этом взаимоотношении мы забываем и не делаем в своем воображении большой разницы между миллионом, биллионом и триллионом. Волос, увеличенный по толщине в биллион раз, был бы раз в 8 шире земного шара, а муха при таком увеличении была бы в 70 раз толще Солнца!
Взаимоотношение между миллионом, биллионом и триллионом можно с некоторою наглядностью представить следующим образом. В Санкт- Петербурге еще недавно было миллион жителей. Представьте себе длинный прямой ряд городов, таких как Санкт-Петербург, – целый миллион их: в этой цепи столиц, тянущихся на семь миллионов километров (в 20 раз дальше Луны) будет насчитываться биллион жителей... Теперь вообразите, что перед вами не один такой ряд городов, а целый миллион рядов, т.-е. квадрат, каждая сторона которого состоит из миллиона Санкт-Петербургов и, который внутри сплошь уставлен такими городами: в этом квадрате будет триллион жителей.
Одним триллионом кирпичей можно было бы, размещая их плотным слоем по твердой поверхности земного шара, покрыть все материки равномерным сплошным пластом высотою с четырехэтажный дом (16 м).
Если бы все видимые в сильнейшие телескопы звезды обоих небесных полушарий, т. е. не менее 500 миллионов звезд, были обитаемы и населены каждая, как наша Земля, то на всех этих звездах, вместе взятых, насчитывался бы только один триллион людей.
Молекула по ширине меньше точки типографского шрифта примерно в миллион раз. Вообразите триллион таких молекул, нанизанных вплотную на одну нитку. Какой длины была бы эта нить? Ею можно было бы семь раз обмотать земной шар по экватору. Световой год – путь, проходимый лучом света в 1 год (свет пробегает в секунду 300000 км – равен, примерно, биллионам км.
Числовые великаны вокруг и внутри нас
Часто можно встретиться с числовыми великанами. Они присутствуют всюду вокруг и даже внутри нас самих – надо лишь уметь рассмотреть их. Небо над головой, песок под ногами, воздух вокруг нас, кровь в нашем теле – все скрывает в себе невидимых великанов из мира чисел.
Числовые исполины небесных пространств для большинства людей не являются неожиданными. Хорошо известно, что зайдет ли речь о числе звезд вселенной, об их расстояниях от нас и между собою, об их размерах, весе, возрасте – во всех случаях мы неизменно встречаемся с числами, подавляющими воображение своей огромностью. Недаром выражение «астрономическое число» сделалось крылатым. Многие, однако, не знают, что даже и те небесные тела, которые астрономы часто называют «маленькими», оказываются настоящими великанами, если применить к ним привычную земную мерку. Существуют в нашей солнечной системе планеты, которые, ввиду их незначительных размеров, получили у астрономов наименование «малых». Среди них имеются и такие, поперечник которых равен нескольким километрам. В глазах астронома, привыкшего к исполинским масштабам, они так малы, что, говоря о них, он пренебрежительно называет их «крошечными». Но они представляют собой «крошечные» тела только рядом с другими небесными светилами, еще более огромными: на обычную же человеческую мерку они далеко не миниатюрны. Возьмем такую «крошечную» планету с диаметром 3 км. По правилам геометрии легко рассчитать, что поверхность такого тела заключает 28 кв.км, или 28 000 000 кв.м. На 1 кв.м может поместиться стоя человек 7. Значит, на 28 миллионах кв.м найдется место для 196 миллионов человек.
Песок под нашими ногами также вводит нас в мир числовых исполинов. Недаром сложилось издавна выражение: «бесчисленны, как песок морской». Древние недооценивали многочисленность песка, считая ее одинаковой с многочисленностью звезд. В старину не было телескопов, а простым глазом мы видим на небе всего около 3500 звезд (в одном полушарии). Песок на морском берегу в миллионы раз многочисленнее, чем звезды, доступные невооруженному зрению.
Величайший числовой гигант скрывается в том воздухе, которым мы дышим. Каждый кубический сантиметр воздуха, каждый наперсток заключает в себе 27 квинтиллионов (т. е. 27 с 18 нулями) мельчайших частиц, называемых «молекулами».
Невозможно даже представить себе, как велико это число. Если бы на свете было столько людей, для них буквально недостало бы места на нашей планете. В самом деле: поверхность земного шара, считая все его материки и океаны, – равна 500 миллионам кв. км. Раздробив в квадратные метры, получим 500 000 000 000 000 кв.м.
Поделим 27 квинтиллионов на это число, и мы получим 54 000. Это означает, что на каждый квадратный метр земной поверхности приходилось бы более 50 тысяч человек!
Числовые великаны скрываются и внутри человеческого тела. Покажем это на примере нашей крови. Если каплю ее рассмотреть под микроскопом, то окажется, что в ней плавает огромное множество чрезвычайно мелких телец красного цвета, которые и придают крови ее окраску. Каждое такое «красное кровяное тельце» имеет форму крошечной круглой подушечки, посредине вдавленной. Все они у человека примерно одинаковых размеров и имеют в поперечнике около 0,007 мм, а толщину – 0,002 мм. Зато число их огромно. В крошечной капельке крови, объемом 1 куб.мм, их заключается 5 миллионов. Сколько же их всего в нашем теле? В теле человека примерно в 14 раз меньше литров крови, чем килограммов в его весе. Если вы весите 40 кг, то крови в вашем теле около 3 литров, пли 3 000 000 куб.мм. Так как каждый куб. мм заключает 5 миллионов красных телец, то общее число их в вашей крови:
5 000 000 x 3 000 000 =15 000 000 000 000.
15 триллионов кровяных телец! Какую длину займет эта армия кружочков, если выложить ее в ряд один к другому? Нетрудно рассчитать, что длина такого ряда была бы 105 000 км. Более чем на сто тысяч километров растянулась бы нить из красных телец вашей крови. Ею можно было бы обмотать земной шар по экватору; 100 000 : 40 000=2,5 раза, а нитью из кровяных шариков взрослого человека - три раза.
Объясним, какое значение для нашего организма имеет такое измельчение кровяных телец. Назначение этих телец - разносить кислород по всему телу. Они захватывают кислород, когда кровь проходит через легкие, и вновь выделяют его, когда кровяной поток заносит их в ткани нашего тела, в его самые удаленные от легких уголки. Сильное измельчение этих телец способствует выполнению ими этого назначения, потому что чем они мельче, при огромной численности, тем больше их поверхность, а кровяное тельце может поглощать и выделять кислород только со своей поверхности. Расчет показывает, что общая поверхность их во много раз превосходит поверхность человеческого тела и равна 1200 кв. м. Такую площадь имеет большой огород в 40 м длины и 30 м ширины. Теперь вы понимаете, до какой степени важно для жизни организма то, что кровяные тельца сильно раздроблены и так многочисленны: они могут захватывать и выделять кислород на поверхности, которая в тысячу раз больше поверхности нашего тела.
Сколько пищи поглощает человек за свою жизнь
Числовым великаном следует назвать и тот внушительный итог, который получился бы, если бы вы подсчитали, сколько всякого рода пищи поглощает человек за 70 лет средней жизни. Целый железнодорожный поезд понадобился бы для перевозки тех тонн воды, хлеба, мяса, дичи, рыбы, картофеля и других овощей, тысяч яиц, тысяч литров молока и т. д., которые человек успевает поглотить в течение своей жизни. Наглядным примером служит случай, описанный Джонатаном Свифтом в книге «Приключение Гулливера в стране Лиллипутов». При виде его не веришь, что человек может справиться с таким исполином, буквально проглатывая - правда, не разом - груз длинного товарного поезда.
|
Быстрое размножение.
Спелая маковая головка полна крошечных зернышек; из каждого может вырасти целое растение. Сколько же получится маков, если зернышки до единого прорастут? Чтобы узнать это, надо сосчитать зернышки в целой головке. Скучное занятие, но результат так интересен, что стоит запастись терпением и довести счет до конца. Оказывается, одна головка мака содержит (круглым числом) 3000 зернышек.
Что отсюда следует? То, что будь вокруг нашего макового растения достаточная площадь подходящей земли, каждое упавшее зернышко дало бы росток, и будущим летом на этом месте выросло бы уже 3000 маков. Целое маковое поле от одной головки!
Посмотрим, что будет дальше. Каждое из 3000растений принесет не менее одной головки (чаще же несколько), содержащей 3000 зерен. Проросши, семена каждой головки дадут 3000 новых растений, и, следовательно, на второй год у нас будет уже не менее 3000 х 3000 = 9 000 000 растений.
Легко рассчитать, что на третий год число потомков нашего единственного мака будет уже достигать 9 000 000 х 3000 = 27000 000 000.
На пятом году макам станет тесно на земном шаре, потому что число растений сделается равным
81 000 000 000 000 х 3000 = 243 000 000 000 000 000.
Поверхность же всей суши, то есть всех материков и островов земного шара, составляет только 135 миллионов кв. км – 135 000 000 000 000 кв. м. – примерно в 200 раз менее, чем выросло бы экземпляров мака.
Видим, что, если бы все зернышки мака проростами, потомство одного растения могло бы уже в пять лет покрыть сплошь всю сушу земного шара густой зарослью по 2000 растений на каждом квадратном метре. Вот такой числовой великан скрывается в крошечном маковом зернышке! Сделав подобный же расчет не для мака, а для какого–нибудь другого растения, приносящего меньше семян, мы пришли бы к такому же результату, но только потомство его покрыло бы всю Землю не в пять лет, а в немного больший срок.
Возьмем хотя бы одуванчик, приносящий ежегодно около 100 семянок. Если бы все они прорастали, мы имели бы:
В 1-й год 1 растение
Во 2-й « 100 растений
В 3-й « 10 000
« 4-й « 1 000 000
« 5-й « 100 000 000
« 6-й « 10 000 000 000
« 7-й « 1 000 000 000 000
« 8-й « 100 000 000 000 000
« 9-й « 10 000 000 000 000 000
Это в 70 раз больше, чем имеется квадратных метров на всей суше.
Следовательно, на девятом году материки земного шара были бы покрыты одуванчиками, по 70 на каждом квадратном метре.
Почему же в действительности не наблюдаем мы такого чудовищно быстрого размножения? Потому что огромное большинство семян погибает, не давая ростков: они или не попадают на подходящую почву и вовсе не прорастают, или, начав прорастать, заглушаются другими растениями, или же, наконец, просто истребляются животными. Если бы этого массового уничтожения семян и ростков не было, каждое растение в короткое время покрыло бы сплошь всю нашу планету.
Это верно не только для растений, но и для животных. Не будь смерти, потомство одной пары любого животного рано или поздно заполнило бы всю Землю. Полчища саранчи, сплошь покрывающие огромные пространства, могут дать некоторое представление о том, что было бы, если бы смерть не препятствовала размножению живых существ. В каких-нибудь два-три десятка лет материки покрылись бы непроходимыми лесами и степями, где кишели бы миллионы животных, борющихся между собой за место. Океан наполнился бы рыбой до того густо, что сходство стало бы невозможно. А воздух сделался бы едва прозрачным от множества птиц и насекомых… в заключение приведем несколько подлинных случаев необыкновенно быстрого размножения животных, поставленных в благоприятные условия…
В Америке первоначально не было воробьев. Эта столь обычная у нас птица была ввезена в Соединенные Штаты намеренно с той целью, чтобы она уничтожала там вредных насекомых. Воробей, как известно, в изобилии поедает прожорливых гусениц и других насекомых, вредящим садам и огородам. Новая обстановка полюбилась воробьям; в Америке не оказалось хищников, истребляющих этих птиц, и воробей стал быстро размножаться. Количество вредных насекомых начало заметно уменьшаться, но вскоре воробьи так размножились, что за недостатком живой пищи принялись за растительную и стали опустошать посевы. Пришлось приступить к борьбе с воробьями; борьба эта обошлась американцам так дорого, что на будущее время издан был закон, запрещающий ввоз в Америку каких бы то ни было животных.
Второй пример.
В Австралии не существовало кроликов, когда этот материк открыт был европейцами. Кролик ввезен туда в конце 18-ого века, и так как там отсутствуют хищники, питающиеся кроликами, то размножение этих грызунов пошло быстрым темпом. Вскоре полчища кроликов наводнили всю Австралию, нанося страшный вред сельскому хозяйству и превратившись в подлинное бедствие. На борьбу с этим бичом сельского хозяйства брошены были огромные средства, и только благодаря энергичным мерам удалось справиться с бедой. Приблизительно то же самое повторилось позднее с кроликами в калифорнии.
Третья поучительная история произошла на острове Ямайка.
Здесь водились в изобилии ядовитые змеи. Чтобы от них избавиться, решено было ввезти на остров птицу- секретаря, яростного истребителя ядовитых змей. Число змей действительно вскоре уменьшилось, зато необычайно расплодились полевые крысы, раньше поедавшиеся змеями. Крысы приносили такой ущерб плантациям сахарного тростника, что пришлось серьезно подумать об их
истреблении.
Известно, что врагом крыс является индийская мангуста. Решено было привести на остров четыре пары этих животных и предоставить им свободно размножаться. Мангусты хорошо приспособились к новой родине и быстро заселили весь остров. Не прошло и десяти лет, как они почти уничтожили на нем крыс. Но, увы, истребив крыс, мангусты стали питаться чем попало, сделавшись всеядными животными: нападали на щенят, козлят, поросят, домашних птиц и их яйца. А размножившись еще более, принялись за плодовые сады, хлебные поля, плантации. Жители приступили к уничтожению своих недавних союзников, но им удалось лишь до некоторой степени ограничить приносимый мангустами вред.
Гугол
Американский математик Кастнер изобрел «самое большое число» и назвал его «гугол». Это единица со ста нулями! То есть, 10100. Хотя естественный ряд чисел и бесконечен, все же в известной мере гугол — это граница исчисляемого мира.
Дадим простор своему воображению и попытаемся проверить это утверждение. Вычислим площадь Земли в квадратных миллиметрах — можно надеяться, что получится головокружительная величина. Ничего подобного. Площадь земного шара равна квадратных миллиметров. Если же подсчитаем объем Земли в кубических миллиметрах, то получим чуть большее число — 1030. Но и это слишком мало по сравнению с гуголом. Если предположить, что в одном кубическом миллиметре вместится десять песчинок, и подсчитать их количество в объеме Земли, то получится всего 1031. Иными словами, Земля слишком мала для какого бы то ни было вычисления в масштабах гугола.
Возьмем просторы космоса и попытаемся выразить расстояние между звездами в ангстремах — один ангстрем равен одной десятимиллионной части миллиметра. Обычно межзвездные расстояния измеряют в световых го- — это расстояние, которое солнечный луч проходит за год,— приблизительно 9,5 триллиона километров. И если выразить световой год в ангстремах, то получим 1026 ангстрема. И расстояние до самых удаленных галактик не превышаетангстрем. Предположим, что Вселенная имеет ограниченные размеры (что не доказано) и сопоставим этот самый крупный физический объект, известный людям, с ядром атома — одним из самых малых объектов, изученных физиками. Соотношение между ними составит 1040. Это также не гугол.
А теперь подсчитаем возраст Вселенной. Самое короткое время, которое мы используем в этом вычислении, составляет тот миг, который необходим световому лучу, чтобы пересечь диаметр атомного ядра. Получается, что возраст Вселенной в этих единицах составляет также 1040.Пересчитаем все атомные частицы, существующие в известной нам Вселенной: протоны, электроны, нейтроны, а также нейтрино и фотоны. Даже в одной пылинке содержится несколько миллиардов элементарных частиц. А во Вселенной их 1088— то есть миллионная миллионной части гугола!
Энергия, излучаемая всеми звездами во Вселенной, должна быть исключительно велика. Но даже выраженная в микроваттах, она не достигает 1040.
Гугол- недостижим, даже если подсчитать, сколько энергии содержится во всем веществе Вселенной.
Запись чисел-великанов занимает много места и мало наглядна. Поэтому решено было изменить написание таких чисел. При записи больших чисел часто используют степень числа 10.
Таким образом,
Тысяча – 1000 = 103
Миллион – 1000000 - 106
Биллион – 1000000000=109
Триллион - 1000000000000 = 1012
Квадриллион – 1000000000000000=1015
Квинтиллион – 1000000000000000000 = 1018
Секстиллион – 1000000000000000000000=1021
Септиллион – 1000000000000000000000000=1024
Октиллион – 1000000000000000000000000000=1027.
Надо заметить, что обычные цифровые обозначения весьма больших чисел и их названия употребляются лишь в популярно-научных книгах; в книгах же строго-научных по физике и астрономии пользуются обыкновенно иным способом обозначения. При таком способе обозначения сберегается место и, кроме того, гораздо легче производить над числами различные действия (по правилам, изучаемым в алгебре).
Материал взят с сайта учителя математики Елены Белецкой
Достарыңызбен бөлісу: |