Галина Железняк Андрей Козка Чудеса и катастрофы Вселенной


ЗВЕЗДЫ: КАРЛИКИ И ГИГАНТЫ



бет11/15
Дата25.04.2016
өлшемі0.73 Mb.
#91438
1   ...   7   8   9   10   11   12   13   14   15

ЗВЕЗДЫ: КАРЛИКИ И ГИГАНТЫ

Десять, двадцать масс Солнца. Гиганты и сверхгиганты. Что делать с ними? Они-то, видимо, не смогут стать белыми карликами? Астрономы считали, что смогут! Ничего не зная об источниках звездной энергии, они все же выдвигали гипотезы о том, как звезды эволюционируют. Когда вышла из печати статья Чандрасекара, популярной была гипотеза (ошибочная), что все звезды рождаются голубыми гигантами большой массы. Постепенно они остывают, яркость их уменьшается, они становятся красными карликами, а потом… А потом белыми. Но масса красного карлика (и тем более белого) значительно меньше массы голубого гиганта. Отсюда был сделан вывод: эволюционируя, звезды все время теряют свою массу в космическое пространство. В конце жизненного пути любая звезда потеряет ровно столько вещества, сколько нужно, чтобы ничто уже не помешало ей превратиться в белый карлик.

Так, казалось бы, наблюдательный факт (существование звезд разных масс) был состыкован с интерпретацией (звезды теряют вещество) и с теоретическими исследованиями (предельная масса белого карлика). Нуждались ли при этом астрофизики в звездах, которых никто никогда не видел?

Теперь, разобравшись в том, какую роль сыграли белые карлики, вернемся к нейтронным звездам.

Снова сделаем отступление в прошлое — в XIX век. В век торжества ньютоновой теории тяготения. Помните, как Леверье «на кончике пера» открыл Нептун? Нужно ли было более надежное доказательство ньютоновой теории? Однако… Движение планет все же чуть-чуть отличалось от рассчитанного по законам Ньютона и Кеплера. Особенно вызывающим было поведение Меркурия. Положение его перигелия (ближайшей к Солнцу точки орбиты) отклонялось от вычисленного на 43 угловые секунды в столетие. Делались, конечно, попытки объяснить этот феномен. Появилось множество гипотез, из которых до нас дошли единицы, да и то для того лишь, чтобы украсить кунсткамеру научных ошибок.

Сначала ученые вводили в Солнечную систему невидимые массы, отклонявшие планеты с их курсов. Но это не помогло. И тогда были сделаны отчаянные попытки спасти закон тяготения Ньютона, модернизируя его формулу. Так что когда Эйнштейн создал частную теорию относительности и занялся теорией тяготения, это не было прихотью гения. Вопрос назрел.

Со времен Ньютона физики знали, что вес тела пропорционален его массе. Знали, что существуют два типа массы — тяготеющая и инертная. Тяготеющая масса — это масса, которую нужно подставить в закон всемирного тяготения, чтобы рассчитать силу тяжести. Инертная масса — это масса, которую нужно подставить во второй закон Ньютона, чтобы рассчитать ускорение движения тела под действием силы. Физики знали, что эти массы численно равны друг другу. Эйнштейн сделал шаг, который нам сейчас может показаться маленьким. Но он произвел переворот в умах.

Помните, что сказал Н. Армстронг, ступив на поверхность Луны? «Это небольшой шаг для человека, но большой шаг для всего человечества». Вот эти-то «маленькие» шаги, преобразующие мир, сделать труднее всего. Эйнштейн был первым, кто твердо сказал: тяготеющая и инертная массы не просто численно равны, они — одно и то же. И это утверждение, названное принципом эквивалентности, послужило опорой для создания самой совершенной физической теории XX в. — общей теории относительности.



УСПЕШНОЕ ПРИМЕНЕНИЕ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Эйнштейн доказал, что перигелий Меркурия должен перемещаться именно на 43 угловые секунды в столетие. Кроме того, из общей теории относительности следовало, что луч света, который прежде считался движущимся только прямолинейно (в пустоте), должен отклоняться от своей прямой траектории в поле тяжести. Ведь фотон, квант света, — материальная частица, он также должен быть подчинен закону тяготения.

Никто не знал, чему равна масса фотона. Эйнштейн нашел, что фотон существует только в движении, он не может стоять на месте, потому что его масса покоя равна нулю. А из принципа эквивалентности следовало, что и энергия тела эквивалентна вполне определенной массе — вспомните знаменитую формулу Е=МС2! И значит, луч света должен, как обыкновенный камень, двигаться в поле тяжести по кривой линии, которую можно рассчитать. Это следствие из теории тяготения в отличие от первого предстояло еще доказать на опыте. И третье следствие тоже. Заключалось третье следствие вот в чем. Если подбросить вверх камень, то он будет лететь все медленнее, его кинетическая энергия будет расходоваться на преодоление силы тяготения. В конце концов она истратится вся, камень на мгновение остановится и начнет падать.

Луч света, пущенный вверх, против поля тяжести, тоже должен разорвать путы тяготения, тоже должен, удаляясь от тяготеющего тела, терять свою энергию. Но тормозить движение фотон не может — ведь скорость света есть величина постоянная. Фотон в отличие от камня теряет энергию иначе — он «краснеет». Согласно теории квантов (тоже созданной Эйнштейном в 1905 г.), энергия фотона пропорциональна его частоте. Меньше энергия — меньше частота. Частота фотона — это его цвет. Значит, цвет луча света меняется. Из голубого луч становится красным, причем тем интенсивнее, чем более сильное поле тяжести ему приходится преодолевать. Этот эффект называется гравитационным красным смещением.

В 1919 г. Эддингтон, наблюдая солнечное затмение, обнаружил, что звезды около затемненного Луной края солнечного диска сместились со своих мест. Это означало, что луч света от далекой звезды, проходя по пути к Земле рядом с Солнцем, отклонялся от прямолинейной траектории. Измеренный эффект смещения практически точно совпал с предсказанным.

КРАСНОЕ СМЕЩЕНИЕ

В СПЕКТРАХ КОСМИЧЕСКИХ ОБЪЕКТОВ

А пять лет спустя тот же Эддингтон объявил о том, что спектральные линии элементов в спектрах белых карликов должны быть смещены в красную сторону. Ведь белые карлики — самые компактные из звезд. Поле тяжести на их поверхности в миллион раз больше, чем на поверхности Земли. Значит, и красное смещение света, испущенного белым карликом, должно быть самым большим из возможных. Эддингтон вычислил, на сколько именно должны смещаться в красную сторону спектральные линии. В том же 1924 г. Адаме наблюдал спектры белого карлика Сириус-В и обнаружил предсказанное красное смещение — именно такое, какое следовало из теории.

Размер белого карлика —10 тысяч километров, и в нем уже проявляются эффекты общей теории относительности. Оказывается, без них нельзя точно рассчитать ни предельную массу белого карлика, ни смещение линий в его спектре. Что же тогда говорить о нейтронной звезде, размер которой, если верить предсказаниям Цвикки, еще в сотни раз меньше! Ведь и поле тяжести на поверхности нейтронной звезды должно быть в сотни раз больше. Значит, и эффекты общей теории относительности должны играть весьма существенную, а может, и вовсе определяющую роль.

Посмотрим, так ли это. Чем ближе скорость движения тела к скорости света, тем больше влияние эффектов теории относительности. Так и здесь. Характеристикой величины поля тяжести может служить вторая космическая скорость (скорость убегания). Чем больше сила тяжести, тем большую скорость должно иметь тело, чтобы улететь в космос. Чтобы навсегда покинуть Землю, нужно разогнаться до 11 км/с. Чтобы улететь с поверхности Солнца, нужно развить скорость 600 км/с. Чтобы разорвать путы тяжести белого карлика, нужна скорость 5 тысяч км/с. Все больше и больше! Заметьте, что в белом карлике эффекты общей теории относительности уже ощутимы. А чтобы покинуть нейтронную звезду, нужно разогнаться до скорости 100 тысяч км/с. Всего втрое меньше скорости света. Если бы размер нейтронной звезды был втрое меньше, то скорость убегания с ее поверхности сравнялась бы со скоростью света. Улететь с поверхности нейтронной звезды стало бы просто невозможно…

Впрочем, последнее рассуждение не имеет отношения к нейтронным звездам. Нейтронная звезда в принципе не может иметь таких маленьких размеров — позднее мы еще вернемся к этому. Но само рассуждение безупречно и пришло в голову английскому физику Дж. Мичеллу еще в XVIII в. Спустя несколько лет после Мичелла о том же писал и великий Лаплас. Конечно, они и понятия не имели о теории относительности. Это была прекрасная догадка, жемчужное зерно в куче ошибочных представлений того времени. Лаплас писал, что если свет распространяется не бесконечно быстро, то может найтись небесное тело, с поверхности которого свет не сможет улететь, потому что скорость убегания окажется больше световой. Такое тело невозможно обнаружить, потому что оно в принципе ничего не излучает.

Такими телами являются, например, гипотетические «адские звезды». Размеры у них должны быть меньше размеров атома, и это при массе, равной солнечной! Если бы такие звезды могли существовать, то скорость убегания с их поверхности превышала бы скорость света в миллионы раз. Но дело-то в том, что «адские звезды», согласно общей теории относительности, не могут в принципе существовать как стабильные объекты. Однако об этом тоже немного позже…

Эйнштейн завершил разработку своей теории гравитации в 1916 г. Он создал такие уравнения полей тяжести, которые сводились к обычному ньютоновому закону всемирного тяготения, если поля слабы. Но что значит слабы или сильны? Это лишь слова, а чтобы придать им физический смысл, нужно описать их каким-то числом. Скажем, так: если поле тяжести больше некоторого «икс», то оно считается сильным, а если меньше — то слабым. Таким пробным камнем для теории тяготения и стала проблема поля тяготения звезды.

В 1916 г. немецкий астроном К. Шварцшильд, прочитав только что опубликованную работу Эйнштейна, решил так преобразовать уравнения общей теории относительности, чтобы с их помощью можно было описать гравитационное поле звезды, т. е. поле тяжести вне некоторого сферического тела. Лишь бы только это тело не вращалось. Шварцшильд получил выражение для той критической величины, вблизи которой поле тяжести можно назвать сверхсильным. Случайно математическое выражение этой величины оказалось в точности таким, какое получил Лаплас для радиуса своей гипотетической невидимой звезды. И тогда выяснилась странная вещь. В уравнении оказалась, как говорят математики, сингулярность , то есть область, в которой поле тяжести обращается в бесконечность. В обычной ньютоновой формуле закона всемирного тяготения тоже есть сингулярность. Если расстояние между двумя телами равно нулю, то и в ньютоновой теории сила притяжения таких тел друг к другу равна бесконечности. Но эта сингулярность никому не мешает — в природе не может реализоваться случай, когда расстояние между телами точно равно нулю! А Шварцшильд в рамках общей теории относительности нашел, что сила тяжести становится бесконечно большой при конечном, не равном нулю расстоянии.



Сфера Шварцшильда

Достаточно сжать звезду до некоторого критического размера, и сила тяжести на поверхности такой звезды станет бесконечно большой. Этот критический радиус и был назван гравитационным радиусом, или радиусом Шварцшильда. Гравитационный радиус — та граница, с приближением к которой эффекты общей теории относительности неограниченно нарастают.

Переменной величиной в формуле радиуса Шварцшильда является только масса звезды. Чем больше масса звезды, тем больше ее гравитационный радиус. Гравитационный радиус Солнца равен 3 км. Запомните эту цифру — достаточно знать массу звезды, выраженную в массах Солнца, и мы, умножив массу на три, получим величину гравитационного радиуса звезды в километpax. Так вот, если радиус звезды ненамного больше гравитационного, то поле тяжести сверхсильно. Радиус Солнца больше гравитационного в 200 тысяч раз, и эффекты общей теории относительности очень малы, поле тяжести Солнца хорошо описывается ньютоновой теорией (эффекты малы, но все же измеримы — ведь измерено же отклонение луча света в поле тяготения Солнца!). А радиус нейтронной звезды всего 10 км — в 2–3 раза больше гравитационного. Сила тяжести очень велика, без общей теории относительности не обойтись.

Теперь становится ясно, почему не могут существовать «адские звезды». Если их размеры меньше размеров атома, то они подавно меньше гравитационного радиуса и сила тяжести в таких звездах должна быть бесконечно большой. Но звезду удерживает в равновесии газовое давление. Значит, и газовое давление должно быть бесконечно велико, чтобы уравновесить тяжесть. Чтобы давление было бесконечным, нужна бесконечно большая плотность вещества. Но плотность бесконечна, если тело сжато в точку. А это невозможно. И потому газ в нашей звезде имеет вполне конечную плотность. Вычислим ее. Сожмем Солнце до размеров его гравитационного радиуса — 3 км. Разделим массу Солнца, равную 2 х 1033 г, на объем шара радиусом 3 км и получим, что плотность такого шара равна 2 х 1016 г/см3. Конечно, это очень много — 20 млрд т/см3. Но ведь не бесконечно много! А сила тяжести на поверхности такой звезды именно бесконечна. И значит, никакое газовое давление в принципе не удержит в равновесии звезду, радиус которой равен радиусу Шварцшильда. Сила тяжести начнет распоряжаться бесконтрольно. И вещество звезды под действием тяжести начнет падать… падать… падать…

Больший интерес к этой задаче проявляли физики, но и их в астрономии больше интересовала важная, но чисто физическая проблема источников звездной энергии. Один из пионеров таких исследований — замечательный советский физик Л. Д. Ландау. Его небольшие заметки об источниках энергии звезд подействовали на физиков сильнее, чем эффектные предсказания астронома Цвикки. Именно статьи Ландау были стимулом, побудившим Р. Оппенгеймера и его сотрудников обратиться к исследованию строения нейтронных звезд.

Первая заметка Ландау появилась в 1932 г. — еще до сообщения об открытии нейтрона. Называлась она «К теории звезд». Ландау поставил вопрос: какой может быть масса звезды, состоящей из вырожденного ферми-газа? Чандрасекар поставил тот же вопрос раньше и ответил на него (судя по всему, Ландау не знал о работе индийского ученого, поскольку ни словом о ней не обмолвился, — пример отсутствия контактов между физиками и астрофизиками). Но Ландау пошел дальше. В 1937 г. он вновь обратился к теории звезд, опубликовав статью «Об источниках звездной энергии». Нейтроны уже были известны. Нейтронный газ можно сжать значительно сильнее, чем газ из протонов и электронов, ведь нейтроны не заряжены, между ними не действуют силы электрического отталкивания. Естественно, был поставлен вопрос: а если?..

А если звезда состоит из нейтронов? А если во всех звездах есть нейтронные ядра? А если эти нейтронные ядра и являются источниками звездной энергии? Такие вопросы поставил Ландау в своей статье.

На первый из вопросов ответили американские физики Оппенгеймер и Волков через год после того, как прочитали статью советского ученого. Интересно, что Оппенгеймер с Волковым тоже не обратили внимания на работу Бааде и Цвикки! Оппенгеймер и Волков первыми решили задачу о том, как может выглядеть нейтронная звезда, какова ее структура. И помогла им в этом общая теория относительности. Допустим, сказали они, что звезда целиком состоит из нейтронов. В нейтронном газе существует давление вырождения, которое в принципе способно уравновесить поле тяжести. Уравновесить в любой точке звезды. Но чему равна сила тяжести в любой точке звезды? Чтобы рассчитать это, Оппенгеймер и Волков применили общую теорию относительности. И уравновесили тяжесть давлением вырожденного нейтронного газа. Не простого газа, а идеального. Впрочем, в физике именно идеальный газ и является самым простым для расчетов. В идеальном газе частицы друг с другом не взаимодействуют, и это существенно упрощает вычисления.

Всегда ли давления идеального вырожденного нейтронного газа достаточно для того, чтобы поддержать равновесие звезды? Нет, ответили Оппенгеймер и Волков, не может существовать нейтронная звезда с массой большей, чем 0,7 массы Солнца. Это меньше предельной массы белого карлика. Впрочем, эта странность не заинтересовала Оппенгеймера с Волковым, как не интересовали их и сами белые карлики — астрофизические проблемы были им чужды. Как бы то ни было, в 1938 г. физики теоретически доказали: да, нейтронные звезды могут существовать.

Правда, сами Оппенгеймер и Волков не очень надеялись, что их теоретические расчеты когда-нибудь реализуются в астрономических открытиях. Они писали: «Представляется неправдоподобным, чтобы статические нейтронные ядра играли большую роль в звездной эволюции». Важность проблемы была таким образом снята, и сама задача стала выглядеть не более чем физическим ребусом. Но ребус этот не был еще решен окончательно. Что же случится с нейтронной звездой, если масса ее окажется больше найденного предела 0,7 массы Солнца? «Звезда будет бесконечно сжиматься», — сказали Оппенгеймер и Волков, повторив слово в слово вывод, сделанный ранее Ландау. Но что стоит за этими словами?

За этими словами стояло предсказание черных дыр. О звездах, с поверхности которых не может улететь свет, писали в свое время Мичелл и Лаплас. Но физика черных дыр гораздо богаче. И прежде всего, черная дыра — объект не только невидимый, но принципиально нестационарный. Вот это впервые сказали Оппенгеймер и Волков. А несколько месяцев спустя Оппенгеймер и Снайдер впервые описали, как должна выглядеть черная дыра для нас, наблюдающих с Земли, и для гипотетического космонавта, падающего вместе с веществом звезды к ее центру. Оказывается, далеко не все равно — откуда смотреть!




Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   15




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет